Skip to main content

Advertisement

Log in

Kruppel-like factor 4 upregulates matrix metalloproteinase 13 expression in chondrocytes via mRNA stabilization

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Matrix metalloproteinase 13 (MMP13) is indispensable for normal skeletal development and is also a principal proteinase responsible for articular joint pathologies. MMP13 mRNA level needs to be tightly regulated in both positive and negative manners to achieve normal development and also to prevent joint destruction. We showed previously that Kruppel-like factor 4 (KLF4) strongly induces the expression of members of the MMP family of genes including that for MMP13 in cultured chondrocytes. Through expression-based screening of approximately 400 compounds, we identified several that efficiently downregulated MMP13 gene expression induced by KLF4. Compounds grouped as topoisomerase inhibitors (transcriptional inhibitors) downregulated MMP13 expression levels, which proved the validity of our screening method. In this screening, trichostatin A (TSA) was identified as one of the most potent repressors. Mechanistically, increased MMP13 mRNA levels induced by KLF4 were not mainly caused by increased rates of RNA polymerase II–mediated MMP13 transcription, but arose from escaping mRNA decay. TSA treatment almost completely blunted the effect of KLF4. Importantly, KLF4 was detected in chondrocytes at the joint destruction sites in a rodent model of osteoarthritis. Our results partially explain how KLF4 regulates numerous proteinase gene expressions simultaneously in chondrocytes. Also, these observations suggest that modulation of KLF4 activity or expression could be a novel therapeutic target for osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beebe JD, Liu JY, Zhang JT (2018) Two decades of research in discovery of anticancer drugs targeting STAT3, how close are we? Pharmacol Ther 191:74–91

    PubMed  CAS  Google Scholar 

  • Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, Mitchell P, Hambor J, Diekmann O, Tschesche H, Chen J, Van Wart H, Poole AR (1997) Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 99:1534–1545

    PubMed  PubMed Central  CAS  Google Scholar 

  • Boehm AK, Seth M, Mayr KG, Fortier LA (2007) Hsp90 mediates insulin-like growth factor 1 and interleukin-1beta signaling in an age-dependent manner in equine articular chondrocytes. Arthritis Rheum 56:2335–2343

    PubMed  CAS  Google Scholar 

  • Burleigh A, Chanalaris A, Gardiner MD, Driscoll C, Boruc O, Saklatvala J, Vincent TL (2012) Joint immobilization prevents murine osteoarthritis and reveals the highly mechanosensitive nature of protease expression in vivo. Arthritis Rheum 64:2278–2288

    PubMed  CAS  Google Scholar 

  • Carpio LR, Westendorf JJ (2016) Histone deacetylases in cartilage homeostasis and osteoarthritis. Curr Rheumatol Rep 18:52

    PubMed  Google Scholar 

  • Carpio LR, Bradley EW, McGee-Lawrence ME, Weivoda MM, Poston DD, Dudakovic A, Xu M, Tchkonia T, Kirkland JL, van Wijnen AJ, Oursler MJ, Westendorf JJ (2016) Histone deacetylase 3 supports endochondral bone formation by controlling cytokine signaling and matrix remodeling. Sci Signal 9:ra79

    PubMed  PubMed Central  Google Scholar 

  • Carpio LR, Bradley EW, Westendorf JJ (2017) Histone deacetylase 3 suppresses Erk phosphorylation and matrix metalloproteinase (Mmp)-13 activity in chondrocytes. Connect Tissue Res 58:27–36

    PubMed  CAS  Google Scholar 

  • Chang YL, Zhou PJ, Wei L, Li W, Ji Z, Fang YX, Gao WQ (2015) MicroRNA-7 inhibits the stemness of prostate cancer stem-like cells and tumorigenesis by repressing KLF4/PI3K/Akt/p21 pathway. Oncotarget 6:24017–24031

    PubMed  PubMed Central  Google Scholar 

  • Chew YC, Adhikary G, Wilson GM, Reece EA, Eckert RL (2011) Protein kinase C (PKC) delta suppresses keratinocyte proliferation by increasing p21(Cip1) level by a KLF4 transcription factor-dependent mechanism. J Biol Chem 286:28772–28782

