Skip to main content

Advertisement

Log in

The amazing complexity of insect midgut cells: types, peculiarities, and functions

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The insect midgut epithelium represents an interface between the internal and the external environment and it is the almost unique epithelial tissue by which these arthropods acquire nutrients. This epithelium is indeed able to produce digestive enzymes and to support vectorial transport of small organic nutrients, ions, and water. Moreover, it plays a key role in the defense against pathogenic microorganisms and in shaping gut microbiota. Another important midgut function is the ability to produce signaling molecules that regulate its own physiology and the activity of other organs. The two main mature cell types present in the midgut of all insects, i.e., columnar and endocrine cells, are responsible for these functions. In addition, stem cells, located at the base of the midgut epithelium, ensure the growth and renewal of the midgut during development and after injury. In insects belonging to specific orders, midgut physiology is deeply conditioned by the presence of unique cell types, i.e., goblet and copper cells, which confer peculiar features to this organ. This review reports current knowledge on the cells that form the insect midgut epithelium, focusing attention on their morphological and functional features. Notwithstanding the apparent structural simplicity of this organ, the properties of the cells make the midgut a key player in insect development and homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amcheslavsky A, Song W, Li Q, Nie Y, Bragatto I, Ferrandon D, Perrimon N, Ip YT (2014) Enteroendocrine cells support intestinal stem-cell-mediated homeostasis in Drosophila. Cell Rep 9:32–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andriès JC, Tramu G (1985) Ultrastructural and immunohistochemical study of endocrine cells in the midgut of the cockroach Blaberus craniifer (Insecta, Dictyoptera). Cell Tissue Res 240:323–332

    Article  Google Scholar 

  • Azevedo DO, Neves CA, dos Santos Mallet JR, Monte Gonçalves TC, Zanuncio JC, Serrão JE (2009) Notes on midgut ultrastructure of Cimex hemipterus (Hemiptera: Cimicidae). J Med Entomol 46:435–441

    Article  PubMed  Google Scholar 

  • Azuma M, Harvey WR, Wieczorek H (1995) Stoichiometry of K+/H+ antiport helps to explain extracellular pH 11 in a model epithelium. FEBS Lett 361:153–156

    Article  CAS  PubMed  Google Scholar 

  • Baines D, Brownwright A, Schwartz JL (1994) Establishment of primary and continuous cultures of epithelial cells from larval lepidopteran midguts. J Insect Physiol 40:347–357

    Article  Google Scholar 

  • Baldwin KM, Hakim RS (1987) Change of form of septate and gap junctions during development of the insect midgut. Tissue Cell 19:549–558

    Article  CAS  PubMed  Google Scholar 

  • Baldwin KM, Hakim R (1991) Growth and differentiation of the larval midgut epithelium during molting in the moth, Manduca sexta. Tissue Cell 23:411–422

    Article  CAS  PubMed  Google Scholar 

  • Baton LA, Ranford-Cartwright LC (2007) Morphological evidence for proliferative regeneration of the Anopheles stephensi midgut epithelium following Plasmodium falciparum ookinete invasion. J Invertebr Pathol 96:244–254

    Article  CAS  PubMed  Google Scholar 

  • Billingsley PF (1990) The midgut ultrastructure of hematophagous insects. Annu Rev Entomol 35:219–248

    Article  Google Scholar 

  • Billingsley PF, Lehane MJ (1996) Structure and ultrastructure of the insect midgut. In: Lehane MJ, Billingsley PF (eds) Biology of the insect midgut. Chapman & Hall, London, pp 3–30

    Chapter  Google Scholar 

  • Biteau B, Hochmuth CE, Jasper H (2008) JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3:442–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonelli M, Bruno D, Caccia S, Sgambetterra G, Cappellozza S, Jucker C, Tettamanti G, Casartelli M (2019) Structural and functional characterization of Hermetia illucens larval midgut. Front Physiol 10:204. https://doi.org/10.3389/fphys.2019.00204

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonfanti P, Colombo A, Heintzelman MB, Mooseker MS, Camatini M (1992) The molecular architecture of an insect midgut brush border cytoskeleton. Eur J Cell Biol 57:298–307

    CAS  PubMed  Google Scholar 

  • Bonfini A, Liu X, Buchon N (2016) From pathogens to microbiota: how Drosophila intestinal stem cells react to gut microbes. Dev Comp Immunol 64:22–38. https://doi.org/10.1016/j.dci.2016.02.008

    Article  CAS  PubMed  Google Scholar 

  • Bonning BC, Chougule NP (2014) Delivery of intrahemocoelic peptides for insect pest management. Trends Biotechnol 32:91–98

