Skip to main content

Advertisement

Log in

Advances and clinical challenges for translating nerve conduit technology from bench to bed side for peripheral nerve repair

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Injuries to the peripheral nervous system remain a large-scale clinical problem. These injuries often lead to loss of motor and/or sensory function that significantly affects patients’ quality of life. The current neurosurgical approach for peripheral nerve repair involves autologous nerve transplantation, which often leads to clinical complications. The most pressing need is to increase the regenerative capacity of existing tubular constructs in the repair of large nerve gaps through development of tissue-engineered approaches that can surpass the performance of autografts. To fully realize the clinical potential of nerve conduit technology, there is a need to reconsider design strategies, biomaterial selection, fabrication techniques and the various potential modifications to optimize a conduit microenvironment that can best mimic the natural process of regeneration. In recent years, a significant progress has been made in the designing and functionality of bioengineered nerve conduits to bridge long peripheral nerve gaps in various animal models. However, translation of this work from lab to commercial scale has not been achieve. The current review summarizes recent advances in the development of tissue engineered nerve guidance conduits (NGCs) with regard to choice of material, novel fabrication methods, surface modifications and regenerative cues such as stem cells and growth factors to improve regeneration performance. Also, the current clinical potential and future perspectives to achieve therapeutic benefits of NGCs will be discussed in context of peripheral nerve regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Åberg M, Ljungberg C, Edin E, Millqvist H, Nordh E, Theorin A, Terenghi G, Wiberg M (2009) Clinical evaluation of a resorbable wrap-around implant as an alternative to nerve repair: a prospective, assessor-blinded, randomised clinical study of sensory, motor and functional recovery after peripheral nerve repair. Journal of plastic, reconstructive & aesthetic surgery 62:1503–1509

    Google Scholar 

  • Abu-Rub MT, Billiar KL, Van Es MH, Knight A, Rodriguez BJ, Zeugolis DI, McMahon S, Windebank AJ, Pandit A (2011) Nano-textured self-assembled aligned collagen hydrogels promote directional neurite guidance and overcome inhibition by myelin associated glycoprotein. Soft Matter 7:2770–2781

    CAS  Google Scholar 

  • Armstrong SJ, Wiberg M, Terenghi G, Kingham PJ (2007) ECM molecules mediate both Schwann cell proliferation and activation to enhance neurite outgrowth. Tissue Eng 13:2863–2870

    CAS  PubMed  Google Scholar 

  • Bae H, Chu H, Edalat F, Cha JM, Sant S, Kashyap A, Ahari AF, Kwon CH, Nichol JW, Manoucheri S (2014) Development of functional biomaterials with micro-and nanoscale technologies for tissue engineering and drug delivery applications. Journal of tissue engineering and regenerative medicine 8:1–14

    CAS  PubMed  Google Scholar 

  • Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353

    CAS  PubMed  Google Scholar 

  • Biernaskie JA, McKenzie IA, Toma JG, Miller FD (2006) Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny. Nat Protoc 1:2803

    CAS  PubMed  Google Scholar 

  • Boni R, Ali A, Shavandi A, Clarkson AN (2018) Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci 25:90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bozkurt A, Claeys KG, Schrading S, Rödler JV, Altinova H, Schulz JB, Weis J, Pallua N, van Neerven SG (2017) Clinical and biometrical 12-month follow-up in patients after reconstruction of the sural nerve biopsy defect by the collagen-based nerve guide Neuromaix. European journal of medical research 22:34

    PubMed  PubMed Central  Google Scholar 

  • Brattain K (2014) Analysis of the peripheral nerve repair market in the United States. Magellan Med Technol Consult Inc Minneap

  • Brushart T (1991) The mechanical and humoral control of specificity in nerve repair. Operative nerve repair and reconstruction 215–230

  • Bu Y, Xu H-X, Li X, Xu W-J, Yin Y-x, Dai H-l, Wang X-b, Huang Z-J, Xu P-H (2018) A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration. RSC advances 8:10806–10817

    CAS  Google Scholar 

  • Cai S, Tsui Y-P, Tam K-W, Shea GK-H, Chang RS-K, Ao Q, Shum DK-Y, Chan Y-S (2017) Directed differentiation of human bone marrow stromal cells to fate-committed Schwann cells. Stem cell reports 9:1097–1108

    PubMed  PubMed Central  Google Scholar 

  • Cao H, Liu T, Chew SY (2009) The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev 61:1055–1064

    CAS  PubMed  Google Scholar 

  • Carrier-Ruiz A, Evaristo-Mendonça F, Mendez-Otero R, Ribeiro-Resende V (2015) Biological behavior of mesenchymal stem cells on poly-ε-caprolactone filaments and a strategy for tissue engineering of segments of the peripheral nerves. Stem cell research & therapy 6:128

    CAS  Google Scholar 

  • Cen L, Liu W, Cui L, Zhang W, Cao Y (2008) Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res 63:492

    CAS  PubMed  Google Scholar 

  • Chang W, Shah MB, Lee P, Yu X (2018) Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration. Acta Biomater 73:302–311

    PubMed  Google Scholar 

  • Chang W, Shah MB, Zhou G, Walsh K, Rudraiah S, Kumbar S, Yu X (2020) Polymeric nanofibrous nerve conduits coupled with laminin for peripheral nerve regeneration. Biomedical Materials

  • Chang Y-C, Chen M-H, Liao S-Y, Wu H-C, Kuan C-H, Sun J-S, Wang T-W (2017) Multichanneled nerve guidance conduit with spatial gradients of neurotrophic factors and oriented nanotopography for repairing the peripheral nervous system. ACS Appl Mater Interfaces 9:37623–37636

    CAS  PubMed  Google Scholar 

  • Chew SY, Mi R, Hoke A, Leong KW (2007) Aligned protein–polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform. Adv Func Mater 17:1288–1296

    CAS  Google Scholar 

  • Cho YI, Choi JS, Jeong SY, Yoo HS (2010) Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomater 6:4725–4733

