Skip to main content
Log in

Comparative testis structure and function in three representative mice strains

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

A Correction to this article was published on 02 January 2021

This article has been updated

Abstract

Mice are widely used as experimental models due to several positive characteristics and in particular their suitability for studies involving molecular biology and transgenesis. Despite the large number of mice strains currently available, the literature regarding their basic reproductive biology is still relatively scarce. Herein, we comparatively evaluated several important and correlated parameters related to testis structure and function in sexually mature male mice of inbred (C57BL/6, n = 19; BALB/c, n = 17) and outbred (Swiss, n = 17) strains, frequently utilized in research. Swiss mice presented significant variation for many parameters evaluated, including higher sperm production, mainly when compared to the C57BL/6 strain. However, some key parameters such as the duration of spermatogenesis, the Sertoli cell number per testis, and the spermatogenic efficiency were similar among the different strains. Although presenting significantly higher Leydig cell (LC) proportion and numbers per testis gram and per testis, the anogenital index was smaller in Swiss mice. Estradiol levels were lower in C57BL/6, whereas testosterone levels and 3β-HSD expression were similar among strains. Regarding the LC/macrophages relationship, in comparison to the literature, we reported a much higher contribution of macrophages to the mouse intertubule. Thus, we estimated that there are around 1.6 macrophages per LC in BALB/c mice and this intriguing finding could be relevant to testis function in overall and spermatogonial biology in particular. Taken together, our results highlight the importance of knowing more accurately the testis structure and function in the different mice strains available for research, particularly when a specific testis parameter is being investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 02 January 2021

    The authors regret that in our published paper entitled “Comparative testis structure and function in three representative mice strains.”

References

  • Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247

    CAS  PubMed  Google Scholar 

  • Abuelhija M, Weng CC, Shetty G, Meistrich ML (2012) Differences in radiation sensitivity of recovery of spermatogenesis between rat strains. Toxicol Sci 126:545–553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allan CM, Garcia A, Spaliviero J, Zhang FP, Jimenez M, Huhtaniemi I, Handelsman DJ (2004) Complete Sertoli cell proliferation induced by follicle-stimulating hormone (FSH) independently of luteinizing hormone activity: evidence from genetic models of isolated FSH action. Endocrinology 145:1587–1593

    CAS  PubMed  Google Scholar 

  • Almeida FF, Leal MC, França LR (2006) Testis morphometry, duration of spermatogenesis, and spermatogenic efficiency in the wild boar (Sus scrofa scrofa). Biol Reprod 75:792–799

    CAS  PubMed  Google Scholar 

  • Alvarenga ER, de França LR (2009) Effects of different temperatures on testis structure and function, with emphasis on somatic cells, in sexually mature Nile tilapias (Oreochromis niloticus). Biol Reprod 80:537–544

    PubMed  Google Scholar 

  • Amann RP, Almquist JO (1962) Reproductive capacity of dairy bulls. VI. Effect of unilateral vasectomy and ejaculation frequency on sperm reserves; aspects of epididymal physiology. J Reprod Fertil 3:260–268

    CAS  PubMed  Google Scholar 

  • Amann RP, Schanbacher BD (1983) Physiology of male reproduction. J Anim Sci 57:380–403

    CAS  PubMed  Google Scholar 

  • Attal J, Courot M (1963) Development testiculaire et etablissement de la spermatogenese chez le taureau. Ann Biol Anim Biochem Biophys 3:219–241

    Google Scholar 

  • Auharek SA, Avelar GF, Lara NLM, Sharpe RM, França LR (2011) Sertoli cell numbers and spermatogenic efficiency are increased in inducible nitric oxide synthase mutant mice. Int J Androl 34:e621–e629

    CAS  PubMed  Google Scholar 

  • Auharek SA, Lara NLM, Avelar GF, Sharpe RM, França LR (2012) Effects of inducible nitric oxide synthase (iNOS) deficiency in mice on Sertoli cell proliferation and perinatal testis development. Int J Androl 35:741–751