    Article  CAS  PubMed  Google Scholar 

  • Broderick NA (2016) Friend, foe or food? Recognition and the role of antimicrobial peptides in gut immunity and Drosophila-microbe interactions. Philos Trans R Soc B 371:20150295. https://doi.org/10.1098/rstb.2015.0295

    Article  CAS  Google Scholar 

  • Broderick NA, Buchon N, Lemaitre B (2014) Microbiota-induced changes in Drosophila melanogaster host gene expression and gut morphology. mBio 5:e01117–e01114. https://doi.org/10.1128/mBio.01117-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno D, Bonelli M, De Filippis F, Di Lelio I, Tettamanti G, Casartelli M, Ercolini D, Caccia S (2019a) The intestinal microbiota of Hemetia illucens larvae is affected by diet and shows a diverse composition in different midgut regions. Appl Environ Microbiol 85:e1864–e1818. https://doi.org/10.1128/AEM.01864-18

    Article  Google Scholar 

  • Bruno D, Bonelli M, Cadamuro AG, Reguzzoni M, Grimaldi A, Casartelli M, Tettamanti G (2019b) The digestive system of the adult Hermetia illucens (Diptera: Stratiomyidae): morphological features and functional properties. Cell Tissue Res in press. https://doi.org/10.1007/s00441-019-03025-7

  • Buchon N, Osman D (2015) All for one and one for all: regionalization of the Drosophila intestine. Insect Biochem Mol Biol 67:2–8

    Article  CAS  PubMed  Google Scholar 

  • Buchon N, Broderick NA, Lemaitre B (2013a) Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat Rev Microbiol 11:615–626

    Article  CAS  PubMed  Google Scholar 

  • Buchon N, Osman D, David FPA, Fang HY, Boquete JP, Deplancke B, Lemaitre B (2013b) Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep 3:1725–1738

    Article  CAS  PubMed  Google Scholar 

  • Caccia S, Leonardi MG, Casartelli M, Grimaldi A, de Eguileor PF, Giordana B (2005) Nutrient absorption by Aphidius ervi larvae. J Insect Physiol 51:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Caccia S, Casartelli M, Grimaldi A, Losa E, de Eguileor M, Pennacchio F, Giordana B (2007) Unexpected similarity of intestinal sugar absorption by SGLT1 and apical GLUT2 in an insect (Aphidius ervi, Hymenoptera) and mammals. Am J Physiol Regul Integr Comp Physiol 292:R2284–R2291

    Article  CAS  PubMed  Google Scholar 

  • Casartelli M, Leonardi MG, Fiandra L, Parenti P, Giordana B (2001) Multiple transport pathways for dibasic amino acids in the larval midgut of the silkworm Bombyx mori. Insect Biochem Mol Biol 31:621–632

    Article  CAS  PubMed  Google Scholar 

  • Casartelli M, Corti P, Cermenati G, Grimaldi A, Fiandra L, Santo N, Pennacchio F, Giordana B (2005) Absorption of albumin by the midgut of a lepidopteran larva. J Insect Physiol 51:933–940

    Article  CAS  PubMed  Google Scholar 

  • Casartelli M, Corti P, Giovanna Leonardi M, Fiandra L, Burlini N, Pennacchio F, Giordana B (2007) Absorption of horseradish peroxidase in Bombyx mori larval midgut. J Insect Physiol 53:517–525

    Article  CAS  PubMed  Google Scholar 

  • Casartelli M, Cermenati G, Rodighiero S, Pennacchio F, Giordana B (2008) A megalin-like receptor is involved in protein endocytosis in the midgut of an insect (Bombyx mori, Lepidoptera). Am J Physiol Regul Integr Comp Physiol 295:R1290–R1300

    Article  CAS  PubMed  Google Scholar 

  • Castagnola A, Jurat-Fuentes JL (2016) Intestinal regeneration as an insect resistance mechanism to entomopathogenic bacteria. Curr Opin Insect Sci 15:104–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Cermenati G, Terracciano I, Castelli I, Giordana B, Rao R, Pennacchio F, Casartelli M (2011) The CPP Tat enhances eGFP cell internalization and transepithelial transport by the larval midgut of Bombyx mori (Lepidoptera, Bombycidae). J Insect Physiol 57:1689–1697

    Article  CAS  PubMed  Google Scholar 

  • Chapman RF (2013) The insects: structure and function. Simpson SJ, Douglas AE (eds) Cambridge University Press, Cambridge

  • Chen J, Kim S, Kwon JY (2016) A systematic analysis of Drosophila regulatory peptide expression in enteroendocrine cells. Mol Cells 39:358–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chng WB, Bou Sleiman MS, Schupfer F, Lemaitre B (2014) Transforming growth factor β/activin signaling functions as a sugar-sensing feedback loop to regulate digestive enzyme expression. Cell Rep 9:336–348

