Skip to main content

Advertisement

Log in

Neural stem cell therapy of foetal onset hydrocephalus using the HTx rat as experimental model

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Foetal onset hydrocephalus is a disease starting early in embryonic life; in many cases it results from a cell junction pathology of neural stem (NSC) and neural progenitor (NPC) cells forming the ventricular zone (VZ) and sub-ventricular zone (SVZ) of the developing brain. This pathology results in disassembling of VZ and loss of NSC/NPC, a phenomenon known as VZ disruption. At the cerebral aqueduct, VZ disruption triggers hydrocephalus while in the telencephalon, it results in abnormal neurogenesis. This may explain why derivative surgery does not cure hydrocephalus. NSC grafting appears as a therapeutic opportunity. The present investigation was designed to find out whether this is a likely possibility. HTx rats develop hereditary hydrocephalus; 30–40% of newborns are hydrocephalic (hyHTx) while their littermates are not (nHTx). NSC/NPC from the VZ/SVZ of nHTx rats were cultured into neurospheres that were then grafted into a lateral ventricle of 1-, 2- or 7-day-old hyHTx. Once in the cerebrospinal fluid, neurospheres disassembled and the freed NSC homed at the areas of VZ disruption. A population of homed cells generated new multiciliated ependyma at the sites where the ependyma was missing due to the inherited pathology. Another population of NSC homed at the disrupted VZ differentiated into βIII-tubulin+ spherical cells likely corresponding to neuroblasts that progressed into the parenchyma. The final fate of these cells could not be established due to the protocol used to label the grafted cells. The functional outcomes of NSC grafting in hydrocephalus remain open. The present study establishes an experimental paradigm of NSC/NPC therapy of foetal onset hydrocephalus, at the etiologic level that needs to be further explored with more analytical methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AJ :

adherent junctions

BrdU :

bromodeoxyuridine

CE :

ciliated ependyma

CSF :

cerebrospinal fluid

df :

disruption front/disruption focus

DIV :

days in vitro

E:

ependyma

GFAP :

glial fibrillary acidic protein

GJ :

gap junctions

hyHTx :

hydrocephalic Texas rat

LV :

lateral ventricle

NB :

neuroblasts

NE :

neurospheres

NPC :

neural progenitor cells

NSC :

neural stem cells

nHTx :

non-hydrocephalic Texas rat

PH :

periventricular heterotopia

PN :

postnatal

se :

septum

st :

striatum

SVZ :

sub-ventricular zone

VZ :

ventricular zone

References

  • Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Lee JH et al (2013) Mesenchymal stem cells prevent hydrocephalus after severe intraventricular hemorrhage. Stroke 44:497–504

    CAS  PubMed  Google Scholar 

  • Ahn SY, Chang YS, Park WS (2014) Mesenchymal stem cells transplantation for neuroprotection in preterm infants with severe intraventricular hemorrhage. Korean Journal of Pediatrics 57:251–256

    PubMed  PubMed Central  Google Scholar 

  • Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Im GH, Choi SJ, Park WS (2015) Optimal route for mesenchymal stem cells transplantation after severe intraventricular hemorrhage in newborn rats. PLoS One 10(7):e0132919

    PubMed  PubMed Central  Google Scholar 

  • Araya P, Vío K, Guerra M, Rodríguez S, Rodríguez EM (2013) An inflammatory response is associated to the progression of foetal onset hydrocephalus in the HTx rat. Procc. Int. Meeting of the Society for Research into Hydrocephalus and Spina Bifida, Cologne, Germany

  • Armstrong RJ, Svendsen CN (2000) Neural stem cells: from cell biology to cell replacement. Cell Transplant 9:139–152

    CAS  PubMed  Google Scholar 

  • Bai H, Suzuki Y, Noda T, Wu S, Kataoka K, Kitada K, Ohta M, Chou H, Ide C (2003) Dissemination and proliferation of neural stem cells on injection into the fourth ventricle of the rat: a trans- plantation. J Neurosci Methods 124:181–187

    PubMed  Google Scholar 

  • Baker BL (1977) Cellular composition of the human pituitary pars tuberalis as revealed by immunocytochemistry. Cell Tissue Res 182:151–163

    CAS  PubMed  Google Scholar 

  • Barker RA, Parmar M, Kirkeby A, Bjorklund A, Thompson L, Brundin P (2016) Are stem cell-based therapies for Parkinson’s disease ready for the clinic in 2016? J Park Dis 6:57–63

    Google Scholar 

  • Bauer S, Kerr BJ, Patterson PH (2007) The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci 8:221–232

