Skip to main content
Log in

Interleukin-6 affects pacsin3, ephrinA4 expression and cytoskeletal proteins in differentiating primary skeletal myoblasts through transcriptional and post-transcriptional mechanisms

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Interleukin (IL)-6 is a proinflammatory cytokine released in injured and contracting skeletal muscles. In this study, we examined cellular expression of proteins associated with cytoskeleton organization and cell migration, chosen on the basis of microRNA profiling, in rat primary skeletal muscle cells (RSkMC) treated with IL-6 (1 ng/ml) for 11 days. MiRNA microarray analysis and qRT-PCR revealed increased expression of miR-154-3p and miR-338-3p in muscle cells treated with IL-6. Pacsin3 was downregulated post-transcriptionally by IL-6, but not by IGF-I. Ephrin4A protein was increased both in IL-6- and IGF-I-treated myocytes. IL-6, but not IGF-I, stimulated migratory ability of RSkMC, examined in wound healing assay. Alpha-actinin protein was slightly augmented in RSKMC treated with IL-6, similarly to IGF-I. IL-6, but not IGF-I, upregulated desmin in differentiating RSkMC. IL-6 supplementation caused accumulation of alpha-actinin and desmin in near-nuclear area of muscle cells, which was manifested by increased ratio: mean near-nuclear fluorescence/mean peripheral cytoplasm fluorescence of these proteins. We concluded that IL-6, a known proinflammatory cytokine and a physical activity-associated myokine, acting during differentiation of primary skeletal muscle cells, alters expression of nonmuscle-specific miRNAs. This cytokine causes differential effects on pacsin-3 and ephrinA4, through post-transcriptional inhibition and stimulation, respectively. IL-6-exerted modifications of cytoskeletal proteins in muscle cells include both transcriptional (desmin and dynein heavy chain 5) and post-transcriptional activation (alpha-actinin). Moreover, IL-6 augments near-nuclear distribution of cytoskeletal proteins, alpha-actinin and desmin and promotes migration of myocytes. Such effects suggest that IL-6 plays a role during skeletal muscle regeneration, acting through mechanisms independent of regulation of myogenic program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bartel D (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y, (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological) 57 (1):289–300

    Google Scholar 

  • Błaszczyk M, Gajewska M, Milewska M, Grzelkowska-Kowalczyk K (2017) Insulin-dependent cytoplasmic distribution of Rab4a in mouse adipocytes is inhibited by interleukin-6, -8, and -15. Cell Biol Int 41:457–463

    PubMed  Google Scholar 

  • Brosig M, Ferralli J, Gelman L, Chiquet M, Chiquet-Ehrismann R (2010) Interfering with the connection between the nucleus and the cytoskeleton affects nuclear rotation, mechanotransduction and myogenesis. Int J Biochem Cell Biol 42:1717–1728

    CAS  PubMed  Google Scholar 

  • Chapman MA, Zhang J, Banerjee I, Guo LT, Zhang Z, Shelton GD, Ouyang K, Lieber RL, Chen J (2014) Disruption of both nesprin 1 and desmin results in nuclear anchorage defects and fibrosis in skeletal muscle. Hum Mol Genet 23:5879–5892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JF, Tao Y, Li J, Zhongliang D, Zhen Y, Xiao X, Da-Zhi W (2010) MicroRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 190:867–879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coley WD, Bogdanik L, Vila MC, Yu Q, Van Der Meulen JH, Rayavarapu S, Novak JS, Nearing M, Quinn JL, Saunders A, Dolan C, Andrews W, Lammert C, Austin A, PartridgeTA CGA, Lutz C, Nagaraju K (2016) Effect of genetic background on the dystrophic phenotype in mdx mice. Hum Mol Genet 25:130–145

    CAS  PubMed  Google Scholar 

  • Dietze D, Ramrath S, Ritzeler O, Tennagels N, Hauner H, Eckel J (2004) Inhibitor 휅B kinase is involved in the paracrine crosstalk between human fat and muscle cells. Int J Obes 28:985–992

    CAS  Google Scholar 

  • Eberhart J, Swartz ME, Koblar SA, Pasquale EB, Krull CE (2002) EphA4 constitutes a population-specific guidance cue for motor neurons. Dev Biol 247:89–101