    CAS  PubMed  Google Scholar 

  • Cohen-Karni T, Jeong KJ, Tsui JH, Reznor G, Mustata M, Wanunu M, Graham A, Marks C, Bell DC, Langer R (2012) Nanocomposite gold-silk nanofibers. Nano Lett 12:5403–5406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa HJZR, Bento RF, Salomone R, Azzi-Nogueira D, Zanatta DB, Costa MP, da Silva CF, Strauss BE, Haddad LA (2013) Mesenchymal bone marrow stem cells within polyglycolic acid tube observed in vivo after six weeks enhance facial nerve regeneration. Brain Res 1510:10–21

    CAS  PubMed  Google Scholar 

  • Das S, Sharma M, Saharia D, Sarma KK, Sarma MG, Borthakur BB, Bora U (2015) In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials 62:66–75

    CAS  PubMed  Google Scholar 

  • De Ruiter GC, Malessy MJ, Yaszemski MJ, Windebank AJ, Spinner RJ (2009) Designing ideal conduits for peripheral nerve repair. Neurosurg Focus 26:E5

    PubMed  PubMed Central  Google Scholar 

  • Demirbilek M, Sakar M, Karahaliloğlu Z, Erdal E, Yalçın E, Bozkurt G, Korkusuz P, Bilgiç E, Temuçin ÇM, Denkbaş EB (2015) Aligned bacterial PHBV nanofibrous conduit for peripheral nerve regeneration. Artificial cells, nanomedicine, and biotechnology 43:243–251

    CAS  PubMed  Google Scholar 

  • Ding F, Wu J, Yang Y, Hu W, Zhu Q, Tang X, Liu J, Gu X (2010) Use of tissue-engineered nerve grafts consisting of a chitosan/poly (lactic-co-glycolic acid)-based scaffold included with bone marrow mesenchymal cells for bridging 50-mm dog sciatic nerve gaps. Tissue Eng Part A 16:3779–3790

    CAS  PubMed  Google Scholar 

  • Ding T, Lu WW, Zheng Y, Zy Li, Hb P, Luo Z (2011) Rapid repair of rat sciatic nerve injury using a nanosilver-embedded collagen scaffold coated with laminin and fibronectin. Regenerative medicine 6:437–447

    CAS  PubMed  Google Scholar 

  • Dinis TM, Vidal G, Jose RR, Vigneron P, Bresson D, Fitzpatrick V, Marin F, Kaplan DL, Egles C (2014) Complementary effects of two growth factors in multifunctionalized silk nanofibers for nerve reconstruction. PLoS ONE 9:e109770

    PubMed  PubMed Central  Google Scholar 

  • Dodla MC, Bellamkonda RV (2008) Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps. Biomaterials 29:33–46

    CAS  PubMed  Google Scholar 

  • dos Santos FP, Peruch T, Katami SJV, Martini APR, Crestani TA, Quintiliano K, Maurmann N, Sanches EF, Netto CA, Pranke P (2019) Poly (lactide-co-glycolide)(PLGA) scaffold induces short-term nerve regeneration and functional recovery following sciatic nerve transection in rats. Neuroscience 396:94–107

    PubMed  Google Scholar 

  • England S, Rajaram A, Schreyer DJ, Chen X (2017) Bioprinted fibrin-factor XIII-hyaluronate hydrogel scaffolds with encapsulated Schwann cells and their in vitro characterization for use in nerve regeneration. Bioprinting 5:1–9

    Google Scholar 

  • Evans PJ, Midha R, Mackinnon SE (1994) The peripheral nerve allograft: a comprehensive review of regeneration and neuroimmunology. Prog Neurobiol 43:187–233

    CAS  PubMed  Google Scholar 

  • Faroni A, Mobasseri SA, Kingham PJ, Reid AJ (2015) Peripheral nerve regeneration: experimental strategies and future perspectives. Adv Drug Deliv Rev 82:160–167

    PubMed  Google Scholar 

  • Fouad K, Schnell L, Bunge MB, Schwab ME, Liebscher T, Pearse DD (2005) Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J Neurosci 25:1169–1178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frattini F, Pereira Lopes FR, Almeida FM, Rodrigues RF, Boldrini LC, Tomaz MA, Baptista AF, Melo PA, Martinez AMB (2012) Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerve regeneration and sensory neuron survival after nerve injury. Tissue Eng Part A 18:2030–2039

    CAS  PubMed  Google Scholar 

  • Frost HK, Andersson T, Johansson S, Englund-Johansson U, Ekström P, Dahlin LB, Johansson F (2018) Electrospun nerve guide conduits have the potential to bridge peripheral nerve injuries in vivo. Scientific reports 8:1–13

    CAS  Google Scholar 

  • Geuna S, Raimondo S, Ronchi G, Di Scipio F, Tos P, Czaja K, Fornaro M (2009) Histology of the peripheral nerve and changes occurring during nerve regeneration. Int Rev Neurobiol 87:27–46

    PubMed  Google Scholar 

  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Baharvand H, Kiani S, Al-Deyab SS, Ramakrishna S (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. Journal of tissue engineering and regenerative medicine 5:e17–e35

    CAS  PubMed  Google Scholar 

  • Gonzalez-Perez F, Cobianchi S, Heimann C, Phillips JB, Udina E, Navarro X (2017) Stabilization, rolling, and addition of other extracellular matrix proteins to collagen hydrogels improve regeneration in chitosan guides for long peripheral nerve gaps in rats. Neurosurgery 80:465–474

    PubMed  Google Scholar 

  • Gonzalez-Perez F, Hernández J, Heimann C, Phillips JB, Udina E, Navarro X (2018) Schwann cells and mesenchymal stem cells in laminin-or fibronectin-aligned matrices and regeneration across a critical size defect of 15 mm in the rat sciatic nerve. Journal of Neurosurgery: Spine 28:109–118

    PubMed  Google Scholar 

  • Grand AG, Myckatyn TM, Mackinnon SE, Hunter DA (2002) Axonal regeneration after cold preservation of nerve allografts and immunosuppression with tacrolimus in mice. J Neurosurg 96:924–932

