Skip to main content

Advertisement

Log in

Pyruvate kinase M2 activation protects against the proliferation and migration of pulmonary artery smooth muscle cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Pyruvate kinase M2 (PKM2), which is encoded by PKM, is a ubiquitously expressed intracellular protein and is associated with proliferation cell phenotype. In PAH patients and PAH models, we found higher levels of PKM2 tyrosine 105 phosphorylation (phospho-PKM2 (Y105)) than in controls, both in vivo and in vitro. Here, we demonstrate that PKM2 stimulates inflammatory and apoptosis signalling pathways in pulmonary artery smooth muscle cells (PASMCs) and promotes PASMC migration and proliferation. PKM2 phosphorylation promoted the dimerization activation and nuclear translocation of STAT3, a transcription factor regulating proliferation, growth, and apoptosis. TLR2, a transmembrane protein receptor involved in both innate and adaptive immune responses, promoted PKM2 phosphorylation in hypoxia-induced PASMCs. Therefore, we hypothesized that PKM2 also affects the proliferation and migration of PASMCs. The proliferation of hypoxia-induced normal human pulmonary artery smooth muscle cells (normal-HPASMCs) was found to be inhibited by TEPP-46 (PKM2 agonist) and PKM2 siRNA using wound healing, 5-ethynyl-2′-deoxyuridine (EdU), and immunofluorescence (Ki67) assays. PASMCs isolated from PAH patients (PAH-HPASMCs) and hypoxia-treated rats (PAH-RPASMCs) also confirmed the above results. TEPP-46 treatment was found to improve hypoxia-induced pulmonary artery remodelling and right heart function in mice, and the link between PKM2 and STAT3 was also confirmed in vivo. In conclusion, PKM2 plays crucial roles in the proliferation and migration of PASMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang J, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, Thomas CJ, Matthew GVH, Cantley LC (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334:1278–1283

    Article  CAS  Google Scholar 

  • Anastasiou D, Yu Y, Israelsen WJ, Jiang J, Boxer MB, Hong BS, Tempel W, Dimov S, Shen M, Jha A, Yang H, Mattaini KR, Metallo CM, Fiske BP, Courtney KD, Malstrom S, Khan TM, Kung C, Skoumbourdis AP, Veith H, Southall N, Walsh MJ, Brimacombe KR, Leister W, Lunt SY, Johnson ZR, Yen KE, Kunii K, Davidson SM, Christofk HR, Austin CP, Inglese J, Harris MH, Asara JM, Stephanopoulos G, Salituro FG, Jin S, Dang L, Auld DS, Park H, Cantley LC, Thomas CJ, Vander Heiden MG (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 8:839–847

    Article  CAS  Google Scholar 

  • Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, Simmet T, Seufferlein T (2016) PKM2 promotes tumor angiogenesis by regulating HIF-1alpha through NF-kappaB activation. Mol Cancer 15:3

    Article  Google Scholar 

  • Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, Ockaili R, McCord JM, Voelkel NF (2009) Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation 120:1951–1960

    Article  Google Scholar 

  • Caruso P, Dunmore BJ, Schlosser K, Schoors S, Dos Santos C, Perez-Iratxeta C, Lavoie JR, Zhang H, Long L, Flockton AR, Frid MG, Upton PD, Alessandro A, Hadinnapola C, Kiskin FN, Taha M, Hurst LA, Ormiston ML, Hata A, Stenmark KR, Carmeliet P, Stewart DJ, Morrell NW (2017) Identification of MicroRNA-124 as a major regulator of enhanced endothelial cell glycolysis in pulmonary arterial hypertension via PTBP1 (Polypyrimidine tract binding protein) and pyruvate kinase M2. Circulation 136:2451–2467

    Article  CAS  Google Scholar 

  • Cen X, Zhu G, Yang J, Yang J, Guo J, Jin J, Nandakumar KS, Yang W, Yin H, Liu S, Cheng K (2019) TLR1/2 specific small-molecule agonist suppresses leukemia Cancer cell growth by stimulating cytotoxic T lymphocytes. Adv Sci 6:1802042

    Article  Google Scholar 

  • Chen M, Sheng X, Qin Y, Zhu S, Wu Q, Jia L, Meng N, He Y, Yan G (2019) TBC1D8 amplification drives tumorigenesis through metabolism reprogramming in ovarian Cancer. Theranostics 9:676–690

    Article  Google Scholar 

  • Cheng T, Yang Y, Wang H, Tien Y, Shun C, Huang H, Hsiao M, Hua K (2018) Pyruvate kinase M2 promotes pancreatic ductal adenocarcinoma invasion and metastasis through phosphorylation and stabilization of PAK2 protein. Oncogene 37:1730–1742