    CAS  PubMed  Google Scholar 

  • Avelar GF, Russell LD, França LR (2000) Histometria testicular e freqüência dos estádios do ciclo do epitélio seminífero em camundongos adultos da linhagem ICR. Braz J Morphol Sci 17:169–170

    Google Scholar 

  • Bergh A (1985) Effect of cryptorchidism on the morphology of testicular macrophages: evidence for a Leydig cell-macrophage interaction in the rat testis. Int J Androl 8:86–96

    CAS  PubMed  Google Scholar 

  • Bustos-Obregon E, Carvallo M, Hartley-Belmar R, Sarabia L, Ponce C (2007) Histopathological and histometrical assessment of boron exposure effects on mouse spermatogenesis. Int J Morphol 25:919–925

    Google Scholar 

  • Cagen SZ, Waechter JM Jr, Dimond SS, Breslin WJ, Butala JH, Jekat FW, Joiner RL, Shiotsuka RN, Veenstra GE, Harris LR (1999) Normal reproductive organ development in CF-1 mice following prenatal exposure to bisphenol A. Toxicol Sci 50:36–44

    CAS  PubMed  Google Scholar 

  • Clermont Y (1972) Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev 52:198–236

    CAS  PubMed  Google Scholar 

  • Clermont Y, Trott M (1969) Duration of the cycle of the seminiferous epithelium in the mouse and hamster determined by means of 3H-thymidine and radioautography. Fertil Steril 20:805–817

    CAS  PubMed  Google Scholar 

  • Cohen PE, Hardy MP, Pollard JW (1997) Colony-stimulating factor-1 plays a major role in the development of reproductive function in male mice. Mol Endocrinol 11:1636–1650

    CAS  PubMed  Google Scholar 

  • Costa GMJ, Leal MC, Ferreira CS, Guimarães DA, França LR (2010) Duration of spermatogenesis and spermatogenic efficiency in 2 large neotropical rodent species: the agouti (Dasyprocta leporina) and paca (Agouti paca). J Androl 31:489–499

    PubMed  Google Scholar 

  • Costa GMJ, Leal MC, França LR (2017) Morphofunctional evaluation of the testis, duration of spermatogenesis and spermatogenic efficiency in the Japanese fancy mouse (Mus musculus molossinus). Zygote 25:498–506

    PubMed  Google Scholar 

  • Costa GMJ, Lacerda SMSN, Figueiredo AFA, Leal MC, Rezende-Neto JV, França LR (2018) Higher environmental temperatures promote acceleration of spermatogenesis in vivo in mice (Mus musculus). J Therm Biol 77:14–23

    PubMed  Google Scholar 

  • Davisson MT (1999) Genetic and phenotypic definition of laboratory mice and rats/what constitutes an acceptable genetic-phenotypic definition. In International Committee of the Institute for Laboratory Animal Research National Research Council (ed) Microbial and Phenotypic Definition of Rats and Mice Proceedings of the 1998 US/Japan Conference. National Academies Press, Washington, DC, pp 61–68

  • Dean A, Sharpe RM (2013) Anogenital distance or digit length ratio as measures of fetal androgen exposure: relationship to male reproductive development and its disorders. J Clin Endocrinol Metab 98:2230–2238

    CAS  PubMed  Google Scholar 

  • DeFalco T, Potter SJ, Williams AV, Waller B, Kan MJ, Capel B (2015) Macrophages contribute to the spermatogonial niche in the adult testis. Cell Rep 12:1107–1119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diemer T, Hales DB, Weidner W (2003) Immune-endocrine interactions and Leydig cell function: the role of cytokines. Andrologia 35:55–63

    CAS  PubMed  Google Scholar 

  • Dorst VJ, Sajonski H (1974) Morphometrische untersuchunhen am tubulussystem des schweinehodens während der postnatalen entwicklug. Monatsh Vet Med 29:650–652