    CAS  PubMed  Google Scholar 

  • Gu Y, Zhu J, Xue C, Li Z, Ding F, Yang Y, Gu X (2014) Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials 35:2253–2263

    CAS  PubMed  Google Scholar 

  • Guo Q, Liu C, Hai B, Ma T, Zhang W, Tan J, Fu X, Wang H, Xu Y, Song C (2018) Chitosan conduits filled with simvastatin/Pluronic F-127 hydrogel promote peripheral nerve regeneration in rats. J Biomed Mater Res B Appl Biomater 106:787–799

    CAS  PubMed  Google Scholar 

  • Gupta D, Venugopal J, Prabhakaran MP, Dev VG, Low S, Choon AT, Ramakrishna S (2009) Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater 5:2560–2569

    CAS  PubMed  Google Scholar 

  • Gutmann E, Guttmann L, Medawar P, Young J (1942) The rate of regeneration of nerve. J Exp Biol 19:14–44

    Google Scholar 

  • Hosseinkhani H, Hiraoka Y, Li C, Chen Y, Yu D, Hong PD, Ou K (2013) Engineering three-dimensional collagen-IKVAV matrix to mimic neural microenvironment. ACS Chem Neurosci 4:1229–1235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu F, Zhang X, Liu H, Xu P, Teng G, Xiao Z (2017) Neuronally differentiated adipose-derived stem cells and aligned PHBV nanofiber nerve scaffolds promote sciatic nerve regeneration. Biochem Biophys Res Commun 489:171–178

    CAS  PubMed  Google Scholar 

  • Hu N, Wu H, Xue C, Gong Y, Wu J, Xiao Z, Yang Y, Ding F, Gu X (2013) Long-term outcome of the repair of 50 mm long median nerve defects in rhesus monkeys with marrow mesenchymal stem cells-containing, chitosan-based tissue engineered nerve grafts. Biomaterials 34:100–111

    CAS  PubMed  Google Scholar 

  • Hu Y, Wu Y, Gou Z, Tao J, Zhang J, Liu Q, Kang T, Jiang S, Huang S, He J (2016) 3D-engineering of cellularized conduits for peripheral nerve regeneration. Scientific reports 6:32184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Begum R, Barber T, Ibba V, Tee N, Hussain M, Arastoo M, Yang Q, Robson L, Lesage S (2012) Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats. Biomaterials 33:59–71

    PubMed  Google Scholar 

  • Ichihara S, Inada Y, Nakamura T (2008) Artificial nerve tubes and their application for repair of peripheral nerve injury: an update of current concepts. Injury 39:29–39

    PubMed  Google Scholar 

  • Ikeda M, Uemura T, Takamatsu K, Okada M, Kazuki K, Tabata Y, Ikada Y, Nakamura H (2014) Acceleration of peripheral nerve regeneration using nerve conduits in combination with induced pluripotent stem cell technology and a basic fibroblast growth factor drug delivery system. J Biomed Mater Res, Part A 102:1370–1378

    Google Scholar 

  • Jiang X, Lim SH, Mao H-Q, Chew SY (2010) Current applications and future perspectives of artificial nerve conduits. Exp Neurol 223:86–101

    PubMed  Google Scholar 

  • Jiang X, Mi R, Hoke A, Chew SY (2014) Nanofibrous nerve conduit-enhanced peripheral nerve regeneration. Journal of tissue engineering and regenerative medicine 8:377–385

    CAS  PubMed  Google Scholar 

  • Johnson BN, Lancaster KZ, Hogue IB, Meng F, Kong YL, Enquist LW, McAlpine MC (2016) 3D printed nervous system on a chip. Lab Chip 16:1393–1400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson BN, Lancaster KZ, Zhen G, He J, Gupta MK, Kong YL, Engel EA, Krick KD, Ju A, Meng F (2015) 3D printed anatomical nerve regeneration pathways. Adv Func Mater 25:6205–6217

    CAS  Google Scholar 

  • Kaka G, Arum J, Sadraie SH, Emamgholi A, Mohammadi A (2017) Bone marrow stromal cells associated with poly l-lactic-co-glycolic acid (PLGA) nanofiber scaffold improve transected sciatic nerve regeneration. Iranian journal of biotechnology 15:149

    PubMed  PubMed Central  Google Scholar 

  • Kalbermatten DF, Erba P, Mahay D, Wiberg M, Pierer G, Terenghi G (2008) Schwann cell strip for peripheral nerve repair. Journal of Hand Surgery (European Volume) 33:587–594

    CAS  Google Scholar 

  • Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S (2015) PLGA: a unique polymer for drug delivery. Therapeutic delivery 6:41–58

    CAS  PubMed  Google Scholar 

  • Kehoe S, Zhang X, Boyd D (2012) FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury 43:553–572

    CAS  PubMed  Google Scholar 

  • Khuong HT, Kumar R, Senjaya F, Grochmal J, Ivanovic A, Shakhbazau A, Forden J, Webb A, Biernaskie J, Midha R (2014) Skin derived precursor Schwann cells improve behavioral recovery for acute and delayed nerve repair. Exp Neurol 254:168–179

    CAS  PubMed  Google Scholar 

  • Kim M, Kim J, Hyun J (2017) Development of Schwann cell-seeded multichannel scaffolds for peripheral nerve regeneration. J Neurol Sci 381:612–613

    Google Scholar 

  • Kimura H, Ouchi T, Shibata S, Amemiya T, Nagoshi N, Nakagawa T, Matsumoto M, Okano H, Nakamura M, Sato K (2018) Stem cells purified from human induced pluripotent stem cell-derived neural crest-like cells promote peripheral nerve regeneration. Scientific reports 8:1–15

    Google Scholar 

  • Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G (2007) Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 207:267–274