    Article  CAS  PubMed  Google Scholar 

  • Cioffi M (1979) The morphology and fine structure of the larval midgut of a moth (Manduca sexta) in relation to active ion transport. Tissue Cell 11:467–479

    Article  CAS  PubMed  Google Scholar 

  • Cioffi M (1984) Comparative ultrastructure of arthropod transporting epithelia. Amer Zool 24:139–156

    Article  Google Scholar 

  • Clark TM (1999) Evolution and adaptive significance of larval midgut alkalinization in the insect superorder mecopterida. J Chem Ecol 25:1945–1960

    Article  CAS  Google Scholar 

  • Clem RJ, Passarelli AL (2013) Baculoviruses: sophisticated pathogens of insects. PLoS Pathog 9(11):e1003729. https://doi.org/10.1371/journal.ppat.1003729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clissold FJ, Tedder BJ, Conigrave AD, Simpson SJ (2010) The gastrointestinal tract as a nutrient-balancing organ. Proc Biol Sci 277:1751–1759

    Article  PubMed  PubMed Central  Google Scholar 

  • Colombani J, Bianchini L, Layalle S, Pondeville E, DauphinVillemant C, Antoniewski C, Carré C, Noselli S, Léopold P (2005) Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science 310:667–670

    Article  CAS  PubMed  Google Scholar 

  • Cotter K, Stransky L, McGuire C, Forgac M (2015) Recent insights into the structure, regulation, and function of the V-ATPases. Trends Biochem Sci 40:611–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Eguileor M, Grimaldi A, Tettamanti G, Valvassori R, Leonardi MG, Giordana B, Tremblay E, Digilio MG, Pennacchio F (2001) Larval anatomy and structure of absorbing epithelia in the aphid parasitoid Aphidius ervi Haliday (Hymenoptera, Braconidae). Arthropod Struct Dev 30:27–37

    Article  PubMed  Google Scholar 

  • de Sousa G, Conte H (2013) Midgut morphophysiology in Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae). Micron 51:1–8

    Article  PubMed  Google Scholar 

  • Delanoue R, Slaidina M, Léopold P (2010) The steroid hormone ecdysone controls systemic growth by repressing dMyc function in Drosophila fat cells. Dev Cell 18:1012–1102

    Article  CAS  PubMed  Google Scholar 

  • Docampo R (2016) The origin and evolution of the acidocalcisome and its interactions with other organelles. Mol Biochem Parasitol 209:3–9

    Article  CAS  PubMed  Google Scholar 

  • Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34

    Article  CAS  PubMed  Google Scholar 

  • Dow JAT (1986) Insect midgut function. Adv Insect Physiol 19:187–328

    Article  CAS  Google Scholar 

  • Dow JAT (1992) pH gradients in lepidopteran midgut. J Exp Biol 172:355–375

    CAS  PubMed  Google Scholar 

  • Dubovskiy IM, Grizanova EV, Whitten MM, Mukherjee K, Greig C, Alikina T, Kabilov M, Vilcinskas A, Glupov VV, Butt TM (2016) Immuno-physiological adaptations confer wax moth Galleria mellonella resistance to Bacillus thuringiensis. Virulence 7:860–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubreuil RR (2004) Copper cells and stomach acid secretion in the Drosophila midgut. Int J Biochem Cell Biol 36:742–752

    Article  CAS  Google Scholar 

  • Dubreuil RR, Frankel J, Wang P, Howrylak J, Kappil M, Grushko T (1998) Mutations of α spectrin and labial block cuprophilic cell differentiation and acid secretion in the middle midgut of Drosophila larvae. Dev Biol 194:1–11

    Article  CAS  PubMed  Google Scholar 

  • Dubreuil RR, Grushko T, Baumann O (2001) Differential effects of a labial mutation on the development, structure, and function of stomach acid secreting cells in Drosophila larvae and adults. Cell Tissue Res 306:167–178

    Article  CAS  PubMed  Google Scholar 

  • Dunkov BC, Georgieva T, Yoshiga T, Hall M, Law JH (2002) Aedes aegypti ferritin heavy chain homologue: feeding of iron or blood influences message levels, lengths and subunit abundance. J Insect Sci 2:7 insectscience.org/2.7

    Article  PubMed  PubMed Central  Google Scholar 

  • Erkosar B, Defaye A, Bozonnet N, Puthier D, Royet J, Leulieret F (2014) Drosophila microbiota modulates host metabolic gene expression via IMD/NF-kB signaling. PLoS One 9(4):e94729. https://doi.org/10.1371/journal.pone.0094729

    Article  CAS  PubMed  Google Scholar 

  • Fernandes KM, Neves CA, Serrão JE, Martins GF (2014) Aedes aegypti midgut remodeling during metamorphosis. Parasitol Int 63:506–512

