Skip to main content

Advertisement

Log in

Beta-cell β1 integrin deficiency affects in utero development of islet growth and vascularization

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The β1 integrin subunit contributes to pancreatic beta cell growth and function through communication with the extracellular matrix (ECM). The effects of in vitro and in vivo β1 integrin knockout have been extensively studied in mature islets, yet no study to date has examined how the loss of β1 integrin during specific stages of pancreatic development impacts beta cell maturation. Beta-cell-specific tamoxifen-inducible Cre recombinase (MIP-CreERT) mice were crossed with mice containing floxed Itgb1 (β1 integrin) to create an inducible mouse model (MIPβ1KO) at the second transition stage (e13.5) of pancreas development. By e19.5–20.5, the expression of beta-cell β1 integrin in fetal MIPβ1KO mice was significantly reduced and these mice displayed decreased beta cell mass, density and proliferation. Morphologically, fetal MIPβ1KO pancreata exhibited reduced islet vascularization and nascent endocrine cells in the ductal region. In addition, decreased ERK phosphorylation was observed in fetal MIPβ1KO pancreata. The expression of transcription factors needed for beta-cell development was unchanged in fetal MIPβ1KO pancreata. The findings from this study demonstrate that β1 integrin signaling is required during a transition-specific window in the developing beta-cell to maintain islet mass and vascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aamodt KI, Powers AC (2017) Signals in the pancreatic islet microenvironment influence β-cell proliferation. Diabetes Obes Metab 19(Suppl 1):124–136

    Article  CAS  Google Scholar 

  • Alpert S, Hanahan D, Teitelman G (1988) Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 53:295–308

    Article  CAS  Google Scholar 

  • Azizoglu DB, Chong DC, Villasenor A, Magenheim J, Barry DM, Lee S, Marty-Santos L, Fu S, Dor Y, Cleaver O (2016) Vascular development in the vertebrate pancreas. Dev Biol 420:67–78

    Article  CAS  Google Scholar 

  • Bosco D, Meda P, Halban PA, Rouiller DG (2000) Importance of cell-matrix interactions in rat islet beta-cell secretion in vitro: role of α6β1 integrin. Diabetes 49:233–243

  • Brissova M, Shostak A, Shiota M, Wiebe PO, Poffenberger G, Kantz J, Chen Z, Carr C, Jerome WG, Chen J, Baldwin HS, Nicholson W, Bader DM, Jetton T, Gannon M, Powers AC (2006) Pancreatic islet production of vascular endothelial growth factor-a is essential for islet vascularization, revascularization, and function. Diabetes 55:2974–2985

    Article  CAS  Google Scholar 

  • Cai EP, Casimir M, Schroer SA, Luk CT, Shi SY, Choi D, Dai XQ, Hajmrle C, Spigelman AF, Zhu D, Gaisano HY, MacDonald PE, Woo M (2012a) In vivo role of focal adhesion kinase in regulating pancreatic β-cell mass and function through insulin signaling, actin dynamics, and granule trafficking. Diabetes 61:1708–1718

    Article  CAS  Google Scholar 

  • Cai Q, Brissova M, Reinert RB, Pan FC, Brahmachary P, Jeansson M, Shostak A, Radhika A, Poffenberger G, Quaggin SE, Jerome WG, Dumont DJ, Powers AC (2012b) Enhanced expression of VEGF-A in β cells increases endothelial cell number but impairs islet morphogenesis and β cell proliferation. Dev Biol 367:40–54

    Article  CAS  Google Scholar 

  • Cirulli V, Beattie GM, Klier G, Ellisman M, Ricordi C, Quaranta V, Frasier F, Ishii JK, Hayek A, Salomon DR (2000) Expression and function of αVβ3 and αVβ5 integrins in the developing pancreas: roles in the adhesion and migration of putative endocrine progenitor cells. J Cell Biol 150:1445–1460

  • Diaferia GR, Jimenez-Caliani AJ, Ranjitkar P, Yang W, Hardiman G, Rhodes CJ, Crisa L, Cirulli V (2013) β1 integrin is a crucial regulator of pancreatic β-cell expansion. Development 140:3360–3372

    Article  CAS  Google Scholar 

  • Feng ZC, Popell A, Li J, Silverstein J, Oakie A, Yee SP, Wang R (2015) c-Kit receptor signaling regulates islet vasculature, β-cell survival, and function in vivo. Diabetes 64:3852–3866

