Skip to main content

Advertisement

Log in

Potential of mesenchymal stem cells for bioengineered blood vessels in comparison with other eligible cell sources

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Application of stem cells in tissue engineering has proved to be effective in many cases due to great proliferation and differentiation potentials as well as possible paracrine effects of these cells. Human mesenchymal stem cells (MSCs) are recognized as a valuable source for vascular tissue engineering, which requires endothelial and perivascular cells. The goal of this review is to survey the potential of MSCs for engineering functional blood vessels in comparison with other cell types including bone marrow mononuclear cells, endothelial precursor cells, differentiated adult autologous smooth muscle cells, autologous endothelial cells, embryonic stem cells, and induced pluripotent stem cells. In conclusion, MSCs represent a preference in making autologous tissue-engineered vascular grafts (TEVGs) as well as off-the-shelf TEVGs for emergency vascular surgery cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdollahi H, Harris LJ, Zhang P, McIlhenny S, Srinivas V, Tulenko T, DiMuzio PJ (2011) The role of hypoxia in stem cell differentiation and therapeutics. J Surg Res 165:112–117

    Article  CAS  PubMed  Google Scholar 

  • Abou-Saleh H, Zouein FA, El-Yazbi A, Sanoudou D, Raynaud C, Rao C, Pintus G, Dehaini H, Eid AH (2018) The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Res Ther 9:201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ambasta RK, Kohli H, Kumar P (2017) Multiple therapeutic effect of endothelial progenitor cell regulated by drugs in diabetes and diabetes related disorder. J Transl Med 15:1–17

    Article  CAS  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–966

    Article  CAS  PubMed  Google Scholar 

  • Baguneid M, Seifalian A, Salacinski H, Murray D, Hamilton G, Walker M (2006) Tissue engineering of blood vessels. Br J Surg 93:282–290

    Article  CAS  PubMed  Google Scholar 

  • Bahrami AR, Ebrahimi M, Matin MM, Neshati Z, Almohaddesin MR, Aghdami N, Bidkhori HR (2011) Comparative analysis of chemokine receptor's expression in mesenchymal stem cells derived from human bone marrow and adipose tissue. J Mol Neurosci 44:178–185

    Article  PubMed  CAS  Google Scholar 

  • Berardinelli L (2006) Grafts and graft materials as vascular substitutes for haemodialysis access construction. Eur J Vasc Endovasc Surg 32:203–211

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar P, Wickramasinghe K, Williams J, Rayner M, Townsend N (2015) The epidemiology of cardiovascular disease in the UK 2014. Heart 101:1182–1189

    Article  CAS  PubMed  Google Scholar 

  • Brunt KR, Hall SR, Ward CA, Melo LG (2007) Endothelial progenitor cell and mesenchymal stem cell isolation, characterization, viral transduction. Methods Mol Med. Springer, pp 197-210

  • Camiade C, Maher A, Ricco JB, Roumy J, Febrer G, Marchand C, Neau JP (2003) Carotid bypass with polytetrafluoroethylene grafts: a study of 110 consecutive patients. J Vasc Surg 38:1031–1037

    Article  PubMed  Google Scholar 

  • Cao J, Li X, Lu X, Zhang C, Yu H, Zhao T (2014) Cells derived from iPSC can be immunogenic—yes or no? Protein cell 5:1–3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    Article  CAS  PubMed  Google Scholar 

  • Chemla E, Morsy M (2009) Randomized clinical trial comparing decellularized bovine ureter with expanded polytetrafluoroethylene for vascular access. Br J Surg 96:34–39

    Article  CAS  Google Scholar 

  • Cowan CA, Atienza J, Melton DA, Eggan K (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309:1369–1373

    Article  CAS  PubMed  Google Scholar 

  • DeLoach SS, Mohler ER (2007) Peripheral arterial disease: a guide for nephrologists. Clin J Am Soc Nephrol 2:839–846

    Article  PubMed  Google Scholar 

  • Desai M, Seifalian AM, Hamilton G (2011) Role of prosthetic conduits in coronary artery bypass grafting. Eur J Cardiothorac Surg 40:394–398

    PubMed  Google Scholar 

  • Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  PubMed  Google Scholar 

  • Farber A, Major K, Wagner WH, Cohen JL, Cossman DV, Lauterbach SR, Levin PM (2003) Cryopreserved saphenous vein allografts in infrainguinal revascularization: analysis of 240 grafts. J Vasc Surg 38:15–21