    Google Scholar 

  • Enríquez JA (2019) Mind your mouse strain. Nat Metab 1:5–7

    PubMed  Google Scholar 

  • Ewing LL, Zirkin BR, Cochran RC, Kromann N, Peters C, Ruiz-Bravo N (1979) Testosterone secretion by rat, rabbit, guinea pig, dog, and hamster testes perfused in vitro: correlation with Leydig cell mass. Endocrinology 105:1135–1142

    CAS  PubMed  Google Scholar 

  • Festing MFW (2010) Inbred strains should replace outbred stocks in toxicology, safety testing, and drug development. Toxicol Pathol 38:681–690

    CAS  PubMed  Google Scholar 

  • Figueiredo AFA, Cordeiro DA, Nogueira JC, Talamoni SA, França LR, Costa GMJ (2017) Spermatogenesis in a neotropical marsupial species, Philander frenatus (Olfers, 1818). Anim Reprod Sci 184:102–109

    CAS  PubMed  Google Scholar 

  • Fisher D, Mosaval F, Tharp DL, Bowles DK, Henkel R (2019) Oleanolic acid causes reversible contraception in male mice by increasing the permeability of the germinal epithelium. Reprod Fertil Dev. https://doi.org/10.1071/RD18484

  • Franca LR (1992) Daily sperm production in Piau boars estimated from Sertoli cell population and Sertoli cell index. In: Dieleman SJ (ed) Proceedings of the 12th International Congress on Animal Reproduction and Artificial Insemination, vol.4. Elsevier Science, The Hague, pp 1716–1718

  • França LR, Russell LD (1998) The testis of domestic animals. In: Martinez-Garcia F, Regadera J (eds) Male reproduction: a multidisciplinary overview. Churchill Livingstone, Madrid, pp 197–219

    Google Scholar 

  • França LR, Ogawa T, Avarbock MR, Brinster RL, Russell LD (1998) Germ cell genotype controls cell cycle during spermatogenesis in the rat. Biol Reprod 59:1371–1377

    PubMed  Google Scholar 

  • França LR, Avelar GF, Almeida FFL (2005) Spermatogenesis and sperm transit through the epididymis in mammals with emphasis on pigs. Theriogenology 63:300–318

    PubMed  Google Scholar 

  • Gaytan F, Bellido C, Aguilar E, van Rooijen N (1994) Requirement for testicular macrophages in Leydig cell proliferation and differentiation during prepubertal development in rats. J Reprod Fertil 102:393–399

    CAS  PubMed  Google Scholar 

  • Haider SG (2004) Cell biology of Leydig cells in the testis. Int Rev Cytol 233:181–241

    CAS  PubMed  Google Scholar 

  • Hales DB (2002) Testicular macrophage modulation of Leydig cell steroidogenesis. J Reprod Immunol 57:3–18

    CAS  PubMed  Google Scholar 

  • Hess RA, França LR (2008) Spermatogenesis and cycle of the seminiferous epithelium. In: Cheng CY (ed) Molecular mechanisms in spermatogenesis. Springer, New York, pp 1–15

    Google Scholar 

  • Hochereau-de Reviers MT, Lincoln GA (1978) Seasonal variation in the histology of the testis of the red deer, Cervus elaphus. J Reprod Fertil 54:209–213

    CAS  PubMed  Google Scholar 

  • Hume DA, Halpin D, Charlton H, Gordon S (1984) The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: macrophages of endocrine organs. Proc Natl Acad Sci U S A 81:4174–4177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutson JC (2006) Physiologic interactions between macrophages and Leydig cells. Exp Biol Med (Maywood) 231:1–7

    CAS  Google Scholar 

  • Itoh M, de Rooij DG, Jansen A, Drexhage HA (1995) Phenotypical heterogeneity of testicular macrophages/dendritic cells in normal adult mice: an immunohistochemical study. J Reprod Immunol 28:217–232