    CAS  PubMed  Google Scholar 

  • Klein SM, Vykoukal J, Li D-P, Pan H-L, Zeitler K, Alt E, Geis S, Felthaus O, Prantl L (2016) Peripheral motor and sensory nerve conduction following transplantation of undifferentiated autologous adipose tissue-derived stem cells in a biodegradable US Food and Drug Administration-approved nerve conduit. Plast Reconstr Surg 138:132–139

    CAS  PubMed  Google Scholar 

  • Kokai LE, Ghaznavi AM, Marra KG (2010) Incorporation of double-walled microspheres into polymer nerve guides for the sustained delivery of glial cell line-derived neurotrophic factor. Biomaterials 31:2313–2322

    CAS  PubMed  Google Scholar 

  • Kuihua Z, Chunyang W, Cunyi F, Xiumei M (2014) Aligned SF/P (LLA-CL)-blended nanofibers encapsulating nerve growth factor for peripheral nerve regeneration. J Biomed Mater Res, Part A 102:2680–2691

    Google Scholar 

  • Lackington WA, Ryan AJ, O’Brien FJ (2017) Advances in nerve guidance conduit-based therapeutics for peripheral nerve repair. ACS Biomaterials Science & Engineering 3:1221–1235

    Google Scholar 

  • Lavasani M, Thompson SD, Pollett JB, Usas A, Lu A, Stolz DB, Clark KA, Sun B, Péault B, Huard J (2014) Human muscle–derived stem/progenitor cells promote functional murine peripheral nerve regeneration. J Clin Investig 124:1745–1756

    CAS  PubMed  Google Scholar 

  • Lee DJ, Fontaine A, Meng X, Park D (2016) Biomimetic nerve guidance conduit containing intraluminal microchannels with aligned nanofibers markedly facilitates in nerve regeneration. ACS Biomaterials Science & Engineering 2:1403–1410

    CAS  Google Scholar 

  • Li A, Hokugo A, Yalom A, Berns EJ, Stephanopoulos N, McClendon MT, Segovia LA, Spigelman I, Stupp SI, Jarrahy R (2014) A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers. Biomaterials 35:8780–8790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Yu Z, Men Y, Chen X, Wang B (2018) Laminin-chitosan-PLGA conduit co-transplanted with Schwann and neural stem cells to repair the injured recurrent laryngeal nerve. Experimental and therapeutic medicine 16:1250–1258

    PubMed  PubMed Central  Google Scholar 

  • Lin MY, Manzano G, Gupta R (2013) Nerve allografts and conduits in peripheral nerve repair. Hand Clin 29:331–348

    PubMed  Google Scholar 

  • Lin S-L, Ying S-Y (2013) Mechanism and method for generating tumor-free iPS cells using intronic microRNA miR-302 induction. MicroRNA Protocols. Springer, pp 295–312

  • Liu JJ, Wang CY, Wang JG, Ruan HJ, Fan CY (2011) Peripheral nerve regeneration using composite poly (lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning. J Biomed Mater Res, Part A 96:13–20

    Google Scholar 

  • Liu Q, Spusta SC, Mi R, Lassiter RN, Stark MR, Höke A, Rao MS, Zeng X (2012) Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem cells translational medicine 1:266–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lord ST (2007) Fibrinogen and fibrin: scaffold proteins in hemostasis. Curr Opin Hematol 14:236–241

    CAS  PubMed  Google Scholar 

  • Lu M-C, Huang Y-T, Lin J-H, Yao C-H, Lou C-W, Tsai C-C, Chen Y-S (2009) Evaluation of a multi-layer microbraided polylactic acid fiber-reinforced conduit for peripheral nerve regeneration. J Mater Sci - Mater Med 20:1175–1180

    CAS  PubMed  Google Scholar 

  • Lundborg G (1988) Nerve injury and repair. Churchill Livingstone Edinburg

  • Mackinnon SE, Doolabh VB, Novak CB, Trulock EP (2001) Clinical outcome following nerve allograft transplantation. Plast Reconstr Surg 107:1419–1429

    CAS  PubMed  Google Scholar 

  • Martens W, Sanen K, Georgiou M, Struys T, Bronckaers A, Ameloot M, Phillips J, Lambrichts I (2014) Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. FASEB J 28:1634–1643

    PubMed  PubMed Central  Google Scholar 

  • Masaeli E, Wieringa PA, Morshed M, Nasr-Esfahani MH, Sadri S, van Blitterswijk CA, Moroni L (2014) Peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds enhance Schwann cells activity. Nanomedicine: nanotechnology, biology and medicine 10:1559–1569

  • Masgutov R, Masgutova G, Mullahmetova A, Zhuravleva M, Shulman A, Rogozhin A, Syromiatnikova V, Andreeva D, Zeinalova A, Idrisova K (2019) Adipose-derived mesenchymal stem cells applied in fibrin glue stimulate peripheral nerve regeneration. Frontiers in medicine 6:68

    PubMed  PubMed Central  Google Scholar 

  • McGrath A (2012) Development of biosynthetic conduits for peripheral nerve repair. Umeå University

  • McGrath AM, Brohlin M, Kingham PJ, Novikov LN, Wiberg M, Novikova LN (2012) Fibrin conduit supplemented with human mesenchymal stem cells and immunosuppressive treatment enhances regeneration after peripheral nerve injury. Neurosci Lett 516:171–176

    CAS  PubMed  Google Scholar 

  • McKenzie IA, Biernaskie J, Toma JG, Midha R, Miller FD (2006) Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci 26:6651–6660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meek MF (2007) More than just sunshine with implantation of resorbable (p (DLLA-ε-CL)) biomaterials. Bio-Med Mater Eng 17:329–334

    CAS  Google Scholar 

  • Meek MF, Coert JH (2008) US Food and Drug Administration/Conformit Europe-approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves. Ann Plast Surg 60:110–116

    CAS  PubMed  Google Scholar 

  • Meek MF, Nicolai J-PA, Robinson PH (2006) Secondary digital nerve repair in the foot with resorbable p (DLLA-ε-CL) nerve conduits. J Reconstr Microsurg 22:149–152