    Article  PubMed  Google Scholar 

  • Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad, Ser B 85:348–362

    Article  CAS  Google Scholar 

  • Gan S, Tsung HC, Wu CF, Liu XY, Xiaoyun W, Wei L, Lei C, Cao YL (2003) Tissue engineering of blood vessels with endothelial cells differentiated from mouse embryonic stem cells. Cell Res 13:335–341

    Article  Google Scholar 

  • Ghazanfari S, Tafazzoli-Shadpour M, Shokrgozar MA (2009) Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells. Biochem Biophys Res Commun 388:601–605

    Article  CAS  PubMed  Google Scholar 

  • Glickman M, Gheissari A, Money S, Martin J, Ballard JL (2002) A polymeric sealant inhibits anastomotic suture hole bleeding more rapidly than gelfoam/thrombin: results of a randomized controlled trial. Arch Surg 137:326–331

    Article  CAS  PubMed  Google Scholar 

  • Gong Z, Niklason LE (2008) Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J 22:1635–1648

    Article  CAS  PubMed  Google Scholar 

  • Grenier G, Rémy-Zolghadri M, Guignard R, Bergeron F, Labbé R, Auger FA, Germain L (2003) Isolation and culture of the three vascular cell types from a small vein biopsy sample. In Vitro Cell Dev Biol Anim 39:131–139

    Article  Google Scholar 

  • Gu W, Hong X, Le Bras A, Nowak WN, Bhaloo S, Deng J, Xie Y, Hu Y, Ruan XZ, Xu Q (2018) Smooth muscle cells differentiated from human mesenchymal stem cells regulated by microRNA (miR)-503 and miR-222-5p are suitable for vascular tissue engineering. J Bio Ch 293:8089–8102

  • Dong JD, Gu YQ, Li CM, Wang CR, Feng ZG, Qiu RX, Chen B, Li JX, Zhang SW, Wang ZG, Zhang J (2009) Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts. Acta Pharmacol Sin 30:530–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gui L, Dash BC, Luo J, Qin L, Zhao L, Yamamoto K, Hashimoto T, Wu H, Dardik A, Tellides G (2016) Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials 102:120–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton DW, Maul TM, Vorp DA (2004) Characterization of the response of bone marrow-derived progenitor cells to cyclic strain: implications for vascular tissue-engineering applications. Tissue Eng 10:361–369

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Kuang SZ, Gomer A, Ramirez-Bergeron DL (2010) Hypoxia influences the vascular expansion and differentiation of embryonic stem cell cultures through the temporal expression of vascular endothelial growth factor receptors in an ARNT-dependent manner. Stem Cells 28:799–809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartranft CA, Noland S, Kulwicki A, Holden CR, Hartranft T (2014) Cryopreserved saphenous vein graft in infrainguinal bypass. J Vasc Surg 60:1291–1296

    Article  PubMed  Google Scholar 

  • Heirani-Tabasi A, Naderi-Meshkin H, Matin MM, Mirahmadi M, Shahriyari M, Ahmadiankia N, Sanjar Moussavi N, Bidkhori HR, Raeesolmohaddeseen M, Bahrami AR (2018) Augmented migration of mesenchymal stem cells correlates with the subsidiary CXCR4 variant. Cell Adh Migr 12:118–126

  • Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2:198–210

    Article  PubMed  Google Scholar 

  • Hess CN, Hiatt WR (2018) Antithrombotic therapy for peripheral artery disease in 2018. JAMA

  • Hibino N, McGillicuddy E, Matsumura G, Ichihara Y, Naito Y, Breuer C, Shinoka T (2010) Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 139:431–436. e432

    Article  PubMed  Google Scholar 

  • Hielscher D, Kaebisch C, Braun BJV, Gray K, Tobiasch E (2018) Stem cell sources and graft material for vascular tissue engineering. Stem Cell Rev 14:642–667

    Article  CAS  Google Scholar 

  • Hjortnaes J, Gottlieb D, Figueiredo J-L, Melero-Martin J, Kohler RH, Bischoff J, Weissleder R, Mayer JE, Aikawa E (2009) Intravital molecular imaging of small-diameter tissue-engineered vascular grafts in mice: a feasibility study. Tissue Eng Part C Methods 16:597–607