    CAS  PubMed  Google Scholar 

  • Jafari O, Babaei H, Kheirandish R, Samimi AS, Zahmatkesh A (2018) Histomorphometric evaluation of mice testicular tissue following short- and long-term effects of lipopolysaccharide-induced endotoxemia. Iran J Basic Med Sci 21:47–52

    PubMed  PubMed Central  Google Scholar 

  • Johnson L, Neaves WB (1981) Age-related changes in the Leydig cell population, seminiferous tubules, and sperm production in stallions. Biol Reprod 24:703–712

    CAS  PubMed  Google Scholar 

  • Joshi D, Singh SK (2018) The neuropeptide orexin A—search for its possible role in regulation of steroidogenesis in adult mice testes. Andrology 6:465–477

    CAS  PubMed  Google Scholar 

  • Justice MJ, Dhillon P (2016) Using the mouse to model human disease: increasing validity and reproducibility. Dis Model Mech 9:101–103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khorsandi L, Oroojan AA (2018) Toxic effect of Tropaeolum majus L. leaves on spermatogenesis in mice. JBRA Assist Reprod 22:174–179

    PubMed  PubMed Central  Google Scholar 

  • Kilcoyne KR, Smith LB, Atanassova N, Macpherson S, McKinnell C, van den Driesche S, Jobling MS, Chambers TJ, De Gendt K, Verhoeven G, O'Hara L, Platts S, Renato de Franca L, Lara NL, Anderson RA, Sharpe RM (2014) Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells. Proc Natl Acad Sci U S A 111:e1924–e1932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korejo NA, Wei QW, Shah AH, Shi FX (2016) Effects of concomitant diabetes mellitus and hyperthyroidism on testicular and epididymal histoarchitecture and steroidogenesis in male animals. J Zhejiang Univ Sci B 17:850–863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lara NLM, França LR (2017) Neonatal hypothyroidism does not increase Sertoli cell proliferation in iNOS−/− mice. Reproduction 154:13–22

    CAS  PubMed  Google Scholar 

  • Lara NLM, Santos IC, Costa GMJ, Cordeiro-Junior DA, Almeida AC, Madureira AP, Zanini MS, França LR (2016) Duration of spermatogenesis and daily sperm production in the rodent Proechimys guyannensis. Zygote 24:783–793

    CAS  PubMed  Google Scholar 

  • Lara NLM, Costa GMJ, Avelar GF, Lacerda SMSN, Hess RA, França LR (2018a) Testis physiology—overview and histology. In Skinner MK (ed) Encyclopedia of reproduction, 2nd ed. Elsevier Academic Press, pp 105-116

  • Lara NLM, Avelar GF, Costa GMJ, Lacerda SMSN, Hess RA, França LR (2018b) Cell - cell interactions—structural. In Skinner MK (ed) Encyclopedia of reproduction, 2nd ed. Elsevier Academic Press, pp 68-75

  • Leal MC, França LR (2006) The seminiferous epithelium cycle length in the black tufted-ear marmoset (Callithrix penicillata) is similar to humans. Biol Reprod 74:616–624

    CAS  PubMed  Google Scholar 

  • Li XQ, Itoh M, Yano A, Miyamoto K, Takeuchi Y (1998) Immunohistochemical detection of testicular macrophages during the period of postnatal maturation in the mouse. Int J Androl 21:370–376

    CAS  PubMed  Google Scholar 

  • Lloyd CM (2007) Building better mouse models of asthma. Curr Allergy Asthma Rep 7:231–236

    PubMed  PubMed Central  Google Scholar 

  • Lunstra DD, Schanbacher BD (1988) Testicular function and Leydig cell ultrastructure in long-term bilaterally cryptorchid rams. Biol Reprod 38:211–220

    CAS  PubMed  Google Scholar 

  • Mäkelä JA, Hobbs RM (2019) Molecular regulation of spermatogonial stem cell renewal and differentiation. Reproduction 158:R169–R187