    Article  PubMed  Google Scholar 

  • Fiandra L, Caccia S, Giordana B, Casartelli M (2010) Leucine transport by the larval midgut of the parasitoid Aphidius ervi (Hymenoptera). J Insect Physiol 56:165–169

    Article  CAS  PubMed  Google Scholar 

  • Filshie BK, Poulson DF, Waterhouse DF (1971) Ultrastructure of the copper-accumulating region of the Drosophila larval midgut. Tissue Cell 3:77–102

    Article  CAS  PubMed  Google Scholar 

  • Franzetti E, Huang ZJ, Shi YX, Xie K, Deng XJ, Li JP, Li QR, Yang WY, Zeng WN, Casartelli M, Deng HM, Cappellozza S, Grimaldi A, Xia Q, Feng Q, Cao Y, Tettamanti G (2012) Autophagy precedes apoptosis during the remodeling of silkworm larval midgut. Apoptosis 17:305–324

    Article  CAS  PubMed  Google Scholar 

  • Franzetti E, Romanelli D, Caccia S, Cappellozza S, Congiu T, Rajagopalan M, Grimaldi A, de Eguileor M, Casartelli M, Tettamanti G (2015) The midgut of the silkmoth Bombyx mori is able to recycle molecules derived from degeneration of the larval midgut epithelium. Cell Tissue Res 361:509–528

    Article  CAS  PubMed  Google Scholar 

  • Franzetti E, Casartelli M, D’Antona P, Montali A, Romanelli D, Cappellozza S, Caccia S, Grimaldi A, de Eguileor M, Tettamanti G (2016) Midgut epithelium in molting silkworm: a fine balance among cell growth, differentiation, and survival. Arthropod Struct Dev 45:368–379

    Article  PubMed  Google Scholar 

  • Fujita T, Yui R, Iwanaga T, Nishiitsutsuji-Uwo J, Endo Y, Yanaihara N (1981) Evolutionary aspects of “brain-gut peptides”: an immunohistochemical study. Peptides 2:123–131

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Izumi Y (2017) Molecular dissection of smooth septate junctions: understanding their roles in arthropod physiology. Ann N Y Acad Sci 1397:17–24

    Article  CAS  PubMed  Google Scholar 

  • Geminard C, Rulifson EJ, Léopold P (2009) Remote control of insulin secretion by fat cells in Drosophila. Cell Metab 10:199–207

    Article  CAS  PubMed  Google Scholar 

  • Gervais L, Bardin AJ (2017) Tissue homeostasis and aging: new insight from the fly intestine. Curr Opin Cell Biol 48:97–105

    Article  CAS  PubMed  Google Scholar 

  • Giordana B, Sacchi VF, Hanozet GM (1982) Intestinal amino acid absorption in lepidopteran larvae. Biochim Biophys Acta 692:81–88

    Article  CAS  Google Scholar 

  • Giordana B, Sacchi VF, Parenti P, Hanozet GM (1989) Amino acid transport systems in intestinal brush-border membranes from lepidopteran larvae. Am J Physiol Regul Integr Comp Physiol 257:R494–R500

    Article  CAS  Google Scholar 

  • Giordana B, Leonardi MG, Tasca M, Villa M, Parenti P (1994) The amino acid/K+ symporters for neutral amino acids along the midgut of lepidopteran larvae: functional differentiations. J Insect Physiol 40:1059–1068

    Article  CAS  Google Scholar 

  • Giordana B, Leonardi MG, Casartelli M, Consonni P, Parenti P (1998) K+-neutral amino acid symport of Bombyx mori larval midgut: a system operative in extreme conditions. Am J Physiol Regul Integr Comp Physiol 274:R1361–R1371

    Article  CAS  Google Scholar 

  • Godoy RS, Fernandes KM, Martins GF (2015) Midgut of the non-hematophagous mosquito Toxorhynchites theobaldi (Diptera, Culicidae). Sci Rep 5:15836. https://doi.org/10.1038/srep15836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes FM, Carvalho DB, Peron AC, Saito K, Miranda K, Machado EA (2012) Inorganic polyphosphates are stored in spherites within the midgut of Anticarsia gemmatalis and play a role in copper detoxification. J Insect Physiol 58:211–219

    Article  CAS  PubMed  Google Scholar 

  • Gomes FM, Carvalho DB, Machado EA, Miranda K (2013) Ultrastructural and functional analysis of secretory goblet cells in the midgut of the lepidopteran Anticarsia gemmatalis. Cell Tissue Res 352:313–326

    Article  CAS  PubMed  Google Scholar 

  • Goto S, Loeb MJ, Takeda M (2005) Bombyxin stimulates proliferation of cultured stem cells derived from Heliothis virescens and Mamestra brassicae larvae. In Vitro Cell Dev Biol Anim 41:38–42