    Article  PubMed Central  Google Scholar 

  • Hoerstrup SP, Cummings MRCSI, Lachat M, Schoen FJ, Jenni R, Leschka S, Neuenschwander S, Dr S, Mol A, Günter C (2006) Functional growth in tissue-engineered living, vascular grafts: follow-up at 100 weeks in a large animal model. Circulation 4:159–166

    Google Scholar 

  • Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651–654

    Article  CAS  PubMed  Google Scholar 

  • How T (1992) Mechanical properties of arteries and arterial grafts. Cardiovascular biomaterials. In: Hastings G.W. (eds) Cardiovascular Biomaterials. Springer, LondonSpringer, pp 1-35

    Google Scholar 

  • Hsia K, Yao C-L, Chen W-M, Chen J-H, Lee H, Lu J-H (2016) Scaffolds and cell-based tissue engineering for blood vessel therapy. Cells Tissues Organs 202:281–295

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Zhao X, Chen L, Xu C, Yao X, Lu Y, Dai L, Zhang M (2006) Differentiation of human embryonic stem cells into smooth muscle cells in adherent monolayer culture. Biochem Biophys Res Commun 351:321–327

    Article  CAS  PubMed  Google Scholar 

  • Huang NF, Li S (2008) Mesenchymal stem cells for vascular regeneration. Regen Med 3:877-892

    Article  PubMed  Google Scholar 

  • Jung Y, Ji H, Chen Z, Chan HF, Atchison L, Klitzman B, Truskey G, Leong KW (2015) Scaffold-free, human mesenchymal stem cell-based tissue engineered blood vessels. Sci Rep 5:15116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakisis JD, Liapis CD, Sumpio BE (2004) Effects of cyclic strain on vascular cells. Endothelium 11:17–28

    Article  CAS  PubMed  Google Scholar 

  • Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM (2005) Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B Appl Biomater: Appl Biomater 74:570–581

    Article  CAS  Google Scholar 

  • Karthik S, Fabri B (2006) Left internal mammary artery usage in coronary artery bypass grafting: a measure of quality control. Ann R Coll Surg Engl 88:367–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keidar Z, Engel A, Hoffman A, Israel O, Nitecki S (2007) Prosthetic vascular graft infection: the role of 18F-FDG PET/CT. J Nucl Med 48:1230–1236

    Article  PubMed  Google Scholar 

  • Khaki M, Salmanian AH, Abtahi H, Ganji A, Mosayebi G (2018) Mesenchymal stem cells differentiate to endothelial cells using recombinant vascular endothelial growth factor–A. Rep Biochem Mol Biol. 6:144–150

  • Kimmelman J, Hyun I, Benvenisty N, Caulfield T, Heslop HE, Murry CE, Sipp D, Studer L, Sugarman J, Daley GQ (2016) Policy: global standards for stem-cell research. Nature News 533:311–313

    Article  CAS  Google Scholar 

  • Kirkton RD, Prichard HL, Santiago-Maysonet M, Niklason LE, Lawson JH, Dahl SL (2018) Susceptibility of ePTFE vascular grafts and bioengineered human acellular vessels to infection. J Surg Res 221:143–151

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Yasu T, Ueba H, Sata M, Hashimoto S, Kuroki M, Saito M, Kawakami M (2004) Mechanical stress promotes the expression of smooth muscle-like properties in marrow stromal cells. Exp Hematol 32:1238–1245

    Article  CAS  PubMed  Google Scholar 

  • Kogut I, McCarthy SM, Pavlova M, Astling DP, Chen X, Jakimenko A, Jones KL, Getahun A, Cambier JC, Pasmooij AM (2018) High-efficiency RNA-based reprogramming of human primary fibroblasts. Nat commun9:745

  • Krawiec JT, Vorp DA (2012) Adult stem cell-based tissue engineered blood vessels: a review. Biomaterials 33:3388–3400

    Article  CAS  PubMed  Google Scholar 

  • Kurpinski K, Lam H, Chu J, Wang A, Kim A, Tsay E, Agrawal S, Schaffer DV, Li S (2010) Transforming growth factor-β and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells 28:734–742