    PubMed  Google Scholar 

  • Meyer C, Wrobel S, Raimondo S, Rochkind S, Heimann C, Shahar A, Ziv-Polat O, Geuna S, Grothe C, Haastert-Talini K (2016) Peripheral nerve regeneration through hydrogel-enriched chitosan conduits containing engineered schwann cells for drug delivery. Cell Transplant 25:159–182

    PubMed  Google Scholar 

  • Miao S, Cui H, Nowicki M, Xia L, Zhou X, Lee SJ, Zhu W, Sarkar K, Zhang Z, Zhang LG (2018) Stereolithographic 4D bioprinting of multiresponsive architectures for neural engineering. Advanced biosystems 2:1800101

    PubMed  PubMed Central  Google Scholar 

  • Millesi H (2007) Bridging defects: autologous nerve grafts. How to improve the results of peripheral nerve surgery. Springer, pp 37–38

  • Mohamadi F, Ebrahimi-Barough S, Nourani MR, Ahmadi A, Ai J (2018) Use new poly (ε-caprolactone/collagen/NBG) nerve conduits along with NGF for promoting peripheral (sciatic) nerve regeneration in a rat. Artificial cells, nanomedicine, and biotechnology 46:34–45

    CAS  PubMed  Google Scholar 

  • Mosahebi A, Wiberg M, Terenghi G (2003) Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng 9:209–218

    CAS  PubMed  Google Scholar 

  • Mosahebi A, Woodward B, Wiberg M, Martin R, Terenghi G (2001) Retroviral labeling of Schwann cells: in vitro characterization and in vivo transplantation to improve peripheral nerve regeneration. Glia 34:8–17

    CAS  PubMed  Google Scholar 

  • Mottaghitalab F, Farokhi M, Zaminy A, Kokabi M, Soleimani M, Mirahmadi F, Shokrgozar MA, Sadeghizadeh M (2013) A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration. PloS one 8:

  • Mozafari R, Kyrylenko S, Castro MV, Ferreira RS, Barraviera B, Oliveira ALR (2018) Combination of heterologous fibrin sealant and bioengineered human embryonic stem cells to improve regeneration following autogenous sciatic nerve grafting repair. Journal of Venomous Animals and Toxins including Tropical Diseases 24:11

    Google Scholar 

  • Murphy R, Faroni A, Wong J, Reid A (2019) Protocol for a phase I trial of a novel synthetic polymer nerve conduit ‘Polynerve’ in participants with sensory digital nerve injury (UMANC). F1000Research 8:959

  • Musavi L, Brandacher G, Hoke A, Darrach H, Lee WA, Kumar A, Lopez J (2018) Muscle-derived stem cells: important players in peripheral nerve repair. Expert opinion on therapeutic targets 22:1009–1016

    CAS  PubMed  Google Scholar 

  • Ning L, Sun H, Lelong T, Guilloteau R, Zhu N, Schreyer DJ, Chen X (2018) 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications. Biofabrication 10:035014

    PubMed  Google Scholar 

  • Oh SH, Kang JG, Kim TH, Namgung U, Song KS, Jeon BH, Lee JH (2018) Enhanced peripheral nerve regeneration through asymmetrically porous nerve guide conduit with nerve growth factor gradient. J Biomed Mater Res, Part A 106:52–64

    CAS  Google Scholar 

  • Ozer H, Bozkurt H, Bozkurt G, Demirbilek M (2018) Regenerative potential of chitosan-coated poly-3-hydroxybutyrate conduits seeded with mesenchymal stem cells in a rat sciatic nerve injury model. Int J Neurosci 128:828–834

    CAS  PubMed  Google Scholar 

  • Park BW, Kang DH, Kang EJ, Byun JH, Lee JS, Maeng GH, Rho GJ (2012) Peripheral nerve regeneration using autologous porcine skin-derived mesenchymal stem cells. Journal of tissue engineering and regenerative medicine 6:113–124

    CAS  PubMed  Google Scholar 

  • Passipieri JA, Dienes J, Frank J, Glazier J, Portell A, Venkatesh KP, Bliley JM, Grybowski D, Schilling BK, Marra KG (2019) Adipose stem cells enhance nerve regeneration and muscle function in a peroneal nerve ablation model. Tissue Engineering Part A

  • Patel S, Kurpinski K, Quigley R, Gao H, Hsiao BS, Poo M-M, Li S (2007) Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Lett 7:2122–2128

    CAS  PubMed  Google Scholar 

  • Pedrosa SS, Caseiro AR, Santos JD, Maurício AC (2017) Scaffolds for peripheral nerve regeneration, the importance of in vitro and in vivo studies for the development of cell-based therapies and biomaterials: state of the art. Scaffolds in Tissue EngineeringMaterials, Technologies and Clinical Applications 9:179

    Google Scholar 

  • Pettersson J, Kalbermatten D, McGrath A, Novikova LN (2010) Biodegradable fibrin conduit promotes long-term regeneration after peripheral nerve injury in adult rats. Journal of plastic, reconstructive & aesthetic surgery 63:1893–1899

    Google Scholar 

  • Pisciotta A, Bertoni L, Vallarola A, Bertani G, Mecugni D, Carnevale G (2020) Neural crest derived stem cells from dental pulp and tooth-associated stem cells for peripheral nerve regeneration. Neural Regeneration Research 15:373

    PubMed  Google Scholar 

  • Platt JL, Vercellotti GM, Dalmasso AP, Matas AJ, Bolman RM, Najarian JS, Bach FH (1990) Transplantation of discordant xenografts: a review of progress. Immunol Today 11:450–456

    CAS  PubMed  Google Scholar 

  • Qian Y, Zhao X, Han Q, Chen W, Li H, Yuan W (2018) An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration. Nature communications 9:1–16

    Google Scholar 

  • Quan Q, Meng H-Y, Chang B, Liu G-B, Cheng X-Q, Tang H, Wang Y, Peng J, Zhao Q, Lu S-B (2019) Aligned fibers enhance nerve guide conduits when bridging peripheral nerve defects focused on early repair stage. Neural regeneration research 14:903

