Changes in components of the neurovascular unit in the retina in a rat model of retinopathy of prematurity

Abstract

An impairment of cellular interactions between the elements of the neurovascular unit contributes to the onset and/or progression of retinal diseases. The present study aims to examine how elements of the neurovascular unit are altered in a rat model of retinopathy of prematurity (ROP). Neonatal rats were treated subcutaneously with the vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor KRN633 (10 mg/kg) on postnatal day (P) 7 and P8 to induce ROP. Morphological assessments were performed of blood vessels, astrocytes and neuronal cells in the retina. Aggressive angiogenesis, tortuous arteries and enlarged veins were observed in the retinal vasculature of KRN633-treated (ROP) rats from P14 to P28, compared to age-matched control (vehicle-treated) animals. Morphological abnormalities in the retinal vasculature showed a tendency toward spontaneous recovery from P28 to P35 in ROP rats. Immunofluorescence staining for glial fibrillary acidic protein and Pax2 (astrocyte markers) revealed that morphological changes to and a reduction in the number of astrocytes occurred in ROP rats. The developmental cell death was slightly accelerated in ROP rats; however, no visible changes in the morphology of retinal layers were observed on P35. The abnormalities in astrocytes might contribute, at least in part, to the formation of abnormal retinal blood vessels and the pathogenesis of ROP.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Akula JD, Mocko JA, Benador IY, Hansen RM, Favazza TL, Vyhovsky TC, Fulton AB (2008) The neurovascular relation in oxygen-induced retinopathy. Mol Vis 14:2499–2508

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Akula JD, Favazza TL, Mocko JA, Benador IY, Asturias AL, Kleinman MS, Hansen RM, Fulton AB (2010) The anatomy of the rat eye with oxygen-induced retinopathy. Doc Ophthalmol 120:41–50

    Article  Google Scholar 

  3. Asano D, Nakahara T, Mori A, Sakamoto K, Ishii K (2015) Regression of retinal capillaries following N-methyl-D-aspartate-induced neurotoxicity in the neonatal rat retina. J Neurosci Res 93:380–390

    CAS  Article  Google Scholar 

  4. Barnett JM, Yanni SE, Penn JS (2010) The development of the rat model of retinopathy of prematurity. Doc Ophthalmol 120:3–12

    Article  Google Scholar 

  5. Bucher F, Stahl A, Agostini HT, Martin G (2013) Hyperoxia causes reduced density of retinal astrocytes in the central avascular zone in the mouse model of oxygen-induced retinopathy. Mol Cell Neurosci 56:225–233

    CAS  Article  Google Scholar 

  6. Chan-Ling T, Stone J (1992) Degeneration of astrocytes in feline retinopathy of prematurity causes failure of the blood-retinal barrier. Invest Ophthalmol Vis Sci 33:2148–2159

    CAS  PubMed  Google Scholar 

  7. Dorrell MI, Aguilar E, Friedlander M (2002) Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci 43:3500–3510

    PubMed  Google Scholar 

  8. Downie LE, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL (2007) Neuronal and glial cell changes are determined by retinal vascularization in retinopathy of prematurity. J Comp Neurol 504:404–417

    CAS  Article  Google Scholar 

  9. Downie LE, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL (2008) AT1 receptor inhibition prevents astrocyte degeneration and restores vascular growth in oxygen-induced retinopathy. Glia 56:1076–1090

    Article  Google Scholar 

  10. Fletcher EL, Downie LE, Hatzopoulos K, Vessey KA, Ward MM, Chow CL, Pianta MJ, Vingrys AJ, Kalloniatis M, Wilkinson-Berka JL (2010) The significance of neuronal and glial cell changes in the rat retina during oxygen-induced retinopathy. Doc Ophthalmol 120:67–86

    Article  Google Scholar 

  11. Foxton RH, Finkelstein A, Vijay S, Dahlmann-Noor A, Khaw PT, Morgan JE, Shima DT, Ng YS (2013) VEGF-A is necessary and sufficient for retinal neuroprotection in models of experimental glaucoma. Am J Pathol 182:1379–1390

    CAS  Article  Google Scholar 

  12. Fruttiger M, Calver AR, Krüger WH, Mudhar HS, Michalovich D, Takakura N, Nishikawa S, Richardson WD (1996) PDGF mediates a neuron-astrocyte interaction in the developing retina. Neuron 17:1117–1131

    CAS  Article  Google Scholar 

  13. Harder BC, von Baltz S, Jonas JB, Schlichtenbrede FC (2011) Intravitreal bevacizumab for retinopathy of prematurity. J Ocul Pharmacol Ther 27:623–627

    CAS  Article  Google Scholar 

  14. Hartnett ME, Martiniuk D, Byfield G, Geisen P, Zeng G, Bautch VL (2008) Neutralizing VEGF decreases tortuosity and alters endothelial cell division orientation in arterioles and veins in a rat model of ROP: relevance to plus disease. Invest Ophthalmol Vis Sci 49:3107–3114

    Article  Google Scholar 

  15. Hellström A, Smith LE, Dammann O (2013) Retinopathy of prematurity. Lancet 382:1445–1457

    Article  Google Scholar 

  16. Kur J, Newman EA, Chan-Ling T (2012) Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res 31:377–406

    CAS  Article  Google Scholar 

  17. Liu K, Akula JD, Falk C, Hansen RM, Fulton AB (2006) The retinal vasculature and function of the neural retina in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 47:2639–2647

    Article  Google Scholar 

  18. Liu CH, Wang Z, Sun Y, Chen J (2017) Animal models of ocular angiogenesis: from development to pathologies. FASEB J 31:4665–4681