    Article  CAS  Google Scholar 

  • Chignalia AZ, Schuldt EZ, Camargo LL, Montezano AC, Callera GE, Laurindo FR, Lopes LR, Avellar MCW, Carvalho MHC, Fortes ZB, Touyz RM, Tostes RC (2012) Testosterone induces vascular smooth muscle cell migration by NADPH oxidase and c-Src–dependent pathways. Hypertension 59:1263–1271

    Article  CAS  Google Scholar 

  • Dayton TL, Gocheva V, Miller KM, Israelsen WJ, Bhutkar A, Clish CB, Davidson SM, Luengo A, Bronson RT, Jacks T, Vander Heiden MG (2016) Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma. Genes Dev 30:1020–1033

    Article  CAS  Google Scholar 

  • Deng L, Blanco FJ, Stevens H, Lu R, Caudrillier A, McBride M, McClure JD, Grant J, Thomas M, Frid M, Stenmark K, White K, Seto AG, Morrell NW, Bradshaw AC, MacLean MR, Baker AH (2015) MicroRNA-143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension. Circ Res 117:870–883

    Article  CAS  Google Scholar 

  • Gao Y, Raj JU (2011) Hypoxic pulmonary hypertension of the newborn. Compr Physiol 1:61–79

    PubMed  Google Scholar 

  • Guo D, Gu J, Jiang H, Ahmed A, Zhang Z, Gu Y (2016) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to the development of pulmonary arterial hypertension. J Mol Cell Cardiol 91:179–187

    Article  CAS  Google Scholar 

  • Hu C, Poth J M, Zhang H, Flockton A, Laux A, Kumar S, McKeon B, Frid M G, Mouradian G, Li M, Riddle S, Pugliese S C, Brown R D, Wallace E M, Graham B B, Stenmark K R (2019) Suppression of HIF2 signalling attenuates the initiation of hypoxia-induced pulmonary hypertension. Eur Respir J 1900378

  • Hurdman J, Condliffe R, Elliot CA, Davies C, Hill C, Wild JM, Capener D, Sephton P, Hamilton N, Armstrong IJ, Billings C, Lawrie A, Sabroe I, Akil M, O'Toole L, Kiely DG (2012) ASPIRE registry: assessing the spectrum of pulmonary hypertension identified at a REferral Centre. Eur Respir J 39:945–955

    Article  CAS  Google Scholar 

  • Li X, Zhang X, Leathers R, Makino A, Huang C, Parsa P, Macias J, Yuan JX, Jamieson SW, Thistlethwaite PA (2009) Notch3 signaling promotes the development of pulmonary arterial hypertension. Nat Med 15:1289–1297

    Article  CAS  Google Scholar 

  • Li L, Tang L, Yang X, Chen R, Zhang Z, Leng Y, Chen AF (2020) Gene regulatory effect of pyruvate kinase M2 is involved in renal inflammation in type 2 diabetic nephropathy. Exp Clin Endocrinol Diabetes

  • Liu R, Kenney JW, Manousopoulou A, Johnston HE, Kamei M, Woelk CH, Xie J, Schwarzer M, Garbis SD, Proud CG (2016) Quantitative non-canonical amino acid tagging (QuaNCAT) proteomics identifies distinct patterns of protein synthesis rapidly induced by hypertrophic agents in cardiomyocytes, revealing new aspects of metabolic remodeling. Mol Cell Proteomics 15:3170–3189

    Article  Google Scholar 

  • Liu F, Ma F, Wang Y, Hao L, Zeng H, Jia C, Wang Y, Liu P, Ong IM, Li B, Chen G, Jiang J, Gong S, Li L, Xu W (2017) PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis. Nat Cell Biol 19:1358–1370

    Article  CAS  Google Scholar 

  • Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R, Cole RN, Pandey A, Semenza GL (2011) Pyruvate kinase M2 is a PHD3-stimulated Coactivator for hypoxia-inducible factor 1. Cell 145:732–744

    Article  CAS  Google Scholar 

  • Pak O, Aldashev A, Welsh D, Peacock A (2007) The effects of hypoxia on the cells of the pulmonary vasculature. Eur Respir J 30:364–372

    Article  CAS  Google Scholar 

  • Pozeg ZI, Michelakis ED, McMurtry MS, Thebaud B, Wu XC, Dyck JR, Hashimoto K, Wang S, Moudgil R, Harry G, Sultanian R, Koshal A, Archer SL (2003) In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation 107:2037–2044