    PubMed  PubMed Central  CAS  Google Scholar 

  • Choi WJ, Youn SH, Back JH, Park S, Park EJ, Kim KJ, Park HR, Kim AL, Kim KH (2011) The role of KLF4 in UVB-induced murine skin tumor development and its correlation with cyclin D1, p53, and p21(Waf1/Cip1) in epithelial tumors of the human skin. Arch Dermatol Res 303:191–200

    PubMed  CAS  Google Scholar 

  • Culley KL, Hui W, Barter MJ, Davidson RK, Swingler TE, Destrument AP, Scott JL, Donell ST, Fenwick S, Rowan AD, Young DA, Clark IM (2013) Class I histone deacetylase inhibition modulates metalloproteinase expression and blocks cytokine-induced cartilage degradation. Arthritis Rheum 65:1822–1830

    PubMed  CAS  Google Scholar 

  • Delgado JL, Hsieh CM, Chan NL, Hiasa H (2018) Topoisomerases as anticancer targets. Biochem J 475:373–398

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fan Z, Tardif G, Hum D, Duval N, Pelletier JP, Martel-Pelletier J (2009) Hsp90{beta} and p130(cas): novel regulatory factors of MMP-13 expression in human osteoarthritic chondrocytes. Ann Rheum Dis 68:976–982

    PubMed  CAS  Google Scholar 

  • Flannelly J, Chambers MG, Dudhia J, Hembry RM, Murphy G, Mason RM, Bayliss MT (2002) Metalloproteinase and tissue inhibitor of metalloproteinase expression in the murine STR/ort model of osteoarthritis. Osteoarthr Cartil 10:722–733

    CAS  Google Scholar 

  • Fujikawa J, Tanaka M, Itoh S, Fukushi T, Kurisu K, Takeuchi Y, Morisaki I, Wakisaka S, Abe M (2014) Kruppel-like factor 4 expression in osteoblasts represses osteoblast-dependent osteoclast maturation. Cell Tissue Res

  • Garrett-Sinha LA, Eberspaecher H, Seldin MF, de Crombrugghe B (1996) A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J Biol Chem 271:31384–31390

    PubMed  CAS  Google Scholar 

  • Goldstrohm AC, Wickens M (2008) Multifunctional deadenylase complexes diversify mRNA control. Nat Rev Mol Cell Biol 9:337–344

    PubMed  CAS  Google Scholar 

  • Halees AS, El-Badrawi R, Khabar KS (2008) ARED organism: expansion of ARED reveals AU-rich element cluster variations between human and mouse. Nucleic Acids Res 36:D137–D140

    PubMed  CAS  Google Scholar 

  • Hayashi S, Fujishiro T, Hashimoto S, Kanzaki N, Chinzei N, Kihara S, Takayama K, Matsumoto T, Nishida K, Kurosaka M, Kuroda R (2015) p21 deficiency is susceptible to osteoarthritis through STAT3 phosphorylation. Arthritis Res Ther 17:314

    PubMed  PubMed Central  Google Scholar 

  • Hellio Le Graverand-Gastineau MP (2009) OA clinical trials: current targets and trials for OA. Choosing molecular targets: what have we learned and where we are headed? Osteoarthr Cartil 17:1393–1401

    Google Scholar 

  • Hodge WA, Fijan RS, Carlson KL, Burgess RG, Harris WH, Mann RW (1986) Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci U S A 83:2879–2883

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hong S, Derfoul A, Pereira-Mouries L, Hall DJ (2009) A novel domain in histone deacetylase 1 and 2 mediates repression of cartilage-specific genes in human chondrocytes. FASEB J 23:3539–3552

    PubMed  PubMed Central  CAS  Google Scholar 

  • Houseley J, LaCava J, Tollervey D (2006) RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7:529–539

    PubMed  CAS  Google Scholar 

  • Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110

    PubMed  CAS  Google Scholar 

  • Hutchinson JW, Tierney GM, Parsons SL, Davis TR (1998) Dupuytren’s disease and frozen shoulder induced by treatment with a matrix metalloproteinase inhibitor. J Bone Joint Surg Br Vol 80:907–908