    PubMed  PubMed Central  Google Scholar 

  • Rajaram A (2015) 3D bioprinted hydrogel scaffolds laden with Schwann cells for use as nerve repair conduits. University of Saskatchewan

  • Ray WZ, Mackinnon SE (2010) Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol 223:77

    PubMed  Google Scholar 

  • Reid AJ, Sun M, Wiberg M, Downes S, Terenghi G, Kingham PJ (2011) Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience 199:515–522

    CAS  PubMed  Google Scholar 

  • Réthoré G, Pandit A (2010) Use of templates to fabricate nanoscale spherical structures for defined architectural control. Small 6:488–498

    PubMed  Google Scholar 

  • Rinker B, Zoldos J, Weber RV, Ko J, Thayer W, Greenberg J, Leversedge FJ, Safa B, Buncke G (2017) Use of processed nerve allografts to repair nerve injuries greater than 25 mm in the hand. Ann Plast Surg 78:S292–S295

    CAS  PubMed  Google Scholar 

  • Safa B, Buncke G (2016) Autograft substitutes: conduits and processed nerve allografts. Hand Clin 32:127–140

    PubMed  Google Scholar 

  • Saller MM, Huettl R-E, Mayer JM, Feuchtinger A, Krug C, Holzbach T, Volkmer E (2018) Validation of a novel animal model for sciatic nerve repair with an adipose-derived stem cell loaded fibrin conduit. Neural regeneration research 13:854

    PubMed  PubMed Central  Google Scholar 

  • Sanen K, Martens W, Georgiou M, Ameloot M, Lambrichts I, Phillips J (2017) Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: potential for peripheral nerve repair? Journal of tissue engineering and regenerative medicine 11:3362–3372

    CAS  PubMed  Google Scholar 

  • Sanjairaj V, Kannan S, Cao T, Fuh JYH, Sriram G, Lu WF (2019) 3D-printed PCL/PPy conductive scaffolds as three-dimensional porous nerve guide conduits (NGCs) for peripheral nerve injury repair. Frontiers in bioengineering and biotechnology 7:266

    Google Scholar 

  • Schilling BK, Schusterman MA, Kim DY, Repko AJ, Klett KC, Christ GJ, Marra KG (2019) Adipose-derived stem cells delay muscle atrophy after peripheral nerve injury in the rodent model. Muscle Nerve 59:603–610

    CAS  PubMed  Google Scholar 

  • Schlosshauer B, Dreesmann L, Schaller H-E, Sinis N (2006) Synthetic nerve guide implants in humans: a comprehensive survey. Neurosurgery 59:740–748

    PubMed  Google Scholar 

  • Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5:293–347

    CAS  PubMed  Google Scholar 

  • Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Mey J (2007) Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials 28:3012–3025

    CAS  PubMed  Google Scholar 

  • Seta H, Maki D, Kazuno A, Yamato I, Nakajima N, Soeda S, Uchiyama Y, Tamaki T (2018) Voluntary exercise positively affects the recovery of long-nerve gap injury following tube-bridging with human skeletal muscle-derived stem cell transplantation. Journal of clinical medicine 7:67

    PubMed Central  Google Scholar 

  • Shah MB, Chang W, Zhou G, Glavy JS, Cattabiani TM, Yu X (2019) Novel spiral structured nerve guidance conduits with multichannels and inner longitudinally aligned nanofibers for peripheral nerve regeneration. J Biomed Mater Res B Appl Biomater 107:1410–1419

    CAS  PubMed  Google Scholar 

  • Shakhbazau A, Mohanty C, Kumar R, Midha R (2014) Sensory recovery after cell therapy in peripheral nerve repair: effects of naive and skin precursor-derived Schwann cells. J Neurosurg 121:423–431

    PubMed  Google Scholar 

  • Shen J, Duan XH, Cheng LN, Zhong XM, Guo RM, Zhang F, Zhou CP, Liang BL (2010) In vivo MR imaging tracking of transplanted mesenchymal stem cells in a rabbit model of acute peripheral nerve traction injury. J Magn Reson Imaging 32:1076–1085

    PubMed  Google Scholar 

  • Shimizu M, Matsumine H, Osaki H, Ueta Y, Tsunoda S, Kamei W, Hashimoto K, Niimi Y, Watanabe Y, Miyata M (2018) Adipose-derived stem cells and the stromal vascular fraction in polyglycolic acid-collagen nerve conduits promote rat facial nerve regeneration. Wound Repair and Regeneration 26:446–455

    PubMed  Google Scholar 

  • Siemionow M, Bozkurt M, Zor F (2010) Regeneration and repair of peripheral nerves with different biomaterials. Microsurgery 30:574–588

    PubMed  Google Scholar 

  • Siemionow M, Sonmez E (2007) Nerve allograft transplantation: a review. J Reconstr Microsurg 23:511–520

    PubMed  Google Scholar 

  • Sinis N, Schaller H-E, Schulte-Eversum C, Schlosshauer B, Doser M, Dietz K, Rösner H, Müller H-W, Haerle M (2005) Nerve regeneration across a 2-cm gap in the rat median nerve using a resorbable nerve conduit filled with Schwann cells. J Neurosurg 103:1067–1076

    PubMed  Google Scholar 

  • Sosa I, Reyes O, Kuffler D (2005) Immunosuppressants: neuroprotection and promoting neurological recovery following peripheral nerve and spinal cord lesions. Exp Neurol 195:7–15

    CAS  PubMed  Google Scholar 

  • Sowa Y, Kishida T, Imura T, Numajiri T, Nishino K, Tabata Y, Mazda O (2016) Adipose-derived stem cells promote peripheral nerve regeneration in vivo without differentiation into Schwann-like lineage. Plast Reconstr Surg 137:318e–330e

    CAS  PubMed  Google Scholar 

  • Stratton S, Shelke NB, Hoshino K, Rudraiah S, Kumbar SG (2016) Bioactive polymeric scaffolds for tissue engineering. Bioactive materials 1:93–108