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Lucchetta E, Rafel N, Ohlstein B (2016) Maintenance of the adult Drosophila intestine: all roads lead to homeostasis. Curr Opin Genet Dev 40:81–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha EM, Oh CT, Bae YS, Lee WJ (2005) A direct role for dual oxidase in Drosophila gut immunity. Science 310:847–850

    Article  CAS  PubMed  Google Scholar 

  • Hakim RS, Blackburn MB, Corti P, Gelman DB, Goodman C, Elsen K, Loeb MJ, Lynn D, Soin T, Smagghe G (2007) Growth and mitogenic effects of arylphorin in vivo and in vitro. Arch Insect Biochem Physiol 64:63–73

    Article  CAS  PubMed  Google Scholar 

  • Hakim RS, Baldwin K, Smagghe G (2010) Regulation of midgut growth, development, and metamorphosis. Annu Rev Entomol 55:593–608

    Article  CAS  PubMed  Google Scholar 

  • Hartenstein V (1997) Development of the insect stomatogastric nervous system. Trends Neurosci 20:421–427

    Article  CAS  PubMed  Google Scholar 

  • Harvey WR (1980) Water and ions in the gut. In: Locke M, Smith DS (eds) Insect biology in the future. “VBW 80” Academic Press, New York, pp 105–119

    Chapter  Google Scholar 

  • Harvey WR, Cioffi M, Wolfersberger MG (1981) Portasomes as coupling factors in active ion transport and oxidative phosphorylation. Am Zool 21:775–791

    Article  CAS  Google Scholar 

  • Hegedus D, Erlandson M, Gillott C, Toprak U (2009) New insights into peritrophic matrix synthesis, architecture, and function. Annu Rev Entomol 54:285–302

    Article  CAS  PubMed  Google Scholar 

  • Holtof M, Lenaerts C, Cullen D, Vanden Broeck J (2019) Extracellular nutrient digestion and absorption in the insect gut. Cell Tissue Res in press. https://doi.org/10.1007/s00441-019-03031-9

  • Huang JH, Jing X, Douglas AE (2015) The multi-tasking gut epithelium of insects. Insect Biochem Mol Biol 67:15–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubert JF, Thomas D, Cavalier A, Gouranton J (1989) Structural and biochemical observations on specialized membranes of the “filter chamber”, a water-shunting complex in sap-sucking homopteran insects. Biol Cell 66:155–163

    Article  CAS  PubMed  Google Scholar 

  • Hudry B, Khadayate S, Miguel-Aliaga I (2016) The sexual identity of adult intestinal stem cells controls organ size and plasticity. Nature 530:344–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes SR, Dowd PF, Johnson ET (2012) Cell-penetrating recombinant peptides for potential use in agricultural pest control applications. Pharmaceuticals 5:1054–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illa-Bochaca I, Montuenga LM (2006) The regenerative nidi of the locust midgut as a model to study epithelial cell differentiation from stem cells. J Exp Biol 209:2215–2223

    Article  PubMed  Google Scholar 

  • Iwanaga T, Fujita T, Nishiitsutsuji-Uwo J, Endo Y (1981) Immunohistochemical demonstration of PP-, somatostatin-, enteroglucagon- and VIP-like immunoreactivities in the cockroach midgut. Biomed Res 2:202–207

    Article  CAS  Google Scholar 

  • Janeh M, Osman D, Kambris Z (2017) Damage-induced cell regeneration in the midgut of Aedes albopictus mosquitoes. Sci Rep 7:44594. https://doi.org/10.1038/srep44594

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeffers LA, Roe MR (2008) The movement of proteins across the insect and tick digestive system. J Insect Physiol 54:319–332

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Tian A, Jiang J (2016) Intestinal stem cell response to injury: lessons from Drosophila. Cell Mol Life Sci 73:3337–3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jura CZ (1958) The alimentary canal of Tetrodontophora bielanensis (Waga) (Collembola). Pol Pismo Entomol 27:85–89

    Google Scholar 

  • Kane PM (1995) Disassembly and reassembly of the yeast vacuolar H+-ATPase in vivo. J Biol Chem 270:17025–17032

    CAS  PubMed  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse DR, Johnson B, Presnell JS, Catignas KK, Zapotoczny G (2010) Peristalsis in the junction region of the Drosophila larval midgut is modulated by DH31 expressing enteroendocrine cells. BMC Physiol 10:14. https://doi.org/10.1186/1472-6793-10-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Caherec F, Guillam MT, Beuron F, Cavalier A, Thomas D, Gouranton J, Hubert JF (1997) Aquaporin-related proteins in the filter chamber of homopteran insects. Cell Tissue Res 290:143–151