    CAS  Google Scholar 

  • Jahn S, Seror J, Klein J (2016) Lubrication of articular cartilage. Annu Rev Biomed Eng 18:235–258

    PubMed  CAS  Google Scholar 

  • Jay GD, Torres JR, Warman ML, Laderer MC, Breuer KS (2007) The role of lubricin in the mechanical behavior of synovial fluid. Proc Natl Acad Sci U S A 104:6194–6199

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jia ZM, Ai X, Teng JF, Wang YP, Wang BJ, Zhang X (2016) p21 and CK2 interaction-mediated HDAC2 phosphorylation modulates KLF4 acetylation to regulate bladder cancer cell proliferation. Tumour Biol 37:8293–8304

    PubMed  CAS  Google Scholar 

  • Johnson AR, Pavlovsky AG, Ortwine DF, Prior F, Man CF, Bornemeier DA, Banotai CA, Mueller WT, McConnell P, Yan C, Baragi V, Lesch C, Roark WH, Wilson M, Datta K, Guzman R, Han HK, Dyer RD (2007) Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects. J Biol Chem 282:27781–27791

    PubMed  CAS  Google Scholar 

  • Juneja SC, Ventura M, Jay GD, Veillette C (2016) A less invasive approach of medial meniscectomy in rat: a model to target early or less severe human osteoarthritis. J Arthritis 5:193

    Google Scholar 

  • Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48:452–458

    PubMed  CAS  Google Scholar 

  • Kanda Y (2015) [statistical analysis using freely-available “EZR (easy R)” software] . [Rinsho ketsueki]. Jpn J Clin Hematol 56:2258–2266

    Google Scholar 

  • Karsdal MA, Madsen SH, Christiansen C, Henriksen K, Fosang AJ, Sondergaard BC (2008) Cartilage degradation is fully reversible in the presence of aggrecanase but not matrix metalloproteinase activity. Arthritis Res Ther 10:R63

    PubMed  PubMed Central  Google Scholar 

  • Kihara S, Hayashi S, Hashimoto S, Kanzaki N, Takayama K, Matsumoto T, Chinzei N, Iwasa K, Haneda M, Takeuchi K, Nishida K, Kuroda R (2017) Cyclin-dependent kinase Inhibitor-1-deficient mice are susceptible to osteoarthritis associated with enhanced inflammation. J bone Miner Res 32:991–1001

    PubMed  CAS  Google Scholar 

  • Kihara S, Hayashi S, Hashimoto S, Kanzaki N, Takayama K, Matsumoto T, Chinzei N, Iwasa K, Haneda M, Takeuchi K, Nishida K, Kuroda R (2018) Cyclin-dependent kinase Inhibitor-1-deficient mice are susceptible to osteoarthritis associated with enhanced inflammation. J bone Miner Res 33:2242

    PubMed  CAS  Google Scholar 

  • Kim JH, Kim K, Youn BU, Lee J, Kim I, Shin HI, Akiyama H, Choi Y, Kim N (2014) Kruppel-like factor 4 attenuates osteoblast formation, function, and cross talk with osteoclasts. J Cell Biol 204:1063–1074

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T, Kumagai H (2003) Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol 31:1007–1014

    PubMed  CAS  Google Scholar 

  • Krzeski P, Buckland-Wright C, Balint G, Cline GA, Stoner K, Lyon R, Beary J, Aronstein WS, Spector TD (2007) Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res Ther 9:R109

    PubMed  PubMed Central  Google Scholar 

  • Laurent TC, Laurent UB, Fraser JR (1995) Functions of hyaluronan. Ann Rheum Dis 54:429–432

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Miao SB, Dong LH, Shu YN, Shao DC, Chen BC, Han M, Zhang Y (2012) Clinicopathological correlation of Kruppel-like factor 5 and matrix metalloproteinase-9 expression and cartilage degeneration in human osteoarthritis. Pathol Res Pract 208:9–14

    PubMed  CAS  Google Scholar 

  • Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, He M, Lv C, Zhang W (2019) A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur J Med Chem 171:129–168

    PubMed  CAS  Google Scholar 

  • Little CB, Barai A, Burkhardt D, Smith SM, Fosang AJ, Werb Z, Shah M, Thompson EW (2009) Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum 60:3723–3733