    CAS  PubMed  Google Scholar 

  • Folker ES, Schulman VK, Baylies MK (2014) Translocating myonuclei have distinct leading and lagging edges that require kinesin and dynein. Development 141:355–366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Formigli L, Meacci E, Sassoli C, Squecco R, Nosi D, Chellini F, Naro F, Francini F, Zecchi-Orlandini S (2007) Cytoskeleton/stretch-activated ion channel interaction regulates myogenic differentiation of skeletal myoblasts. J Cell Physiol 211:296–306

    CAS  PubMed  Google Scholar 

  • Gallo G, Letourneau PC (2004) Regulation of growth cone actin filaments by guidance cues. J Neurobiol 58:92–102

    CAS  PubMed  Google Scholar 

  • Gautel M, Djinović-Carugo K (2016) The sarcomeric cytoskeleton: from molecules to motion. J Exp Biol 219:135–145

    PubMed  Google Scholar 

  • Grabiec K, Milewska M, Błaszczyk M, Gajewska M, Grzelkowska-Kowalczyk K (2015) Palmitate exerts opposite effects on proliferation and differentiation of skeletal myoblasts. Cell Biol Int 39:1044–1052

    CAS  PubMed  Google Scholar 

  • Gray SR, Kamolrat T (2011) The effect of exercise induced cytokines on insulin stimulated glucose transport in C2C12 cells. Cytokine 55:221–228

    CAS  PubMed  Google Scholar 

  • Grzelkowska-Kowalczyk K, Wieteska-Skrzeczyńska W (2010) Treatment with TNF-alpha and IFN-gamma alters the activation of Ser/Thr protein kinases and the metabolic response to IGF-I in mouse C2C12 myogenic cells. Cell Mol Biol Lett 15:13–31

    CAS  PubMed  Google Scholar 

  • Grzelkowska-Kowalczyk K, Grabiec K, Tokarska J, Gajewska M, Błaszczyk M, Milewska M (2015a) Insulin-like growth factor-i increases laminin, integrin subunits and metalloprotease ADAM12 in mouse myoblasts. Folia Biol (Krakow) 63:241–247

    Google Scholar 

  • Grzelkowska-Kowalczyk K, Wicik Z, Majewska A, Tokarska J, Grabiec K, Kozłowski M, Milewska M, Błaszczyk M (2015b) Transcriptional regulation of important cellular processes in skeletal myogenesis through interferon-γ. J Interf Cytokine Res 35:89–99

    CAS  Google Scholar 

  • Hansen CG, Nichols BJ (2010) Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol 20:177–186

    CAS  PubMed  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    CAS  PubMed  Google Scholar 

  • Henderson CA, Gomez CG, Novak SM, Mi-Mi L, Gregorio CC (2018) Overview of the muscle cytoskeleton. Compr Physiol 7:891–944

    Google Scholar 

  • Iresjö BM, Svensson J, Ohlsson C, Lundholm K (2013) Liver derived endocrine IGF-I is not sufficient for activation of skeletal muscle protein synthesis following oral feeding. BMC Physiol. https://doi.org/10.1186/1472-6793-13-7

    PubMed  PubMed Central  Google Scholar 

  • Jacobson MD, Burne JF, Raff MC (1994) Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J 13:1899–1910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalantari R, Chiang C-M, Corey DR (2016) Regulation of mammalian transcription and splicing by nuclear RNAi. Nucleic Acids Res 44:524–537

    CAS  PubMed  Google Scholar 

  • Karalaki M, Fili S, Philippou A, Koutsilieris M (2009) Muscle regeneration: cellular and molecular events. In Vivo 23:779–796

    CAS  PubMed  Google Scholar 

  • Krauss RS (2010) Regulation of promyogenic signal transduction by cell-cell contact and adhesion. Exp Cell Res 316:3042–3049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee FX, Houweling PJ, North KN, Quinlan KG (2016) How does α-actinin-3 deficiency alter muscle function? Mechanistic insights into ACTN3, the 'gene for speed'. Biochim Biophys Acta 1863:686–693

    CAS  PubMed  Google Scholar 

  • Li J, Johnson SE (2013) Ephrin-A5 promotes bovine muscle progenitor cell migration before mitotic activation1. J Anim Sci 91:1086–1093