    PubMed  PubMed Central  Google Scholar 

  • Tsai EC, Dalton PD, Shoichet MS, Tator CH (2006) Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Biomaterials 27:519–533

    CAS  PubMed  Google Scholar 

  • Uemura T, Ikeda M, Takamatsu K, Yokoi T, Okada M, Nakamura H (2014) Long-term efficacy and safety outcomes of transplantation of induced pluripotent stem cell-derived neurospheres with bioabsorbable nerve conduits for peripheral nerve regeneration in mice. Cells Tissues Organs 200:78–91

    CAS  PubMed  Google Scholar 

  • Uemura T, Takamatsu K, Ikeda M, Okada M, Kazuki K, Ikada Y, Nakamura H (2012) Transplantation of induced pluripotent stem cell-derived neurospheres for peripheral nerve repair. Biochem Biophys Res Commun 419:130–135

    CAS  PubMed  Google Scholar 

  • Ullah I, Park J-M, Kang Y-H, Byun J-H, Kim D-G, Kim J-H, Kang D-H, Rho G-J, Park B-W (2017) Transplantation of human dental pulp-derived stem cells or differentiated neuronal cells from human dental pulp-derived stem cells identically enhances regeneration of the injured peripheral nerve. Stem cells and development 26:1247–1257

    CAS  PubMed  Google Scholar 

  • Urish KL, Vella JB, Okada M, Deasy BM, Tobita K, Keller BB, Cao B, Piganelli JD, Huard J (2009) Antioxidant levels represent a major determinant in the regenerative capacity of muscle stem cells. Mol Biol Cell 20:509–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verreck G, Chun I, Li Y, Kataria R, Zhang Q, Rosenblatt J, Decorte A, Heymans K, Adriaensen J, Bruining M (2005) Preparation and physicochemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole. Biomaterials 26:1307–1315

    CAS  PubMed  Google Scholar 

  • Vijayavenkataraman S, Thaharah S, Zhang S, Lu WF, Fuh JYH (2019a) 3D-printed PCL/rGO conductive scaffolds for peripheral nerve injury repair. Artif Organs 43:515–523

    CAS  PubMed  Google Scholar 

  • Vijayavenkataraman S, Thaharah S, Zhang S, Lu WF, Fuh JYH (2019b) Electrohydrodynamic jet 3D-printed PCL/PAA conductive scaffolds with tunable biodegradability as nerve guide conduits (NGCs) for peripheral nerve injury repair. Mater Des 162:171–184

    CAS  Google Scholar 

  • Vijayavenkataraman S, Zhang S, Lu WF, Fuh JYH (2018) Electrohydrodynamic-jetting (EHD-jet) 3D-printed functionally graded scaffolds for tissue engineering applications. J Mater Res 33:1999–2011

    CAS  Google Scholar 

  • Vijayavenkataraman S, Zhang S, Thaharah S, Sriram G, Lu WF, Fuh JYH (2018) Electrohydrodynamic jet 3D printed nerve guide conduits (NGCs) for peripheral nerve injury repair. Polymers 10:753

    PubMed Central  Google Scholar 

  • Waitayawinyu T, Parisi DM, Miller B, Luria S, Morton HJ, Chin SH, Trumble TE (2007) A comparison of polyglycolic acid versus type 1 collagen bioabsorbable nerve conduits in a rat model: an alternative to autografting. Journal of Hand Surgery 32:1521–1529

    Google Scholar 

  • Wakao S, Hayashi T, Kitada M, Kohama M, Matsue D, Teramoto N, Ose T, Itokazu Y, Koshino K, Watabe H (2010) Long-term observation of auto-cell transplantation in non-human primate reveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheral nerve regeneration. Exp Neurol 223:537–547

    CAS  PubMed  Google Scholar 

  • Wang C-Y, Zhang K-H, Fan C-Y, Mo X-M, Ruan H-J, Li F-F (2011) Aligned natural–synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomater 7:634–643

    CAS  PubMed  Google Scholar 

  • Wang D, Huang X, Fu G, Gu L, Liu X, Wang H, Hu J, Yi J, Niu X, Zhu Q (2014) A simple model of radial nerve injury in the rhesus monkey to evaluate peripheral nerve repair. Neural Regen Res 9:1041–1046

    PubMed  PubMed Central  Google Scholar 

  • Wang H, Vijayavenkataraman S, Wu Y, Shu Z, Sun J, Hsi JFY (2016) Investigation of process parameters of electrohydro-dynamic jetting for 3D printed PCL fibrous scaffolds with complex geometries. Int J Bioprint 2:63–71

    CAS  Google Scholar 

  • Wang S, Cai L (2010) Polymers for fabricating nerve conduits. International Journal of Polymer Science 2010:

  • Wang Y, Li Z-w, Luo M, Li Y-j, Zhang K-q (2015) Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects. Neural regeneration research 10:965

    PubMed  PubMed Central  Google Scholar 

  • Wang Z, Han N, Wang J, Zheng H, Peng J, Kou Y, Xu C, An S, Yin X, Zhang P (2014) Improved peripheral nerve regeneration with sustained release nerve growth factor microspheres in small gap tubulization. American journal of translational research 6:413

    PubMed  PubMed Central  Google Scholar 

  • Watanabe Y, Sasaki R, Matsumine H, Yamato M, Okano T (2017) Undifferentiated and differentiated adipose-derived stem cells improve nerve regeneration in a rat model of facial nerve defect. Journal of tissue engineering and regenerative medicine 11:362–374

    CAS  PubMed  Google Scholar 

  • Weisel J (2007) Structure of fibrin: impact on clot stability. J Thromb Haemost 5:116–124

    CAS  PubMed  Google Scholar 

  • Wood MD, MacEwan MR, French AR, Moore AM, Hunter DA, Mackinnon SE, Moran DW, Borschel GH, Sakiyama-Elbert SE (2010) Fibrin matrices with affinity-based delivery systems and neurotrophic factors promote functional nerve regeneration. Biotechnol Bioeng 106:970–979