    Article  CAS  Google Scholar 

  • Gu D, Sarvetnick N (1993) Epithelial cell proliferation and islet neogenesis in IFN-g transgenic mice. Development 118:33–46

    CAS  PubMed  Google Scholar 

  • D’Hoker J, De Leu N, Heremans Y, Baeyens L, Minami K, Ying C, Lavens A, Chintinne M, Stange G, Magenheim J, Swisa A, Martens G, Pipeleers D, Van de Casteele M, Seino S, Keshet E, Dor Y, Heimber G (2013) Conditional hypovascularization and hypoxia in islets do not overtly influence adult β-cell mass or function. Diabetes 61:4165–4173

    Article  Google Scholar 

  • Hammar E, Parnaud G, Bosco D, Perriraz N, Maedler K, Donath M, Rouiller DG, Halban PA (2004) Extracellular matrix protects pancreatic beta-cells against apoptosis: role of short- and long-term signaling pathways. Diabetes 53:2034–2041

    Article  CAS  Google Scholar 

  • Heinis M, Soggia A, Bechetoille C, Simon MT, Peyssonnaux C, Rustin P, Scharfmann R, Duvillié B (2012) HIF1α and pancreatic β-cell development. FASEB J 26:2734–2742

    Article  CAS  Google Scholar 

  • Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D (2002) VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell 1:193–202

    Article  CAS  Google Scholar 

  • Jensen J, Heller RS, Funder-Nielsen T, Pedersen EE, Lindsell C, Weinmaster G, Madsen OD, Serup P (2000) Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes 49:163–176

    Article  CAS  Google Scholar 

  • Kaido TJ, Yebra M, Kaneto H, Cirulli V, Hayek A, Montgomery AM (2010) Impact of integrin-matrix interaction and signaling on insulin gene expression and the mesenchymal transition of human beta-cells. J Cell Physiol 224:101–111

    CAS  PubMed  Google Scholar 

  • Krishnamurthy M, Li J, Al-Masri M, Wang R (2008) Expression and function of αβ1 integrins in pancretic beta (INS-1) cells. J Cell Commun Signal 2:67–79

  • Krishnamurthy M, Li J, Fellows GF, Rosenberg L, Goodyer CG, Wang R (2011) Integrin α3, but not β1, regulates islet cell survival and function via PI3K/Akt signaling pathways. Endocrinology 152:424–435

  • Lammert E, Cleaver O, Melton D (2003) Role of endothelial cells in early pancreas and liver development. Mech Dev 120:59–64

    Article  CAS  Google Scholar 

  • LeCouter J, Kowalski J, Foster J, Hass P, Zhang Z, Dillard-Telm L, Frantz G, Rangell L, DeGuzman L, Keller GA, Peale F, Gurney A, Hillan KJ, Ferrara N (2001) Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412:877–884

    Article  CAS  Google Scholar 

  • Narayanan K, Lim VY, Shen J, Tan ZW, Rajendran D, Luo SC, Gao S, Wan AC, Ying JY (2014) Extracellular matrix-mediated differentiation of human embryonic stem cells: differentiation to insulin-secreting beta cells. Tissue Eng Part A 20:424–433

    Article  CAS  Google Scholar 

  • Nikolova G, Jabs N, Konstantinova I, Domogatskaya A, Tryggvason K, Sorokin L, Fässler R, Gu G, Gerber HP, Ferrara N, Melton DA, Lammert E (2006) The vascular basement membrane: a niche for insulin gene expression and beta cell proliferation. Dev Cell 10:397–405

    Article  CAS  Google Scholar 

  • Parnaud G, Hammar E, Rouiller DG, Armanet M, Halban PA, Bosco D (2006) Blockade of beta1 integrin-laminin-5 interaction affects spreading and insulin secretion of rat beta-cells attached on extracellular matrix. Diabetes 55:1413–1420

    Article  CAS  Google Scholar 

  • Peart J, Li J, Lee H, Riopel M, Feng ZC, Wang R (2017) Critical role of β1 integrin in postnatal beta-cell function and expansion. Oncotarget 8:62939–62952

    Article  Google Scholar 

  • Pinkse GG, Bouwman WP, Jiawan-Lalai R, Terpstra OT, Bruijn JA, de Heer E (2006) Integrin signaling via RGD peptides and anti-β1 antibodies confers resistance to apoptosis in islets of Langerhans. Diabetes 55:312–317