    CAS  PubMed  Google Scholar 

  • Li K, Pu C, Huang X, Liu J, Mao Y, Lu X (2014) Proteomic study of sporadic inclusion body myositis. Proteome Sci 12:45

    PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analyzis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    CAS  Google Scholar 

  • Majewska A, Domoradzki T, Grzelkowska-Kowalczyk K (2019) Transcriptomic profiling during myogenesis. In: Rønning SB (ed) Myogenesis. Methods and Protocols. Methods Mol Biol, 1889. Springer, New York, pp 127–168

    Google Scholar 

  • McDaneld TG, Smith T, Doumit ME, Miles JR, Coutinho LL, Sonstegard TS, Matukumalli LK, Nonneman DJ, Wiedmann RT (2009) MicroRNA transcriptome profiles during swine skeletal muscle development. BMC Genomics. https://doi.org/10.1186/1471-2164-10-77

    PubMed  PubMed Central  Google Scholar 

  • Milewska M, Domoradzki T, Majewska A, Błaszczyk M, Gajewska M, Hulanicka M, Grzelkowska-Kowalczyk K (2019a) Interleukin-6 modifies the expression profile of microRNA in rat primary skeletal muscle cells. Gene Expression Omnibus Data Repository //www.ncbi.nlm.nih.gov/geo/query/acc.cgi/, accession no: GSE126237

  • Milewska M, Domoradzki T, Majewska A, Błaszczyk M, Gajewska M, Hulanicka M, Ciecierska A, Grzelkowska-Kowalczyk K (2019b) Interleukin-8 enhances myocilin expression, Akt-FoxO3 signaling and myogenic differentiation in rat skeletal muscle cells. J Cell Physiol 2019:1–16. https://doi.org/10.1002/jcp.28568

    Article  CAS  Google Scholar 

  • Minami M, Koyama T, Wakayama Y, Fukuhara S, Mochizuki N (2011) EphrinA/EphA signal facilitates insulin-like growth factor-I-induced myogenic differentiation through suppression of the Ras/extracellular signal-regulated kinase 1/2 cascade in myoblast cell lines. Mol Biol Cell 18:3508–3519

    Google Scholar 

  • Modregger J, Ritter B, Witter B, Paulsson M, Plomann M (2000) All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J Cell Sci 113:4511–4521

    CAS  PubMed  Google Scholar 

  • Nielsen S, Åkerström T, Rinnov A, Yfanti C, Scheele C, Pedersen BK, Laye MJ (2014) The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS One 9:e87308. https://doi.org/10.1371/journal.pone.0087308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nystrom G, Pruznak A, Huber D, Frost RA, Lang CH (2009) Local insulin-like growth factor I prevents sepsis-induced muscle atrophy. Metabolism 58:787–797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10:165–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen BK, Febraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406

    CAS  PubMed  Google Scholar 

  • Peltier HJ, Latham GJ (2008) Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14:844–852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quinlan KG, Seto JT, Turner N, Vandebrouck A, Floetenmeyer M, Macarthur DG, Raftery JM, Lek M, Yang N, Parton RG, Cooney GJ, North KN (2010) Alpha-actinin-3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle. Hum Mol Genet 19:1335–1346

    CAS  PubMed  Google Scholar 

  • Raschke S, Eckel J (2013) Adipo-myokines: two sides of the same coin – mediators of inflammation and mediators of exercise. Mediat Inflamm 2013:16. https://doi.org/10.1155/2013/320724

    Article  CAS  Google Scholar 

  • Rodgers BD (2005) Insulin-like growth factor-I downregulates embryonic myosin heavy chain (eMYHC) in myoblast nuclei. Growth Hormon IGF Res 15:377–383

    CAS  Google Scholar 

  • Rosendal L, Søgaard K, Kjær M, Sjøgaard G, Langberg H, Kristiansen J (2005) Increase in interstitial interleukin-6 of human skeletal muscle with repetitive low-force exercise. J Appl Physiol 98:477–481

    CAS  PubMed  Google Scholar 

  • Rotter V, Nagaev I, Smith U (2003) Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem 278:45777–45784

    CAS  PubMed  Google Scholar 

  • Sasi Kumar K, Ramadhas A, Nayak SC, Kaniyappan S, Dayma K, Radha V (2015) C3G (RapGEF1), a regulator of actin dynamics promotes survival and myogenic differentiation of mouse mesenchymal cells. Biochim Biophys Acta 1853:2629–2639