    CAS  PubMed  Google Scholar 

  • Wood MD, Moore AM, Hunter DA, Tuffaha S, Borschel GH, Mackinnon SE, Sakiyama-Elbert SE (2009) Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomater 5:959–968

    CAS  PubMed  Google Scholar 

  • Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S (2016) Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Scientific reports 6:1–10

    Google Scholar 

  • Xiangmei W, Jing Z, Hao C, Qingrui W (2009) Preparation and characterization of collagen-based composite conduit for peripheral nerve regeneration. J Appl Polym Sci 112:3652–3662

    Google Scholar 

  • Xie J, MacEwan MR, Liu W, Jesuraj N, Li X, Hunter D, Xia Y (2014) Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system. ACS Appl Mater Interfaces 6:9472–9480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Yee W-C, Hwang PY, Yu H, Wan AC, Gao S, Boon K-L, Mao H-Q, Leong KW, Wang S (2003) Peripheral nerve regeneration with sustained release of poly (phosphoester) microencapsulated nerve growth factor within nerve guide conduits. Biomaterials 24:2405–2412

    CAS  PubMed  Google Scholar 

  • Xu Y, Zhang Z, Chen X, Li R, Li D, Feng S (2016) A silk fibroin/collagen nerve scaffold seeded with a co-culture of Schwann cells and adipose-derived stem cells for sciatic nerve regeneration. PloS one 11:

  • Xu Z, Chen Z, Feng W, Huang M, Yang X, Qi Z (2019) Grafted muscle‐derived stem cells promote the therapeutic efficiency of epimysium conduits in mice with peripheral nerve gap injury. Artificial Organs

  • Xue C, Hu N, Gu Y, Yang Y, Liu Y, Liu J, Ding F, Gu X (2012) Joint use of a chitosan/PLGA scaffold and MSCs to bridge an extra large gap in dog sciatic nerve. Neurorehabilitation and neural repair 26:96–106

    PubMed  Google Scholar 

  • Xue C, Zhu H, Tan D, Ren H, Gu X, Zhao Y, Zhang P, Sun Z, Yang Y, Gu J (2018) Electrospun silk fibroin-based neural scaffold for bridging a long sciatic nerve gap in dogs. Journal of tissue engineering and regenerative medicine 12:e1143–e1153

    CAS  PubMed  Google Scholar 

  • Xue J, Yang J, O’Connor DM, Zhu C, Huo D, Boulis NM, Xia Y (2017) Differentiation of bone marrow stem cells into Schwann cells for the promotion of neurite outgrowth on electrospun fibers. ACS Appl Mater Interfaces 9:12299–12310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto T, Osako Y, Ito M, Murakami M, Hayashi Y, Horibe H, Iohara K, Takeuchi N, Okui N, Hirata H (2016) Trophic effects of dental pulp stem cells on schwann cells in peripheral nerve regeneration. Cell Transplant 25:183–193

    PubMed  Google Scholar 

  • Yang Y, Ding F, Wu J, Hu W, Liu W, Liu J, Gu X (2007) Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials 28:5526–5535

    CAS  PubMed  Google Scholar 

  • Yao L, de Ruiter GC, Wang H, Knight AM, Spinner RJ, Yaszemski MJ, Windebank AJ, Pandit A (2010) Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit. Biomaterials 31:5789–5797

    CAS  PubMed  Google Scholar 

  • Yen C-M, Shen C-C, Yang Y-C, Liu B-S, Lee H-T, Sheu M-L, Tsai M-H, Cheng W-Y (2019) Novel electrospun poly (ε-caprolactone)/type I collagen nanofiber conduits for repair of peripheral nerve injury. Neural regeneration research 14:1617

    PubMed  PubMed Central  Google Scholar 

  • Yokoi T, Uemura T, Takamatsu K, Shintani K, Onode E, Okada M, Hidaka N, Nakamura H (2018) Bioabsorbable nerve conduits coated with induced pluripotent stem cell-derived neurospheres enhance axonal regeneration in sciatic nerve defects in aged mice. J Biomed Mater Res B Appl Biomater 106:1752–1758

    CAS  PubMed  Google Scholar 

  • Young R, Terenghi G, Wiberg M (2002) Poly-3-hydroxybutyrate (PHB): a resorbable conduit for long-gap repair in peripheral nerves. Br J Plast Surg 55:235–240

    CAS  PubMed  Google Scholar 

  • Zhang B, Quigley AF, Myers DE, Wallace GG, Kapsa R, Choong P (2014) Recent advances in nerve tissue engineering. Int J Artif Organs 37:277–291

    PubMed  Google Scholar 

  • Zhang Q, Nguyen PD, Shi S, Burrell JC, Cullen DK, Le AD (2018) 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration. Scientific reports 8:1–11

    Google Scholar 

  • Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S (2016) 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol 40:103–112

    CAS  PubMed  Google Scholar 

  • Zhu W, Qu X, Zhu J, Ma X, Patel S, Liu J, Wang P, Lai CSE, Gou M, Xu Y (2017) Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials 124:106–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Tringale KR, Woller SA, You S, Johnson S, Shen H, Schimelman J, Whitney M, Steinauer J, Xu W (2018) Rapid continuous 3D printing of customizable peripheral nerve guidance conduits. Mater Today 21:951–959

    CAS  Google Scholar 

  • Ziegler L, Grigoryan S, Yang IH, Thakor NV, Goldstein RS (2011) Efficient generation of schwann cells from human embryonic stem cell-derived neurospheres. Stem Cell Reviews and Reports 7:394–403

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Datt Mediproducts Pvt. Ltd. for supporting the work and providing the space for research work. This work did not receive a specific grant from any funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddharth Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This is not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, P., Kakkar, A., Kumar, M. et al. Advances and clinical challenges for translating nerve conduit technology from bench to bed side for peripheral nerve repair. Cell Tissue Res 383, 617–644 (2021). https://doi.org/10.1007/s00441-020-03301-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03301-x

Keywords

Navigation