    Article  CAS  PubMed  Google Scholar 

  • L'Heureux N, Dusserre N, Konig G, Victor B, Keire P, Wight TN, Chronos NA, Kyles AE, Gregory CR, Hoyt G (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 12:361–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • L'Heureux N, Dusserre N, Marini A, Garrido S, De La Fuente L, McAllister T (2007) Technology insight: the evolution of tissue-engineered vascular grafts—from research to clinical practice. Nat Rev Cardiol 4:389–395

    Article  Google Scholar 

  • Ladhoff J, Fleischer B, Hara Y, Volk H-D, Seifert M (2010) Immune privilege of endothelial cells differentiated from endothelial progenitor cells. Cardiovasc Res 88:121–129

    Article  CAS  PubMed  Google Scholar 

  • Leavitt B (2004) The effect of not using an internal mammary artery as a conduit for coronary artery bypass grafting. Heart 90:1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leeper NJ, Hunter AL, Cooke JP (2010) Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation 122:517–526

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Terry CM, Shiu Y-TE, Cheung AK (2008) Neointimal hyperplasia associated with synthetic hemodialysis grafts. Kidney Int 74:1247–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CH, Hsia K, Ma H, Lee H, Lu JH (2018) In vivo performance of decellularized vascular grafts: a review article. Int J Mol Sci 19:2101

    Article  PubMed Central  CAS  Google Scholar 

  • Liu C, Tsai AL, Li PC, Huang CW, Wu CC (2017) Endothelial differentiation of bone marrow mesenchyme stem cells applicable to hypoxia and increased migration through Akt and NFκB signals. Stem Cell Res Ther 8:1–11

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci 78:7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin ND, Schaner PJ, Tulenko TN, Shapiro IM, DiMatteo CA, Williams TK, Hager ES, DiMuzio PJ (2005) In vivo behavior of decellularized vein Allograft1, 2. J Surg Res 129:17–23

    Article  PubMed  Google Scholar 

  • Mathieu M, Bartunek J, El Oumeiri B, Touihri K, Hadad I, Thoma P, Metens T, da Costa AM, Mahmoudabady M, Egrise D (2009) Cell therapy with autologous bone marrow mononuclear stem cells is associated with superior cardiac recovery compared with use of nonmodified mesenchymal stem cells in a canine model of chronic myocardial infarction. J Thorac Cardiovasc Surg 138:646–653

    Article  PubMed  Google Scholar 

  • Maul TM, Chew DW, Nieponice A, Vorp DA (2011) Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech Model Mechanobiol 10:939–953

    Article  PubMed  PubMed Central  Google Scholar 

  • Members WG, Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES (2012) Executive summary: heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125:188–197

    Article  Google Scholar 

  • Mir O, Savitz SI (2013) Stem cell therapy in stroke treatment: is it a viable option? Expert Rev Neurother 13:119–121

    Article  CAS  PubMed  Google Scholar 

  • Müller-Schweinitzer E (2009) Cryopreservation of vascular tissues. Organogenesis 5:97–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Naderi H, Matin MM, Bahrami AR (2011) Critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J Biomater Appl 26:383–417

    Article  CAS  PubMed  Google Scholar 

  • Neshati Z, Matin MM, Bahrami AR, Moghimi A (2010) Differentiation of mesenchymal stem cells to insulin-producing cells and their impact on type 1 diabetic rats. J Physiol Biochem 66:181–187

    Article  CAS  PubMed  Google Scholar 

  • Nie Y, Zhang K, Zhang S, Wang D, Han Z, Che Y, Kong D, Zhao Q, Han Z, He Z-X (2017) Nitric oxide releasing hydrogel promotes endothelial differentiation of mouse embryonic stem cells. Acta Biomater 63:190–199

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa S, Goldstein RA, Nierras CR (2008) The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol 9:725

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953

    Article  CAS  PubMed  Google Scholar 

  • Olausson M, Kuna VK, Travnikova G, Bäckdahl H, Patil PB, Saalman R, Borg H, Jeppsson A, Sumitran-Holgersson S (2014) In vivo application of tissue-engineered veins using autologous peripheral whole blood: a proof of concept study. EBioMedicine 1:72–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Ong CS, Zhou X, Huang CY, Fukunishi T, Zhang H, Hibino N (2017) Tissue engineered vascular grafts: current state of the field. Expert Rev Med Devices 14:383–392

    Article  CAS  PubMed  Google Scholar 

  • Oswald J, Boxberger S, Jørgensen B, Feldmann S, Ehninger G, Bornhäuser M, Werner C (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384