    CAS  PubMed  Google Scholar 

  • Sauer E, Babion I, Madea B, Courts C (2014) An evidence based strategy for normalization of quantitative PCR data from miRNA expression analysis in forensic organ tissue identification. Forensic Sci Int Genet 13:217–223

    CAS  PubMed  Google Scholar 

  • Sela I, Milman Krentsis I, Shlomai Z, Sadeh M, Dabby R, Argov Z, Ben-Bassat H, Mitrani-Rosenbaum S (2011) The proteomic profile of hereditary inclusion body myopathy. PLoS One 6(1):e16334. https://doi.org/10.1371/journal.pone.0016334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senn JJ, Klover PJ, Nowak IA, Mooney RA (2002) Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51:3391–3399

    CAS  PubMed  Google Scholar 

  • Shah SB, Davis J, Weisleder N, Kostavassili I, McCulloch AD, Ralston E, Capetanaki Y, Lieber RL (2004) Structural and functional roles of desmin in mouse skeletal muscle during passive deformation. Biophys J 86:2993–3008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel AL, Atchison K, Fisher KE, Davis GE, Cornelison DD (2009) 3-D timelapse analysis of muscle satellite cell motility. Stem Cells 27:2527–2538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sjöblom B, Salmazo A, Djinović-Carugo K (2008) Alpha-actinin structure and regulation. Cell Mol Life Sci 65:2688–2701

    PubMed  Google Scholar 

  • Stark DA, Karvas RM, Siegel AL, Cornelison DD (2011) Eph/ephrin interactions modulate muscle satellite cell motility and patterning. Development 138:5279–5289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swartz ME, Eberhart J, Pasquale EB, Krull CE (2001) EphA4/ephrin-A5 interactions in muscle precursor cell migration in the avian forelimb. Development 128:4669–4680

    CAS  PubMed  Google Scholar 

  • Takei K, Slepnev VI, Haucke V, De Camilli P (1999) Functional partnership between amphiphysin and dynamin in clathrin-medited endocytosis. Nat Cell Biol 1:33–39

    CAS  PubMed  Google Scholar 

  • Tatsumi R (2010) Mechano-biology of skeletal muscle hypertrophy and regeneration: possible mechanism of stretch-induced activation of resident myogenic stem cells. Anim Sci J 81:11–20

    CAS  PubMed  Google Scholar 

  • Tidball JG (2011) Mechanisms of muscle injury, repair, and regeneration. Compr Physiol 1:2029–2062

    PubMed  Google Scholar 

  • Trayhurn P, Drevon CA, Eckel J (2011) Secreted proteins from adipose tissue and skeletal muscle - adipokines, myokines and adipose/muscle cross-talk. Arch Physiol Biochem 117:47–56

    CAS  PubMed  Google Scholar 

  • Unger A, Beckendorf L, Böhme P, Kley R, von Frieling-Salewsky M, Lochmüller H, Schröder R, Fürst DO, Vorgerd M, Linke WA (2017) Translocation of molecular chaperones to the titin springs is common in skeletal myopathy patients and affects sarcomere function. Acta Neuropathol Commun 5:72

    PubMed  PubMed Central  Google Scholar 

  • Van Hall G, Steensberg A, Sacchetti M, Fischer C, Keller C, Schjerling P, Hiscock N, Møller K, Saltin B, Febbraio MA, Pedersen BK (2003) Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab 88:3005–3010

    PubMed  Google Scholar 

  • White J, Barro MV, Makarenkova HP, Sanger JW, Sanger JM (2014) Localization of sarcomeric proteins during myofibril assembly in cultured mouse primary skeletal myotubes. Anat Rec (Hoboken) 297:1571–1584

    CAS  Google Scholar 

  • Whiteley G, Collins RF, Kitmitto A (2012) Characterization of the molecular architecture of human caveolin-3 and interaction with the skeletal muscle ryanodine receptor. J Biol Chem 287:40302–40316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wieteska-Skrzeczyńska W, Grzelkowska-Kowalczyk K, Rejmak E (2011) Growth factor and cytokine interactions in myogenesis. Part I. The effect of TNF-alpha and IFN-gamma on IGF-I-dependent differentiation in mouse C2C12 myogenic cells. Pol J Vet Sci 14:417–424