    CAS  PubMed  Google Scholar 

  • Bergsneider M, Egnor MR, Johnston M et al (2006) What we don't (but should) know about hydrocephalus. J Neurosurg 104:157–159

    PubMed  Google Scholar 

  • Beyer F, Samper Agrelo I, Küry P (2019) Do Neural stem cells have a choice? Heterogenic outcome of cell fate acquisition in different injury models. Int J Mol Sci 20(2)

  • Bez A, Corsini E, Curti D, Biggiogera M, Colombo A, Nicosia RF, Pagano SF, Parati EA (2003) Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain Res 993(1–2):18–29

    CAS  PubMed  Google Scholar 

  • Bjorklund A, Kordower JH (2013) Cell therapy for Parkinson’s disease: what next? Mov Disord 28:110–115

    CAS  PubMed  Google Scholar 

  • Boop FA (2004) Posthemorrhagic hydrocephalus of prematurity. In: Cinalli C, Maixner WJ, Sainte-Rose C (eds) Pediatric hydrocephalus. Springer-Verlag, Milan, Italy

    Google Scholar 

  • Castañeyra-Ruiz L, Morales DM, McAllister JP, Brody SL, Isaacs AM, Strahle JM, Dahiya SM, Limbrick DD (2018) Blood Exposure Causes Ventricular Zone Disruption and Glial Activation In Vitro. J Neuropathol Exp Neurol 77:803–813

  • Chae TH, Kim S, Marz KE, Hanson PI, Walsh CA (2004) The hyh mutation uncovers roles for alpha Snap in apical protein localization and control of neural cell fate. Nat Genet 36:264–270

  • Darsalia V, Allison SJ, Cusulin C, Monni E, Kuzdas D, Kallur T, Lindvall O, Kokaia Z (2011) Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain. J Cereb Blood Flow Metab 31:235–242

    PubMed  Google Scholar 

  • Del Bigio MR (2001) Pathophysiologic consequences of hydrocephalus. Neurosurg Clin N Am 12:639–649

    PubMed  Google Scholar 

  • Del Bigio MR (2010) Neuropathology and structural changes in hydrocephalus. Dev Disabil Res Rev 16:16–22

    PubMed  Google Scholar 

  • Domínguez-Pinos MD, Páez P, Jiménez AJ, Weil B, Arráez MA, Pérez-Fígares JM, Rodríguez EM (2005) Ependymal denudation and alterations of the subventricular zone occur in human fetuses with a moderate communicating hydrocephalus. J Neuropathol Exp Neurol 64:595–604

    PubMed  Google Scholar 

  • Englund U, Bjorklund A, Wictorin K, Lindvall O, Kokaia M (2002) Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. PNAS 99:17089–17094

    CAS  PubMed  Google Scholar 

  • Ferland RJ, Bátiz LF, Neal J, Lian G, Bundock E, Lu J, Hsiao YC, Diamond R, Mei D, Banham AH, Brown PJ, Vanderburg CR, Joseph J, Hecht JL, Folkerth R, Guerrini R, Walsh CA, Rodríguez EM, Sheen VL (2009) Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum Mol Genet 18:497–516

    CAS  PubMed  Google Scholar 

  • García-Bonilla M, Ojeda B, Shumilov K, Vitorica J, Guitérrez A et al (2019) Long-time effects of an experimental therapy with mesenchymal stem cells in congenital hydrocephalus. From SRHSB Abstracts, La Laguna, Tenerife, Spain

  • Garzón-Muvdi T, Quiñones-Hinojosa A (2010) Neural stem cell niches and homing: recruitment and integration into functional tissues. ILAR J 51:1–23

    Google Scholar 

  • Gato A, Moro JA, Alonso MI, Bueno D, De La Mano A, Martin C (2005) Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos. Anat Rec A Discov Mol Cell Evol Biol 284:475–484

    PubMed  Google Scholar 

  • Gil-Perotín S, Duran-Moreno M, Cebrián-Silla A, Ramírez M, García-Belda P, García-Verdugo JM (2013) Adult neural stem cells from the subventricular zone: a review of the neurosphere assay. Anat Rec 296:1435–1452

    Google Scholar 

  • Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, Van Camp N, Perrier AL, Hantraye P, ABjorklund A, Parmar M (2014) Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15:653–665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra M (2014) Neural stem cells, the hope of a better life for patients with foetal onset hydrocephalus. Fluids Barriers CNS 11:7