    Article  PubMed  Google Scholar 

  • Papapetrou EP (2016) Induced pluripotent stem cells, past and future. Science 353:991–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pashneh-Tala S, MacNeil S, Claeyssens F (2015) The tissue-engineered vascular graft—past, present, and future. Tissue Eng Part B Rev 22:68–100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Portalska KJ, Leferink A, Groen N, Fernandes H, Moroni L, van Blitterswijk C, de Boer J (2012) Endothelial differentiation of mesenchymal stromal cells. PLoS One 7:1–16

    Google Scholar 

  • Randon C, Jacobs B, De Ryck F, Beele H, Vermassen F (2010) Fifteen years of infrapopliteal arterial reconstructions with cryopreserved venous allografts for limb salvage. J Vasc Surg 51:869–877

    Article  PubMed  Google Scholar 

  • Riha GM, Lin PH, Lumsden AB, Yao Q, Chen C (2005) Application of stem cells for vascular tissue engineering. Tissue Eng 11:1535–1552

    Article  CAS  PubMed  Google Scholar 

  • Roh JD, Sawh-Martinez R, Brennan MP, Jay SM, Devine L, Rao DA, Yi T, Mirensky TL, Nalbandian A, Udelsman B (2010) Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci U S A 107:4669–4674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg N, Martinez A, Sawyer PN, Wesolowski SA, Postlethwait RW, Dillon ML Jr (1966) Tanned collagen arterial prosthesis of bovine carotid origin in man. Preliminary studies of enzyme-treated heterografts. Ann Surg 164:247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roufosse CA, Direkze N, Otto W, Wright N (2004) Circulating mesenchymal stem cells. Int J Biochem Cell Biol 36:585–597

    Article  CAS  PubMed  Google Scholar 

  • Ruiz S, Panopoulos AD, Herrerías A, Bissig K-D, Lutz M, Berggren WT, Verma IM, Belmonte JCI (2011) A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity. Curr Biol 21:45–52

    Article  CAS  PubMed  Google Scholar 

  • Sabik JF III, Lytle BW, Blackstone EH, Houghtaling PL, Cosgrove DM (2005) Comparison of saphenous vein and internal thoracic artery graft patency by coronary system. Ann Thorac Surg 79:544–551

    Article  PubMed  Google Scholar 

  • Sadeghi M, Haghdoost AA, Bahrampour A, Dehghani M (2017) Modeling the burden of cardiovascular diseases in Iran from 2005 to 2025: the impact of demographic changes. Iran J Public Health 46:506–5016

    PubMed  PubMed Central  Google Scholar 

  • Sakakibara S, Ishida Y, Hashikawa K, Yamaoka T, Terashi H (2014) Intima/medulla reconstruction and vascular contraction–relaxation recovery for acellular small diameter vessels prepared by hyperosmotic electrolyte solution treatment. J Artif Organs 17:169–177

    Article  CAS  PubMed  Google Scholar 

  • Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28:585–596

    Article  CAS  PubMed  Google Scholar 

  • Samuel R, Daheron L, Liao S, Vardam T, Kamoun WS, Batista A, Buecker C, Schäfer R, Han X, Au P (2013) Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proc Natl Acad Sci U S A 110:12774–12779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A (2016) Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med 4:1–12

    Article  Google Scholar 

  • Seebach C, Henrich D, Kähling C, Wilhelm K, Tami AE, Alini M, Marzi I (2010) Endothelial progenitor cells and mesenchymal stem cells seeded onto β-TCP granules enhance early vascularization and bone healing in a critical-sized bone defect in rats. Tissue Eng Part A 16:1961–1970

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Fukuda K (2015) Methods of induced pluripotent stem cells for clinical application. World J Stem Cells 7:116-125

    Article  PubMed  PubMed Central  Google Scholar 

  • Shell DH IV, Croce MA, Cagiannos C, Jernigan TW, Edwards N, Fabian TC (2005) Comparison of small-intestinal submucosa and expanded polytetrafluoroethylene as a vascular conduit in the presence of gram-positive contamination. Ann Surg 241:995-1001