    PubMed  Google Scholar 

  • Wilhelmsen K, Litjens SHM, Kuikman I, Tshimbalanga N, Janssen H, Van den Bout I, Raymond K, Sonnenberg A (2005) Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J Cell Biol 171:799–810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams AH, Liu N, van Rooij E, Olson EN (2009) MicroRNA control of muscle development and disease. Curr Opin Cell Biol 21:461–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada T, Steinz MM, Kenne E, Lanner JT (2017) Muscle weakness in rheumatoid arthritis: the role of Ca2+ and free radical signaling. EBioMedicine 23:12–19

    PubMed  PubMed Central  Google Scholar 

  • Yang W, Hu P (2018) Skeletal muscle regeneration is modulated by inflammation. J Orthopaed Trans 13:25e32

    Google Scholar 

  • Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Science Centre Poland (grant no: 2013/09/B/NZ/00115).

Author information

Authors and Affiliations

Authors

Contributions

M.Milewska – performing experiments, microRNA qPCR and immunoblotting analyses, T.Domoradzki – qPCR analyses, wound healing assay, A.Majewska – microRNA microarray analyses, microarray data deposition at GEO data repository, M.Błaszczyk – MTT tests, phase-contrast microscopy analyses, M.Gajewska – confocal microscopy analyses, M.Hulanicka – bioinformatic analyses, K.Grzelkowska-Kowalczyk – project supervision, research design, figures and manuscript preparation. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Katarzyna Grzelkowska-Kowalczyk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

Gene ontology groups (ten-top list) in terms of protein classes, enriched in potential targets of miRNAs with expression modified by IL-6 treatment (1 ng/ml, 11 days of exposure) in rat primary muscle cells. The potential target genes were identified using TargetScan database and ontological analysis was performed using Panther Classification System (PNG 111 kb)

High Resolution Image (TIF 4463 kb)

Fig. S2

Gene ontology groups in terms of molecular function, enriched in potential targets of miRNAs with expression modified by IL-6 treatment (1 ng/ml, 11 days of exposure) in rat primary muscle cells. The potential target genes were identified using TargetScan database and ontological analysis was performed using Panther Classification System (PNG 101 kb)

High Resolution Image (TIF 4573 kb)

Fig. S3

Gene ontology groups (ten-top list) in terms of involvement in biological processes, enriched in potential targets of miRNAs with expression modified by IL-6 treatment (1 ng/ml, 11 days of exposure) in rat primary muscle cells. The potential target genes were identified using TargetScan database and ontological analysis was performed using Panther Classification System (PNG 146 kb)

High Resolution Image (TIF 408 kb)

Table S1

List of potential target genes of miR-154-3p and miR-338-3p. Target genes for two miRNA species separately were identified using TargetScan database. Then, two lists of genes were combined, repeating inputs and inputs indicated as „uncharacterized protein”, were removed and remained set of genes was further analyzed using Panther Classification System. These genes are listed in alphabetical order and their functional classification to GO categories: Panther Family/Subfamily and Panther Protein Class are presented (XLSX 408 kb)

Table S2

Lists of genes which contribute to selected gene ontology categories associated with cytoskeleton organization and cell migration. Presented sets of genes were retrieved during ontological analysis in Panther Classification System. Subsequent sheets include: Structural constituent of cytoskeleton (GO:0005200), Cellular component organization or biogenesis (GO:0071840), Locomotion (GO:0040011) Actin family cytoskeletal protein (GO Protein Class: PC00041), Microtubule family cytoskeletal protein (GO Protein Class: PC00157) Intermediate filament binding protein (GO Protein Class: PC00129). (XLSX 72 kb)

Table S3

Panther statistical overrepresentation test of potential targets for miR-154-3p and miR-338-3p. The results are sorted by Fold enrichment value of GO categories and only records for FDR (False Discovery Rate) P<0.05 are presented (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milewska, M., Domoradzki, T., Majewska, A. et al. Interleukin-6 affects pacsin3, ephrinA4 expression and cytoskeletal proteins in differentiating primary skeletal myoblasts through transcriptional and post-transcriptional mechanisms. Cell Tissue Res 380, 155–172 (2020). https://doi.org/10.1007/s00441-019-03133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03133-4

Keywords

Navigation