    Article  PubMed  Google Scholar 

  • Lehane MJ (1997) Peritrophic matrix structure and function. Annu Rev Entomol 42:525–550

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Miguel-Aliaga I (2013) The digestive tract of Drosophila melanogaster. Annu Rev Genet 47:377–404

    Article  CAS  PubMed  Google Scholar 

  • Lemos FJ, Terra WR (1991) Digestion of bacteria and the role of midgut lysozyme in some insect larvae. Comp Biochem Physiol 100:265–268

    CAS  Google Scholar 

  • Lemos FJ, Ribeiro A, Terra WR (1993) A bacteria-digesting midgut lysozyme from Musca domestica (Diptera) larvae. Purification, properties and secretory mechanism. Insect Biochem Mol Biol 23:533–541

    Article  CAS  Google Scholar 

  • Leonardi MG, Casartelli M, Parenti P, Giordana B (1998) Evidence for a low-affinity, high-capacity uniport for amino acids in Bombyx mori larval midgut. Am J Physiol Regul Integr Comp Physiol 274:R1372–R1375

    Article  CAS  Google Scholar 

  • Leonardi MG, Caccia S, González-Cabrera J, Ferré J, Giordana B (2006) Leucine transport is affected by Bacillus thuringiensis Cry1 toxins in brush border membrane vesicles from Ostrinia nubilalis Hb (Lepidoptera: Pyralidae) and Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) midgut. J Membr Biol 214:157–164

    Article  CAS  PubMed  Google Scholar 

  • Li S, Torre-Muruzabal T, Sogaard KC, Ren GR, Hauser F, Engelsen SM, Podenphanth MD, Desjardins A, Grimmelikhuijzen CJ (2013) Expression patterns of the Drosophila neuropeptide CCHamide-2 and its receptor may suggest hormonal signaling from the gut to the brain. PLoS One 8:e76131. https://doi.org/10.1371/journal.pone.0076131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Qi Y, Jasper H (2016) Ubx dynamically regulates Dpp signaling by repressing Dad expression during copper cell regeneration in the adult Drosophila midgut. Dev Biol 419:373–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin G, Xu N, Xi R (2008) Paracrine wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 455:1119–1123

    Article  CAS  PubMed  Google Scholar 

  • Loeb MJ, Coronel N, Natsukawa D, Takeda M (2004) Implications for the functions of the four known midgut differentiation factors: an immunohistologic study of Heliothis virescens midgut. Arch Insect Biochem Physiol 56:7–20

    Article  CAS  PubMed  Google Scholar 

  • Lucchetta EM, Ohlstein B (2012) The Drosophila midgut: a model for stem cell driven tissue regeneration. Wiley Interdiscip Rev Dev Biol 1:781–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malta J, Heerman M, Weng JL, Fernandes KM, Martins GF, Ramalho-Ortigão M (2017) Midgut morphological changes and autophagy during metamorphosis in sand flies. Cell Tissue Res 368:513–529

    Article  CAS  PubMed  Google Scholar 

  • Marianes A, Spradling AC (2013) Physiological and stem cell compartmentalization within the Drosophila midgut. Elife 2:e00886. https://doi.org/10.7554/eLife.00886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins GF, Neves CA, Campos LA, Serrão JE (2006) The regenerative cells during the metamorphosis in the midgut of bees. Micron 37:161–168

    Article  PubMed  Google Scholar 

  • Mattila J, Kokki K, Hietakangas V, Boutros M (2018) Stem cell intrinsic hexosamine metabolism regulates intestinal adaptation to nutrient content. Dev Cell 47:112–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLeod CJ, Wang L, Wong C, Jones DL (2010) Stem cell dynamics in response to nutrient availability. Curr Biol 20:2100–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNulty M, Puljung M, Jefford G, Dubreuil RR (2001) Evidence that a copper-metallothionein complex is responsible for fluorescence in acid secreting cells of the Drosophila stomach. Cell Tissue Res 304:383–389

    Article  CAS  PubMed  Google Scholar 

  • Miguel-Aliaga I, Jasper H, Lemaitre B (2018) Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics 210:357–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirth C, Truman JW, Riddiford LM (2005) The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Curr Biol 15:1796–1807

    Article  CAS  PubMed  Google Scholar 

  • Moffett DF, Koch A (1992) Driving forces and pathways for H+ and K+ transport in insect midgut cells. J Exp Biol 172:403–415

    CAS  PubMed  Google Scholar 

  • Moffett DF, Koch A, Woods R (1995) Electrophysiology of K+ transport by midgut epithelium of lepidopteran insect larvae. III Goblet valve patency. J Exp Biol 198:2103–2113