    PubMed  PubMed Central  Google Scholar 

  • Guerra M, Henzi R, Ortloff A, Lichtin N, Vío K, Jimémez A, Dominguez-Pinos MD, González C, Jara MC, Hinostroza F, Rodríguez S, Jara M, Ortega E, Guerra F, Sival DA, den Dunnen WFA, Pérez-Figares JM, McAllister JP, Johanson CE, Rodríguez EM (2015) Cell junction pathology of neural stem cells is associated with ventricular zone disruption, hydrocephalus, and abnormal neurogenesis. J Neuropathol Exp Neurol 74:653–671

    PubMed  Google Scholar 

  • Henzi R, Guerra M, Vío K, González C, Herrera C, McAllister J, Johanson C, Rodriguez EM (2018) Neurospheres from neural stem/neural progenitor cells (NSPCs) of non-hydrocephalic HTx rats produce neurons, astrocytes and multiciliated ependyma. The cerebrospinal fluid of normal and hydrocephalic rats supports such a differentiation. Cell Tissue Res 373:421–438

    CAS  PubMed  Google Scholar 

  • Jellinger G (1986) Anatomopathology of non-tumoral aqueductal stenosis. J Neurosurg Sci 30:1Y16

    Google Scholar 

  • Jiménez AJ, Tomé M, Páez P, Wagner C, Rodríguez S, Fernández-Llebrez P, Rodríguez EM, Pérez-Fígares JM (2001) A programmed ependymal denudation precedes congenital hydrocephalus in the hyh mutant mouse. J Neuropathol Exp Neurol 60:1105–1119

    PubMed  Google Scholar 

  • Johnson RT, Johnson KP, Edmonds CJ (1967) Virus-induced hydrocephalus: development of aqueductal stenosis in hamsters after mumps infection. Science 157:1066Y67

    Google Scholar 

  • Jones HC, Klinge PM (2008) Hydrocephalus, 17-20th September, Hannover Germany: a conference report. Cerebrospinal Fluid Res 5:19

    PubMed  PubMed Central  Google Scholar 

  • Kim DE, Schellingerhout D, Ishii K, Shah K, Weissleder R (2004) Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke 35:952–957

    PubMed  Google Scholar 

  • Klezovitch O, Fernandez TE, Tapscott SJ, Vasioukhin V (2004) Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev 18:559–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kokaia Z, Martino G, Schwartz M, Lindvall O (2012) Cross-talk between neural stem cells and immune cells: the key to better brain repair? Nat Neurosci 15(8):1078–1087

    CAS  PubMed  Google Scholar 

  • Koschnitzky JE, Keep RF, Limbrick DD Jr, McAllister JP 2nd, Morris JA, Strahle J, Yung YC (2018) Opportunities in posthemorrhagic hydrocephalus research: outcomes of the Hydrocephalus Association Posthemorrhagic Hydrocephalus Workshop. Fluids Barriers CNS 15(1):11

  • Li W, Englund E, Widner H, Mattsson B, van Westen D, Lätt J, Rehncrona S, Brundin P, Björklund A, Lindvall O, Li J (2016) Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. PNAS 113(23):6544–6549

    CAS  PubMed  Google Scholar 

  • Limbrick DD Jr, Baksh B, Morgan CD et al (2017) Cerebrospinal fluid biomarkers of infantile congenital hydrocephalus. PLoS One 12(2):e0172353

    PubMed  PubMed Central  Google Scholar 

  • Lindvall O, Björklund A (2011) Cell therapeutics in Parkinson’s disease. Neurotherapeutics 8:539–548

    PubMed  PubMed Central  Google Scholar 

  • Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096

    CAS  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders – time for clinical translation? J Clin Invest 120:29–40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders–how to make it work. Nat Med. https://doi.org/10.1038/nm1064

  • Ma X, Bao J, Adelstein RS (2007) Loss of cell adhesion causes hydrocephalus in nonmuscle myosin II-B-ablated and mutated mice. Mol Biol Cell 18:2305–2312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall WF, Kintner C (2008) Cilia orientation and the fluid mechanics of development. Curr Opin Cell Biol 20:48–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • McAllister JP 2nd, Williams MA, Walker ML, Kestle JR et al (2015) Hydrocephalus Symposium Expert Panel. An update on research priorities in hydrocephalus: overview of the third National Institutes of Health-sponsored symposium "Opportunities for Hydrocephalus Research: Pathways to Better Outcomes". J Neurosurg 123:1427–1438