    PubMed  Google Scholar 

  • Mäkelä JA, Toppari J (2018) Seminiferous cycle. In: Skinner MK (ed) Encyclopedia of reproduction, 2nd ed. Elsevier Academic Press, pp 134-44

  • Marques SM, Campos PP, Castro PR, Cardoso CC, Ferreira MA, Andrade SP (2011) Genetic background determines mouse strain differences in inflammatory angiogenesis. Microvasc Res 82:246–252

    CAS  PubMed  Google Scholar 

  • Michaud SA, Sinclair NJ, Pětrošová H, Palmer AL, Pistawka AJ, Zhang S, Hardie DB, Mohammed Y, Eshghi A, Richard VR, Sickmann A, Borchers CH (2018) Molecular phenotyping of laboratory mouse strains using 500 multiple reaction monitoring mass spectrometry plasma assays. Commun Biol 1:78

    PubMed  PubMed Central  Google Scholar 

  • Miller SC (1982) Localization of plutonium-241 in the testis. An interspecies comparison using light and electron microscope autoradiography. Int J Radiat Biol Relat Stud Phys Chem Med 41:633–643

    CAS  PubMed  Google Scholar 

  • Mitchell RT, Mungall W, McKinnell C, Sharpe RM, Cruickshanks L, Milne L, Smith LB (2015) Anogenital distance plasticity in adulthood: implications for its use as a biomarker of fetal androgen action. Endocrinology 156:24–31

    PubMed  Google Scholar 

  • Mossadegh-Keller N, Sieweke MH (2018) Testicular macrophages: guardians of fertility. Cell Immunol 330:120–125

    CAS  PubMed  Google Scholar 

  • Mossadegh-Keller N, Gentek R, Gimenez G, Bigot S, Mailfert S, Sieweke MH (2017) Developmental origin and maintenance of distinct testicular macrophage populations. J Exp Med 214:2829–2841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niemi M, Sharpe RM, Brown WRA (1986) Macrophages in the interstitial tissue of the rat testis. Cell Tissue Res 243:337–344

    CAS  PubMed  Google Scholar 

  • Oakberg EF (1956) Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am J Anat 99:507–516

    CAS  PubMed  Google Scholar 

  • Okwun OE, Igboeli G, Ford JJ, Lunstra DD, Johnson L (1996) Number and function of Sertoli cells, number and yield of spermatogonia, and daily sperm production in three breeds of boar. J Reprod Fertil 107:137–149

    CAS  PubMed  Google Scholar 

  • Oliveira CF, Lara NL, Lacerda SM, Resende RR, França LR, Avelar GF (2020) Foxn1 and Prkdc genes are important for testis function: evidence from nude and scid adult mice. Cell Tissue Res. https://doi.org/10.1007/s00441-019-03165-w

  • Otto C, Bauer K (1996) Dipeptide uptake: a novel marker for testicular and ovarian macrophages. Anat Rec 245:662–667

    CAS  PubMed  Google Scholar 

  • Plum L, Wunderlich FT, Baudler S, Krone W, Brüning JC (2005) Transgenic and knockout mice in diabetes research: novel insights into pathophysiology, limitations, and perspectives. Physiology (Bethesda) 20:152–161

    CAS  Google Scholar 

  • Portela JMD, Mulder CL, van Daalen SKM, de Winter-Korver CM, Stukenborg JB, Repping S, van Pelt AMM (2019) Strains matter: success of murine in vitro spermatogenesis is dependent on genetic background. Dev Biol 456:25–30

    CAS  PubMed  Google Scholar 

  • Potter SJ, DeFalco T (2017) Role of the testis interstitial compartment in spermatogonial stem cell function. Reproduction 153:R151–R162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Tsai M-J, Tsai SY (2008) Essential roles of COUP-TFII in Leydig cell differentiation and male fertility. PLoS One 3:e3285