    CAS  PubMed  Google Scholar 

  • Monteiro EC, Tamaki FK, Terra WR, Ribeiro AF (2014) The digestive system of the “stick bug” Cladomorphus phyllinus (Phasmida, Phasmatidae): a morphological, physiological and biochemical analysis. Arthropod Struct Dev 43:123–134

    Article  PubMed  Google Scholar 

  • Mylonakis E, Podsiadlowski L, Muhammed M, Vilcinskas A (2016) Diversity, evolution and medical applications of insect antimicrobial peptides. Phil Trans R Soc B 371:20150290. https://doi.org/10.1098/rstb.2015.0290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nardi JB, Bee CM (2012) Regenerative cells and the architecture of beetle midgut epithelia. J Morphol 273:1010–1020

    Article  PubMed  Google Scholar 

  • Nardi JB, Bee CM, Miller LA (2010) Stem cells of the beetle midgut epithelium. J Insect Physiol 56:296–303

    Article  CAS  PubMed  Google Scholar 

  • Nászai M, Carroll LR, Cordero JB (2015) Intestinal stem cell proliferation and epithelial homeostasis in the adult Drosophila midgut. Insect Biochem Mol Biol 67:9–14

    Article  CAS  PubMed  Google Scholar 

  • Nation JL (2008) Insect physiology and biochemistry. CRC Press, Boca Raton

    Google Scholar 

  • Nijhout HF, Smith WA, Schachar I, Subramanian S, Tobler A, Grunert LW (2007) The control of growth and differentiation of the wing imaginal disks of Manduca sexta. Dev Biol 302:569–576

    Article  CAS  PubMed  Google Scholar 

  • Nishiitsutsuji-Uwo J, Endo Y (1981) Gut endocrine cells in insects: the ultrastructure of the endocrine cells in the cockroach midgut. Biomed Res 2:30–44

    Article  Google Scholar 

  • O’Brien LE, Soliman SS, Li X, Bilder D (2011) Altered modes of stem cell division drive adaptive intestinal growth. Cell 147:603–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obniski R, Sieber M, Spradling AC (2018) Dietary lipids modulate Notch signaling and influence adult intestinal development and metabolism in Drosophila. Dev Cell 47:98–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439:470–474

    Article  CAS  PubMed  Google Scholar 

  • Okuda K, de Almeida F, Mortara RA, Krieger H, Marinotti O, Bijovsky AT (2007) Cell death and regeneration in the midgut of the mosquito, Culex quinquefasciatus. J Insect Physiol 53:1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Overend G, Luo Y, Henderson L, Douglas AE, Davies SA, Dow JAT (2016) Molecular mechanism and functional significance of acid generation in the Drosophila midgut. Sci Rep 6:27242. https://doi.org/10.1038/srep27242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pabla N, Lange AB (1999) The distribution and myotropic activity of locustatachykinin-like peptides in locust midgut. Peptides 20:1159–1167

    Article  CAS  PubMed  Google Scholar 

  • Padilha MHP, Pimentel AC, Ribeiro AF, Terra WR (2009) Sequence and function of lysosomal and digestive cathepsine D-like proteinases of Musca domestica midgut. Insect Biochem Mol Biol 39:782–791

    Article  CAS  PubMed  Google Scholar 

  • Pardo-López L, Soberón M, Bravo A (2013) Bacillus thuringiensis insecticidal three-domain cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 37:3–22

    Article  CAS  PubMed  Google Scholar 

  • Parenti P, Villa M, Hanozet GM (1992) Kinetics of leucine transport in brush border membrane vesicles from lepidopteran larvae midgut. J Biol Chem 267:15391–15397

    CAS  PubMed  Google Scholar 

  • Park JH, Kwon JY (2011) Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells. PLoS One 6:e29022. https://doi.org/10.1371/journal.pone.0029022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park MS, Takeda M (2008) Starvation suppresses cell proliferation that rebounds after refeeding in the midgut of the American cockroach, Periplaneta americana. J Insect Physiol 54:386–392

    Article  CAS  PubMed  Google Scholar 

  • Park MS, Park P, Takeda M (2009) Starvation induces apoptosis in the midgut nidi of Periplaneta americana: a histochemical and ultrastructural study. Cell Tissue Res 335:631–638

    Article  PubMed  Google Scholar 

  • Park JH, Chen J, Jang S, Ahn TJ, Kang K, Choi MS, Kwon JY (2016) A subset of enteroendocrine cells is activated by amino acids in the Drosophila midgut. FEBS Lett 590:493–500

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy R, Palli SR (2008) Proliferation and differentiation of intestinal stem cells during metamorphosis of the red flour beetle, Tribolium castaneum. Dev Dyn 237:893–908