  • McAllister P, Guerra M, Ruiz LC, Jimenez AJ, Dominguez-Pinos D, Sival D, den Dunnen W, Morales DM, Schmidt RE, Rodríguez EM, Limbrick DD (2017) Ventricular zone disruption in human neonates with intraventricular hemorrhage. J Neuropathol Exp Neurol 76:358–375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morales DM, Townsend RR, Malone JP et al (2012) Alterations in protein regulators of neurodevelopment in the cerebrospinal fluid of infants with posthemorrhagic hydrocephalus of prematurity. Molecular & Cellular proteomics 11(6):M111 011973

    Google Scholar 

  • Morales DM, Holubkov R, Inder TE et al (2015) Cerebrospinal fluid levels of amyloid precursor protein are associated with ventricular size in post-hemorrhagic hydrocephalus of prematurity. PLoS One 10(3):e0115045

    PubMed  PubMed Central  Google Scholar 

  • Morales DM, Silver SA, Morgan CD et al (2017) Lumbar cerebrospinal fluid biomarkers of post-hemorrhagic hydrocephalus of prematurity - amyloid precursor protein, soluble APPα, and L1 cell adhesion molecule. Neurosurgery 80(1):82–90

    PubMed  Google Scholar 

  • Neuhuber B, Barshinger AL, Paul C, Shumsky JS, Mitsui T, Fischer I (2008) Stem cell delivery by lumbar puncture as a therapeutic alternative to direct injection into injured spinal cord. J Neurosurg Spine 9:390–399

    PubMed  Google Scholar 

  • Ohta M, Suzuki Y, Noda T, Kataoka K, Chou H, Ishikawa N, Kitada M, Matsumoto N, Dezawa M, Suzuki S, Ide C (2004) Implantation of neural stem cells via cerebrospinal fluid into the injured root. Neuroreport 15:1249–1253

    PubMed  Google Scholar 

  • Ortloff A, Vío K, Guerra M, Jaramillo K, Kaehne T, Jones H, Rodríguez EM (2013) Role of the subcommissural organ in the pathogenesis of congenital hydrocephalus in the HTx rat. Cell Tissue Res 352:707–725

    CAS  PubMed  Google Scholar 

  • Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A, Furlan R, Comi G, Vescovi AL, Martino G (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694

    CAS  PubMed  Google Scholar 

  • Politis M, Lindvall O (2012) Clinical application of stem cell therapy in Parkinson’s disease. BMC Med 10:1

    PubMed  PubMed Central  Google Scholar 

  • Rasin M, Gazula V, Breunig J, Kwan KY, Johnson MB, Liu-Chen S, Li HS, Jan LY, Jan YN, Rakic P, Sestan N (2007) Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat Neurosci 10:819–827

    CAS  PubMed  Google Scholar 

  • Roales-Buján R, Páez P, Guerra M, Rodríguez S, Vío K, Ho-Plagaro A, García-Bonilla M, Rodríguez-Pérez LM, Domínguez-Pinos MD, Rodríguez EM, Pérez-Fígares JM, Jiménez AJ (2012) Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathol 124:531–546

  • Rodríguez EM, Guerra M (2017) Neural stem cells and fetal onset hydrocephalus. Pediatr Neurosurg 52:446–461

    PubMed  Google Scholar 

  • Rodríguez EM, Guerra M, Vío K, Gonzalez C, Ortloff A, Bátiz LF, Rodríguez S, Jara MC, Muñoz RI, Ortega E, Jaque J, Guerra F, Sival DA, den Dunnen WFA, Jiménez A, Domínguez-Pinos MD, Pérez-Figares JM, McAllister JP, Johanson C (2012) A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus. Biol Res 45:231–242

    PubMed  Google Scholar 

  • Rodríguez EM, Guerra M, Ortega E (2019) Physiopathology of foetal onset hydrocephalus. In Cerebrospinal fluid disorders. lifelong implications. David Limbrick and Jeffrey Leonard (eds.). Springer International Publishing. Berna. Suiza. ISBN: 978-3-319-97928-1

  • Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, Schwartz M (2007) Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 9(9):1081–1088

    CAS  PubMed  Google Scholar 

  • Rosser AE, Tyers P, Dunnett SB (2000) The morphological development of neurons derived from EGF- and FGF-2-driven human CNS precursors depends on their site of integration in the neonatal rat brain. Eur J Neurosci 12:2405–2413

    CAS  PubMed  Google Scholar 

  • Satake K, Lou J, Lenke LG (2004) Migration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue. Spine (Phila Pa 1976) 29:1971–1979

    Google Scholar 

  • Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, Tessier-Lavigne M, Okano H, Alvarez-Buylla A (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311:629–632