    PubMed  PubMed Central  Google Scholar 

  • Russell LD (1996) Mammalian Leydig cell structure. In: Payne AH, Hardy MP, Russell LD (eds) The Leydig cell. Cache River Press, Vienna, pp 43–96

    Google Scholar 

  • Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED (1990) Histological and histopathological evaluation of the testis. Cache River Press, Clearwater

  • Schulster M, Bernie AM, Ramasamy R (2016) The role of estradiol in male reproductive function. Asian J Androl 18:435–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shima Y, Miyabayashi K, Sato T, Suyama M, Ohkawa Y, Doi M, Okamura H, Suzuki K (2018) Fetal Leydig cells dedifferentiate and serve as adult Leydig stem cells. Development 145:dev169136. https://doi.org/10.1242/dev.169136

    Article  CAS  PubMed  Google Scholar 

  • Smith LB, O’Shaughnessy PJ, Rebourcet D (2015) Cell-specific ablation in the testis: what have we learned? Andrology 3:1035–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soares JM, Avelar GF, França LR (2009) The seminiferous epithelium cycle and its duration in different breeds of dog (Canis familiaris). J Anat 215:462–471

    PubMed  PubMed Central  Google Scholar 

  • Spearow JL, Doemeny P, Sera R, Leffler R, Barkley M (1999) Genetic variation in susceptibility to endocrine disruption by estrogen in mice. Science 285:1259–1261

    CAS  PubMed  Google Scholar 

  • van den Driesche S, Scott HM, MacLeod DJ, Fisken M, Walker M, Sharpe RM (2011) Relative importance of prenatal and postnatal androgen action in determining growth of the penis and anogenital distance in the rat before, during and after puberty. Int J Androl 34:e578–e586

    PubMed  Google Scholar 

  • Wang J, Wreford NGM, Lan HY, Atkins R, Hedger MP (1994) Leukocyte populations of the adult rat testis following removal of the Leydig cells by treatment with ethane dimethane sulfonate and subcutaneous testosterone implants. Biol Reprod 51:551–561

    CAS  PubMed  Google Scholar 

  • Welsh M, Saunders PTK, Fisken M, Scott HM, Hutchison GR, Smith LB, Sharpe RM (2008) Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. J Clin Invest 118:1479–1490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winnall WR, Hedger MP (2013) Phenotypic and functional heterogeneity of the testicular macrophage population: a new regulatory model. J Reprod Immunol 97:147–158

    CAS  PubMed  Google Scholar 

  • Ye L, Li X, Li L, Chen H, Ge RS (2017) Insights into the development of the adult Leydig cell lineage from stem Leydig cells. Front Physiol 8:430

    PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Sukeno M, Nabeshima Y (2007) A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317:1722–1726

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Technical assistance from Rubens Miranda, Adriano Ferreira, and Mara Lívia dos Santos is highly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

CFAO and NLML contributed equally to this manuscript by performing experiments, analyzing the data, and writing the paper. BRLC performed experiments and analyzed the data. LRF conceived the study and wrote and revised the paper final version. GFA conceived the study, performed experiments, analyzed the data, and wrote the paper.

Corresponding authors

Correspondence to Luiz Renato de França or Gleide Fernandes de Avelar.

Ethics declarations

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted (Ethics Committee in Animal Experimentation of the Federal University of Minas Gerais—CETEA/ UFMG—Protocol no. 123/2013).

Funding information

This work was supported by the Brazilian National Council for Scientific and Technological Development (CNPq), the Coordination for the Improvement of Higher Education Personnel (CAPES), and the Foundation for Research Support of Minas Gerais (FAPEMIG).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, C.F.A., Lara, N.d., Cardoso, B.R.L. et al. Comparative testis structure and function in three representative mice strains. Cell Tissue Res 382, 391–404 (2020). https://doi.org/10.1007/s00441-020-03239-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03239-0

Keywords

Navigation