  • Qin J, Vinogradova O, Plow EF (2004) Integrin bidirectional signaling: a molecular view. PLoS Biol 2:e169

    Article  Google Scholar 

  • Reinert RB, Brissova M, Shostak A, Pan FC, Poffenberger G, Cai Q, Hundemer GL, Kantz J, Thompson CS, Dai C, McGuinness OP, Powers AC (2013) Vascular endothelial growth factor-a and islet vascularization are necessary in developing, but not adult, pancreatic islets. Diabetes 62:4154–4164

    Article  CAS  Google Scholar 

  • Riopel M, Krishnamurthy M, Li J, Liu S, Leask A, Wang R (2011) Conditional β1-integrin-deficient mice display impaired pancreatic β cell function. J Pathol 224:45–55

    Article  CAS  Google Scholar 

  • Ris F, Hammar E, Bosco D, Pilloud C, Maedler K, Donath MY, Oberholzer J, Zeender E, Morel P, Rouiller D, Halban PA (2002) Impact of integrin-matrix matching and inhibition of apoptosis on the survival of purified human beta-cells in vitro. Diabetologia 45:841–850

    Article  CAS  Google Scholar 

  • Saleem S, Li J, Yee SP, Fellows GF, Goodyer CG, Wang R (2009) β1 integrin/FAK/ERK signalling pathway is essential for human fetal islet cell differentiation and survival. J Pathol 219:182–192

  • Shih HP, Wang A, Sander M (2013) Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol 29:81–105

    Article  CAS  Google Scholar 

  • Su D, Zhang N, He J, Qu S, Slusher S, Bottino R, Bertera S, Bromberg J, Dong HH (2007) Angiopoietin-1 production in islets improves islet engraftment and protects islets from cytokine-induced apoptosis. Diabetes 56:2274–2283

    Article  CAS  Google Scholar 

  • Tamarina NA, Roe MW, Philipson L (2014) Characterization of mice expressing Ins1 gene promoter driven CreERT recombinase for conditional gene deletion in pancreatic β-cells. Islets 6:e27685

    Article  Google Scholar 

  • Trinder M, Zhou L, Oakie A, Riopel M, Wang R (2016) β-cell insulin receptor deficiency during in utero development induces an islet compensatory overgrowth response. Oncotarget 7:44927–44940

    Article  Google Scholar 

  • Wang R, Li J, Lyte K, Yashpal NK, Fellows F, Goodyer CG (2005) Role for β1 integrin and its associated α3, α5, and α6 subunits in development of the human fetal pancreas. Diabetes 54:2080–2089

  • Wang RN, Bouwens L, Klöppel G (1994) Beta-cell proliferation in normal and streptozotocin-treated newborn rats: site, dynamics and capacity. Diabetologia 37:1088–1096

    Article  CAS  Google Scholar 

  • Watada H (2010) Role of VEGF-A in pancreatic beta cells. Endocr J 57:185–191

    Article  CAS  Google Scholar 

  • Xia H, Nho RS, Kahm J, Kleidon J, Henke CA (2004) Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a β1 integrin viability signaling pathway. J Biol Chem 279:33024–33034

  • Yashpal NK, Li J, Wheeler MB, Wang R (2005) Expression of β1 integrin receptors during rat pancreas development--sites and dynamics. Endocrinology 146:1798–1807

Download references

Acknowledgments

The authors would like to thank Dr. Louis Philipson from the University of Chicago, Chicago, IL, USA, for providing the MIP-CreER mouse model. We would also like to thank Mr. Jason Peart for his technical assistance.

Author contribution statement

PWW contributed to the organization and maintenance of the MIPβ1KO line, acquisition and interpretation of data and preparation of the submitted manuscript. AO contributed to the acquisition and interpretation of data and to manuscript preparation. JL contributed to technical assistance, acquisition of data and manuscript editing. RW contributed to the design of experiments within this project and preparation of the submitted manuscript.

Funding

This study was funded by the Natural Sciences & Engineering Research Council of Canada (grant no. RGPIN/04658-2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rennian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Win, P.W., Oakie, A., Li, J. et al. Beta-cell β1 integrin deficiency affects in utero development of islet growth and vascularization. Cell Tissue Res 381, 163–175 (2020). https://doi.org/10.1007/s00441-020-03179-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03179-9

Keywords

Navigation