    CAS  Article  Google Scholar 

  19. Lutty GA, McLeod DS, Bhutto I, Wiegand SJ (2011) Effect of VEGF trap on normal retinal vascular development and oxygen-induced retinopathy in the dog. Invest Ophthalmol Vis Sci 52:4039–4047

    CAS  Article  Google Scholar 

  20. Metea MR, Newman EA (2006) Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 26:2862–2870

    CAS  Article  Google Scholar 

  21. Morita A, Ushikubo H, Mori A, Arima S, Sakamoto K, Nagamitsu T, Ishii K, Nakahara T (2017) A delay in vascularization induces abnormal astrocyte proliferation and migration in the mouse retina. Dev Dyn 246:186–200

    CAS  Article  Google Scholar 

  22. Nakamura K, Yamamoto A, Kamishohara M, Takahashi K, Taguchi E, Miura T, Kubo K, Shibuya M, Isoe T (2004) KRN633: a selective inhibitor of vascular endothelial growth factor receptor-2 tyrosine kinase that suppresses tumor angiogenesis and growth. Mol Cancer Ther 3:1639–1649

    CAS  PubMed  Google Scholar 

  23. Nakano A, Nakahara T, Mori A, Ushikubo H, Sakamoto K, Ishii K (2016) Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats. Exp Eye Res 143:120–131

    CAS  Article  Google Scholar 

  24. Nakano A, Asano D, Kondo R, Mori A, Arima S, Ushikubo H, Sakamoto K, Nagamitsu T, Ishii K, Nakahara T (2018) Retinal neuronal cell loss prevents abnormal retinal vascular growth in a rat model of retinopathy of prematurity. Exp Eye Res 168:115–127

    CAS  Article  Google Scholar 

  25. Nishijima K, Ng YS, Zhong L, Bradley J, Schubert W, Jo N, Akita J, Samuelsson SJ, Robinson GS, Adamis AP, Shima DT (2007) Vascular endothelial growth factor-a is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 171:53–67

    CAS  Article  Google Scholar 

  26. Okabe K, Kobayashi S, Yamada T, Kurihara T, Tai-Nagara I, Miyamoto T, Mukouyama YS, Sato TN, Suda T, Ema M, Kubota Y (2014) Neurons limit angiogenesis by titrating VEGF in retina. Cell 159:584–596

    CAS  Article  Google Scholar 

  27. O'Sullivan ML, Puñal VM, Kerstein PC, Brzezinski JA 4th, Glaser T, Wright KM, Kay JN (2017) Astrocytes follow ganglion cell axons to establish an angiogenic template during retinal development. Glia 65:1697–1716

    Article  Google Scholar 

  28. Saint-Geniez M, D'Amore PA (2004) Development and pathology of the hyaloid, choroidal and retinal vasculature. Int J Dev Biol 48:1045–1058

    Article  Google Scholar 

  29. Sapieha P, Sirinyan M, Hamel D, Zaniolo K, Joyal JS, Cho JH, Honoré JC, Kermorvant-Duchemin E, Varma DR, Tremblay S, Leduc M, Rihakova L, Hardy P, Klein WH, Mu X, Mamer O, Lachapelle P, Di Polo A, Beauséjour C andelfinger G, Mitchell G, Sennlaub F, Chemtob S (2008) The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat Med 14:1067–1076

    CAS  Article  Google Scholar 

  30. Smith LE, Wesolowski E, McLellan A, Kostyk SK, D'Amato R, Sullivan R, D'Amore PA (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111

    CAS  PubMed  Google Scholar 

  31. Smith LE, Hard AL, Hellström A (2013) The biology of retinopathy of prematurity: how knowledge of pathogenesis guides treatment. Clin Perinatol 40:201–214

    Article  Google Scholar 

  32. Stahl A, Connor KM, Sapieha P, Chen J, Dennison RJ, Krah NM, Seaward MR, Willett KL, Aderman CM, Guerin KI, Hua J, Lofqvist C, Hellstrom A, Smith LE (2010) The mouse retina as an angiogenesis model. Invest Ophthalmol Vis Sci 51:2813–2826

    Article  Google Scholar 

  33. Stone J, Itin A, Alon T, Pe'er J, Gnessin H, Chan-Ling T, Keshet E (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15:4738–4747

    CAS  Article  Google Scholar 

  34. Tao C, Zhang X (2014) Development of astrocytes in the vertebrate eye. Dev Dyn 243:1501–1510

    Article  Google Scholar 

  35. Ueda K, Nakahara T, Hoshino M, Mori A, Sakamoto K, Ishii K (2010) Retinal blood vessels are damaged in a rat model of NMDA-induced retinal degeneration. Neurosci Lett 485:55–59

    CAS  Article  Google Scholar 

  36. Yao H, Wang T, Deng J, Liu D, Li X, Deng J (2014) The development of blood-retinal barrier during the interaction of astrocytes with vascular wall cells. Neural Regen Res 9:1047–1054

    Article  Google Scholar 

Download references

Funding

This study was supported by JSPS KAKENHI (Grant Number: 26460103, T.N.) and MEXT KAKENHI (Grant Number: 25122712, T.N.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Nakahara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This study was approved by the Institutional Animal Care and Use Committee for Kitasato University (approval number: 17-19). The use of animals in this study was in accordance with institutional guidelines and in compliance with the Association for Research in Vision and Ophthalmology Statement.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakano, A., Kondo, R., Kaneko, Y. et al. Changes in components of the neurovascular unit in the retina in a rat model of retinopathy of prematurity. Cell Tissue Res 379, 473–486 (2020). https://doi.org/10.1007/s00441-019-03112-9

Download citation

Keywords

  • Astrocyte
  • Endothelial cell
  • Neuronal cell
  • Vascular endothelial growth factor
  • Vascular endothelial growth factor receptor tyrosine kinase inhibitor