  • Schmidt NO, Koeder D, Messing M, Mueller FJ, Aboody KS, Kim SU, Black PM, Carroll RS, Westphal M, Lamszus K (2009) Vascular endo- thelial growth factor-stimulated cerebral microvascular endothelial cells mediate the recruitment of neural stem cells to the neurovascular niche. Brain Res 1268:24–37

    CAS  PubMed  Google Scholar 

  • Shulyakov AV, Buist RJ, Del Bigio MR (2012) Intracranial biomechanics of acute experimental hydrocephalus in live rats. Neurosurgery 71:1032–1040

    PubMed  Google Scholar 

  • Sival DA, Guerra M, den Dunnen WF, Bátiz LF, Alvial G, Castañeyra-Perdomo A, Rodríguez EM (2011) Neuroependymal denudation is in progress in full-term human foetal spina bifida aperta. Brain Pathol 21:163–179

  • Sternberger LA, Hardy PH, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-anti horseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    CAS  PubMed  Google Scholar 

  • Suslov ON, Kukekov VG, Ignatova TN, Steindler DA (2002) Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. PNAS 99:14506–14511

    CAS  PubMed  Google Scholar 

  • Takeuchi H, Natsume A, Wakabayashi T, Aoshima C, Shimato S, Ito M, Ishii J, Maeda Y, Hara M, Kim SU, Yoshida J (2007) Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci Lett 426:69–74

    CAS  PubMed  Google Scholar 

  • Tatarishvili J, Oki K, Monni E, Koch P, Memanishvili T, Buga A, Verma V, Popa-Wagner A, Brustl O, Lindvall O, Kokaia Z (2014) Human induced pluripotent stem cells improve recovery in stroke-injured aged rats. Restor Neurol Neurosci 32:547–558

    CAS  PubMed  Google Scholar 

  • Wagner C, Batiz LF, Rodríguez S, Jiménez AJ, Páez P, Tomé M, Pérez-Fígares JM, Rodríguez EM (2003) Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol 62(10):1019–1040

    CAS  PubMed  Google Scholar 

  • Wagshul ME, McAllister JP, Rashid S, Li J, Egnor MR, Walker ML, Yu M, Smith SD, Zhang G, Chen JJ, Benveniste H (2009) Ventricular dilation and elevated aqueductal pulsations in a new experimental model of communicating hydrocephalus. Exp Neurol 218:33–40

    CAS  PubMed  Google Scholar 

  • Williams MA, McAllister JP, Walker ML, Kranz DA, Bergsneider M, Del Bigio MR, Fleming L, Frim DM, Gwinn K, Kestle JR, Luciano MG, Madsen JR, Oster-Granite ML, Spinella G (2007) Priorities for hydrocephalus research: report from a National Institutes of Health-sponsored workshop. J Neurosurg 107:345–357

    PubMed  Google Scholar 

  • Wu S, Suzuki Y, Noda Y, Bai H, Kitada M, Kataoka K, Nishimura Y, Ide C (2002) Immunohistochemical and electron microscopic study of invasion and differentiation in spinal cord lesion of neural stem cells grafted through cerebrospinal fluid in rat. J Neurosci Res 69:940–945

    CAS  PubMed  Google Scholar 

  • Xu L, Ryugo DK, Pongstaporn T, Johe K, Koliatsos VE (2009) Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: Differentiation and structural integration into the segmental motor circuitry. J Comp Neurol 514:297–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yung YC, Mutoh T, Lin ME, Noguchi K, Rivera RR, Choi JW, Kingsbury MA, Chun J (2011) Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci Transl Med 3:99–87

    Google Scholar 

  • Zappaterra MD, Lisgo SN, Lindsay S, Gygi SP, Walsh CA, Ballif BA (2007) A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. J Proteome Res 6:3537–3548

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the valuable technical support of Mr. Genaro Alvial and the Confocal and Electron Microscopy Core Facilities of Universidad Austral de Chile.

Funding

This study is supported by Fondecyt 1111018 to EMR; Hydrocephalus Association Established Investigator Award No. 51002705 to PM, EMR, CEJ and Doctoral Conicyt Fellowship (Chile) to RH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montserrat Guerra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Not applicable.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the National Research Council of Chile (Conicyt). The ethics committee of Universidad Austral de Chile approved the experimental protocol. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Dedicated to Prof. Michael Pollay for his enthusiastic support to carry out the present research.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Roberto Henzi and Karin Vío both qualify as first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henzi, R., Vío, K., Jara, C. et al. Neural stem cell therapy of foetal onset hydrocephalus using the HTx rat as experimental model. Cell Tissue Res 381, 141–161 (2020). https://doi.org/10.1007/s00441-020-03182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03182-0

Keywords

Navigation