    PubMed  PubMed Central  CAS  Google Scholar 

  • McConnell BB, Yang VW (2010) Mammalian Kruppel-like factors in health and diseases. Physiol Rev 90:1337–1381

    PubMed  PubMed Central  CAS  Google Scholar 

  • McDermott BT, Ellis S, Bou-Gharios G, Clegg PD, Tew SR (2016) RNA binding proteins regulate anabolic and catabolic gene expression in chondrocytes. Osteoarthr Cartil 24:1263–1273

    PubMed Central  CAS  Google Scholar 

  • Meng F, Zhang Z, Chen W, Huang G, He A, Hou C, Long Y, Yang Z, Zhang Z, Liao W (2016) MicroRNA-320 regulates matrix metalloproteinase-13 expression in chondrogenesis and interleukin-1beta-induced chondrocyte responses. Osteoarthr Cartil 24:932–941

    CAS  Google Scholar 

  • Michikami I, Fukushi T, Tanaka M, Egusa H, Maeda Y, Ooshima T, Wakisaka S, Abe M (2012) Kruppel-like factor 4 regulates membranous and endochondral ossification. Exp Cell Res 318:311–325

    PubMed  CAS  Google Scholar 

  • Neuhold LA, Killar L, Zhao W, Sung ML, Warner L, Kulik J, Turner J, Wu W, Billinghurst C, Meijers T, Poole AR, Babij P, DeGennaro LJ (2001) Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J Clin Invest 107:35–44

    PubMed  PubMed Central  CAS  Google Scholar 

  • Orlowsky EW, Kraus VB (2015) The role of innate immunity in osteoarthritis: when our first line of defense goes on the offensive. J Rheumatol 42:363–371

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pacifici M, Koyama E, Iwamoto M (2005) Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today Rev 75:237–248

    CAS  Google Scholar 

  • Pearle AD, Scanzello CR, George S, Mandl LA, DiCarlo EF, Peterson M, Sculco TP, Crow MK (2007) Elevated high-sensitivity C-reactive protein levels are associated with local inflammatory findings in patients with osteoarthritis. Osteoarthr Cartil 15:516–523

    CAS  Google Scholar 

  • Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, Sokolove J (2016) Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:580–592

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rowland BD, Peeper DS (2006) KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 6:11–23

    PubMed  CAS  Google Scholar 

  • Sandoval J, Rodriguez JL, Tur G, Serviddio G, Pereda J, Boukaba A, Sastre J, Torres L, Franco L, Lopez-Rodas G (2004) RNAPol-ChIP: a novel application of chromatin immunoprecipitation to the analysis of real-time gene transcription. Nucleic Acids Res 32:e88

    PubMed  PubMed Central  Google Scholar 

  • Sarma AV, Powell GL, LaBerge M (2001) Phospholipid composition of articular cartilage boundary lubricant. J Orthop Res 19:671–676

    PubMed  CAS  Google Scholar 

  • Sato T, Konomi K, Yamasaki S, Aratani S, Tsuchimochi K, Yokouchi M, Masuko-Hongo K, Yagishita N, Nakamura H, Komiya S, Beppu M, Aoki H, Nishioka K, Nakajima T (2006) Comparative analysis of gene expression profiles in intact and damaged regions of human osteoarthritic cartilage. Arthritis Rheum 54:808–817

    PubMed  CAS  Google Scholar 

  • SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, Feinberg MW, Chen Z, Simon DI, Luscinskas FW, Michel TM, Gimbrone MA Jr, Garcia-Cardena G, Jain MK (2004) KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199:1305–1315

    PubMed  PubMed Central  CAS  Google Scholar 

  • Seror J, Zhu L, Goldberg R, Day AJ, Klein J (2015) Supramolecular synergy in the boundary lubrication of synovial joints. Nat Commun 6:6497

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma S, Poetz F, Bruer M, Ly-Hartig TB, Schott J, Seraphin B, Stoecklin G (2016) Acetylation-dependent control of global poly(a) RNA degradation by CBP/p300 and HDAC1/2. Mol Cell 63:927–938