    Article  CAS  Google Scholar 

  • Prakasam G, Iqbal M A, Bamezai R N K, Mazurek S (2018) Posttranslational modifications of pyruvate kinase M2: tweaks that benefit Cancer. Front Oncol 8

  • Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A A105:2415–2420

    Article  Google Scholar 

  • Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, Tian L, Harrison DG, Giacomini JC, Assimes TL, Goronzy JJ, Weyand CM (2016) The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med 213:337–354

    Article  CAS  Google Scholar 

  • Singh S, Narayanan SP, Biswas K, Gupta A, Ahuja N, Yadav S, Panday RK, Samaiya A, Sharan SK, Shukla S (2017) Intragenic DNA methylation and BORIS-mediated cancer-specific splicing contribute to the Warburg effect. Proc Natl Acad Sci 114:11440–11445

    Article  CAS  Google Scholar 

  • Soutto M, Chen Z, Bhat A A, Wang L, Zhu S, Gomaa A, Bates A, Bhat N S, Peng D, Belkhiri A, Piazuelo M B, Washington M K, Steven X C, Peek R, El-Rifai W (2019) Activation of STAT3 signaling is mediated by TFF1 silencing in gastric neoplasia. Nat Commun 10

  • Wang B, Liu S, Fan B, Xu X, Chen Y, Lu R, Xu Z, Liu X (2018) PKM2 is involved in neuropathic pain by regulating ERK and STAT3 activation in rat spinal cord. J Headache Pain 19

  • West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS, Ghosh S (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–480

    Article  CAS  Google Scholar 

  • Yang W, Lu Z (2013) Nuclear PKM2 regulates the Warburg effect. Cell Cycle 12:3343–3347

    Article  Google Scholar 

  • Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K, Lu Z (2011) Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature 480:118–122

    Article  CAS  Google Scholar 

  • Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC, Lu Z (2012) ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol 14:1295–1304

    Article  CAS  Google Scholar 

  • Yoon S, Woo SU, Kang JH, Kim K, Kwon M, Park S, Shin H, Gwak H, Chwae Y (2014) STAT3 transcriptional factor activated by reactive oxygen species induces IL6 in starvation-induced autophagy of cancer cells. Autophagy 6:1125–1138

    Article  Google Scholar 

  • Yung L, Nikolic I, Paskin-Flerlage SD, Pearsall RS, Kumar R, Yu PB (2016) A selective transforming growth factor-β ligand trap attenuates pulmonary hypertension. Am J Respir Crit Care 194:1140–1151

    Article  CAS  Google Scholar 

  • Zhang H, Wang D, Li M, Plecitá-Hlavatá L, Alessandro A, Tauber J, Riddle S, Kumar S, Flockton A, McKeon BA, Frid MG, Reisz JA, Caruso P, El Kasmi KC, Ježek P, Morrell NW, Hu C, Stenmark KR (2017) Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a MicroRNA-124/PTBP1 (Polypyrimidine tract binding protein 1)/pyruvate kinase muscle Axis. Circulation 136:2468–2485

    Article  CAS  Google Scholar 

  • Zhou Z, Li M, Zhang L, Zhao H, Şahin Ö, Chen J, Zhao JJ, Songyang Z, Yu D (2018) Oncogenic kinase–induced PKM2 tyrosine 105 phosphorylation converts nononcogenic PKM2 to a tumor promoter and induces cancer stem–like cells. Cancer Res 78:2248–2261

    Article  CAS  Google Scholar 

Download references

Funding

We acknowledge the National Natural Science Foundation of China (NSFC-91639303), Nanjing Municipal Health Bureau (CN)(QRX17016), Department of Human Resources and Social Security of Jiangsu Province (2015-WSN-069), and Natural Science Funds of Jiangsu Province (BK20161112) for supporting completion of this study.

Author information

Authors and Affiliations

Authors

Contributions

ZAK performed the vitro experiment, organized pictures, analysed the data, and drafted the manuscript. YFF and YP performed the animal work, including feeding and harvest. LPF aided in collecting tissues from animals and human. YWD and GY analysed the data and edited the manuscript. ZH and CSL designed and supervised the research and edited the manuscript. The final draft was read and approved by all authors.

Corresponding author

Correspondence to Hang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All animal experiments were approved by the Institutional Animal Care and Use Committee of Nanjing Medical University. The present study was first approved by the Ethics Committees of the Nanjing Medical University for experiments involving human tissues, and informed consent was obtained from each individual before collecting tissues.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Yu, F., Yu, W. et al. Pyruvate kinase M2 activation protects against the proliferation and migration of pulmonary artery smooth muscle cells. Cell Tissue Res 382, 585–598 (2020). https://doi.org/10.1007/s00441-020-03245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03245-2

Keywords

Navigation