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugiura T, Matsumura G, Miyamoto S, Miyachi H, Breuer CK, Shinoka T (2018) Tissue-engineered vascular grafts in children with congenital heart disease: intermediate term follow-up. Semin Thorac Cardiovasc Surg 30:175–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundaram S, One J, Siewert J, Teodosescu S, Zhao L, Dimitrievska S, Qian H, Huang AH, Niklason L (2014) Tissue-engineered vascular grafts created from human induced pluripotent stem cells. Stem Cells Transl Med 3:1535–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11:1553–1558

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Tamama K, Sen CK, Wells A (2008) Differentiation of bone marrow mesenchymal stem cells into the smooth muscle lineage by blocking ERK/MAPK signaling pathway. Stem Cells Dev 17:897–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Tobiasch E (2009) Adult human mesenchymal stem cells as source for future tissue engineering. Forschungsspitzen und Spitzenforschung. Springer, pp 329-338

  • Vacanti CA (2006) The history of tissue engineering. J Cell Mol Med 10:569–576

    Article  PubMed  Google Scholar 

  • Vaughan MB, Howard EW, Tomasek JJ (2000) Transforming growth factor-β1 promotes the morphological and functional differentiation of the myofibroblast. Exp Cell Res 257:180–189

    Article  CAS  PubMed  Google Scholar 

  • Vogt PR, Brunner-LaRocca HP, Lachat M, Ruef C, Turina MI (2002) Technical details with the use of cryopreserved arterial allografts for aortic infection: influence on early and midterm mortality. J Vasc Surg 35:80–86

    Article  PubMed  Google Scholar 

  • Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426

    Article  CAS  PubMed  Google Scholar 

  • Walker PJ, Mitchell RS, McFadden PM, James DR, Mehigan JT (1993) Early experience with cryopreserved saphenous vein allografts as a conduit for complex limb-salvage procedures. J Vasc Surg 18:561–569

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Cen L, Yin S, Liu Q, Liu W, Cao Y, Cui L (2010) A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells. Biomaterials 31:621–630

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Hu J, Sorek CE, Chen EY, Ma PX, Yang B (2016) Fabrication of tissue-engineered vascular grafts with stem cells and stem cell-derived vascular cells. Expert Opin Biol Ther 16:317–330

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Qu X, Zhao RC (2012) Clinical applications of mesenchymal stem cells. J Hematol Oncol 5:1–9

    Article  CAS  Google Scholar 

  • Wang Y, Yin P, Bian GL, Huang HY, Shen H, Yang JJ, Yang ZY, Shen ZY (2017) The combination of stem cells and tissue engineering: an advanced strategy for blood vessels regeneration and vascular disease treatment. Stem Cell Res Ther 8:1–8

  • Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400

    Article  CAS  PubMed  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810

    Article  CAS  PubMed  Google Scholar 

  • Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Lam FF-Y, Kang S, Siu C-W, Lee C-N, Tse H-F (2010) Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121:1113–1123

    Article  PubMed  CAS  Google Scholar 

  • Wystrychowski W, McAllister TN, Zagalski K, Dusserre N, Cierpka L, L'heureux N (2014) First human use of an allogeneic tissue-engineered vascular graft for hemodialysis access. J Vasc Surg 60:1353–1357

    Article  PubMed  Google Scholar 

  • Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1:39–49

    Article  CAS  PubMed  Google Scholar 

  • Ye H, Wang Q (2018) Efficient generation of non-integration and feeder-free induced pluripotent stem cells from human peripheral blood cells by Sendai virus. Cell Physiol Biochem 50:1318–1331

    Article  CAS  PubMed  Google Scholar 

  • Yi T, Song SU (2012) Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch Pharm Res 35:213–221

    Article  CAS  PubMed  Google Scholar 

  • Yoder MC (2017) Endothelial stem and progenitor cells (stem cells):(2017 Grover Conference Series). Pulmonary Circulation 8:1–9

    Article  CAS  Google Scholar 

  • Zhang L, Hu J, Athanasiou KA (2009) The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 37:1–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou R, Zhu L, Fu S, Qian Y, Wang D, Wang C (2016) Small diameter blood vessels bioengineered from human adipose-derived stem cells. Sci Rep 6:1–11

    Article  CAS  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Ferdowsi University of Mashhad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simindokht Afra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afra, S., Matin, M.M. Potential of mesenchymal stem cells for bioengineered blood vessels in comparison with other eligible cell sources. Cell Tissue Res 380, 1–13 (2020). https://doi.org/10.1007/s00441-019-03161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03161-0

Keywords

Navigation