    PubMed  CAS  Google Scholar 

  • Shields JM, Christy RJ, Yang VW (1996) Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J Biol Chem 271:20009–20017

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shinoda Y, Ogata N, Higashikawa A, Manabe I, Shindo T, Yamada T, Kugimiya F, Ikeda T, Kawamura N, Kawasaki Y, Tsushima K, Takeda N, Nagai R, Hoshi K, Nakamura K, Chung UI, Kawaguchi H (2008) Kruppel-like factor 5 causes cartilage degradation through transactivation of matrix metalloproteinase 9. J Biol Chem 283:24682–24689

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sokolove J, Lepus CM (2013) Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis 5:77–94

    PubMed  PubMed Central  CAS  Google Scholar 

  • Takeuchi Y, Kito A, Itoh S, Naruse H, Fujikawa J, Sadek KM, Akiyama S, Yamashiro T, Wakisaka S, Abe M (2018) Kruppel-like factor 4 represses osteoblast differentiation via ciliary hedgehog signaling. Exp Cell Res 371:417–425

    PubMed  CAS  Google Scholar 

  • Talaei S, Mellatyar H, Asadi A, Akbarzadeh A, Sheervalilou R, Zarghami N (2019) Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment. Chem Biol Drug Des

  • Traka MH, Chambers KF, Lund EK, Goodlad RA, Johnson IT, Mithen RF (2009) Involvement of KLF4 in sulforaphane- and iberin-mediated induction of p21(waf1/cip1). Nutr Cancer 61:137–145

    PubMed  CAS  Google Scholar 

  • Wu X, Brewer G (2012) The regulation of mRNA stability in mammalian cells: 2.0. Gene 500:10–21

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wu C, Tian B, Qu X, Liu F, Tang T, Qin A, Zhu Z, Dai K (2014) MicroRNAs play a role in chondrogenesis and osteoarthritis (review). Int J Mol Med 34:13–23

    PubMed  Google Scholar 

  • Xu Q, Liu M, Zhang J, Xue L, Zhang G, Hu C, Wang Z, He S, Chen L, Ma K, Liu X, Zhao Y, Lv N, Liang S, Zhu H, Xu N (2016) Overexpression of KLF4 promotes cell senescence through microRNA-203-survivin-p21 pathway. Oncotarget 7:60290–60302

    PubMed  PubMed Central  Google Scholar 

  • Yamamoto K, Okano H, Miyagawa W, Visse R, Shitomi Y, Santamaria S, Dudhia J, Troeberg L, Strickland DK, Hirohata S, Nagase H (2016) MMP-13 is constitutively produced in human chondrocytes and co-endocytosed with ADAMTS-5 and TIMP-3 by the endocytic receptor LRP1. Matrix Biol 56:57–73

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan Y, Tan H, Dai P (2017) Kruppel-like factor 2 regulates degradation of type II collagen by suppressing the expression of matrix metalloproteinase (MMP)-13. Cell Physiol Biochem 42:2159–2168

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Qingbo Xu, Dr. Jim Darnell, and Dr. Ronald Kahn for sharing the clones used in this study.

Funding

This work was supported by Grants-in-Aid for Scientific Research from MEXT to MA (17K11611), YT (17K17322), JF (17K11960), and the Takeda Science Foundation (SI). Compound screening was supported by the Molecular Profiling Committee, Grants-in-Aid for Scientific Research on Innovative Areas “Platform of Advanced Animal Model Support” from The Ministry of Education, Culture, Sports, Science and Technology, Japan (KAKENHI 16H06276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Abe.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Informed consent

Not applicable.

Ethical approval

All animal experiments were approved by the Animal Experiment Committee at Osaka University Graduate School of Dentistry (#29-016-0). All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(JPG 136 kb)

ESM 2

(JPG 121 kb)

ESM 3

(JPG 1123 kb)

ESM 4

(DOCX 16 kb)

ESM 5

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeuchi, Y., Tatsuta, S., Kito, A. et al. Kruppel-like factor 4 upregulates matrix metalloproteinase 13 expression in chondrocytes via mRNA stabilization. Cell Tissue Res 382, 307–319 (2020). https://doi.org/10.1007/s00441-020-03228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03228-3

Keywords

Navigation