    Article  CAS  PubMed  Google Scholar 

  • Pascoa V, Oliveira PL, Dansa-Petretski M, Silva JR, Alvarenga PH, Jacobs-Lorena M, Lemos FJ (2002) Aedes aegypti peritrophic matrix and its interaction with heme during blood digestion. Insect Biochem Mol Biol 32:517–523

    Article  CAS  PubMed  Google Scholar 

  • Pimentel AC, Barroso IG, Ferreira JM, Dias RO, Ferreira C, Terra WR (2018) Molecular machinery of starch digestion and glucose absorption along the midgut of Musca domestica. J Insect Physiol 109:11–20

    Article  CAS  PubMed  Google Scholar 

  • Predel R (2001) Peptidergic neurohemal system of an insect: mass spectrometric morphology. J Comp Neurol 436:363–375

    Article  CAS  PubMed  Google Scholar 

  • Predel R, Neupert S, Garczynski SF, Crim JW, Brown MR, Russell WK, Kahnt J, Russell DH, Nachman RJ (2010) Neuropeptidomics of the mosquito Aedes aegypti. J Proteome Res 9:2006–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raes H, Verbeke M, Meulemans W, Coster WD (1994) Organisation and ultrastructure of the regenerative crypts in the midgut of the adult worker honeybee (L. Apis mellifera). Tissue Cell 26:231–238

    Article  CAS  PubMed  Google Scholar 

  • Ray K, Mercedes M, Chan D, Choi CY, Nishiura JT (2009) Growth and differentiation of the larval mosquito midgut. J Insect Sci 9:1–13

    Article  PubMed  Google Scholar 

  • Regan JC, Khericha M, Dobson AJ, Bolukbasi E, Rattanavirotkul N, Partridge L (2016) Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction. Elife 5:e10956. https://doi.org/10.7554/eLife.10956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiher W, Shirras C, Kahnt J, Baumeister S, Elwyn Isaac R, Wegener C (2011) Peptidomics and peptide hormone processing in the Drosophila midgut. J Proteome Res 10:1881–1892

    Article  CAS  PubMed  Google Scholar 

  • Reineke S, Wieczorek H, Merzendorfer H (2002) Expression of Manduca sexta V-ATPase genes mvB, mvG and mvd is regulated by ecdysteroids. J Exp Biol 205:1059–1067

    CAS  PubMed  Google Scholar 

  • Rodenfels J, Lavrynenko O, Ayciriex S, Sampaio JL, Carvalho M, Shevchenko A, Eaton S (2014) Production of systemically circulating Hedgehog by the intestine couples nutrition to growth and development. Genes Dev 28:2636–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanelli D, Casartelli M, Cappellozza S, de Eguileor M, Tettamanti G (2016) Roles and regulation of autophagy and apoptosis in the remodelling of the lepidopteran midgut epithelium during metamorphosis. Sci Rep 6:32939. https://doi.org/10.1038/srep32939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rost MM, Kuczera M, Malinowska J, Polak M, Sidor B (2005) Midgut epithelium formation in Thermobia domestica (Packard) (Insecta, Zygentoma). Tissue Cell 37:135–143

    Article  CAS  PubMed  Google Scholar 

  • Rost-Roszkowska MM (2006a) Comparative studies on the regeneration of the midgut epithelium in Lepisma saccharina L. and Thermobia domestica Packard (Insecta, Zygentoma). Ann Entomol Soc Am 99:910–916

    Article  Google Scholar 

  • Rost-Roszkowska MM (2006b) Ultrastructural changes in the midgut epithelium in Podura aquatic L. (Insecta, Collembola, Arthropleona) during regeneration. Arthropod Struct Dev 35:69–76

    Article  Google Scholar 

  • Rost-Roszkowska MM (2008) Ultrastructural changes in the midgut epithelium of Acheta domesticus (Orthoptera: Gryllidae) during degeneration and regeneration. Ann Entomol Soc Am 101:151–158

    Article  Google Scholar 

  • Rost-Roszkowska MM, Undrul A (2008) Fine structure and differentiation of the midgut epithelium of Allacma fusca (Insecta: Collembola: Symphypleona). Zool Stud 47:200–206

    Google Scholar 

  • Rost-Roszkowska MM, Pilka M, Szymska R, Klag J (2007) Ultrastructural studies of midgut epithelium formation in Lepisma saccharina L. (Insecta, Zygentoma). J Morphol 268:224–231

    Article  CAS  PubMed  Google Scholar 

  • Rost-Roszkowska MM, Poprawa I, Klag J, Migula P, Mesjasz-Przybyłowicz J, Przybyłowicz W (2010a) Differentiation of regenerative cells in the midgut epithelium of Epilachna cf nylanderi (Mulsant 1850) (Insecta, Coleoptera, Coccinellidae). Folia Biol (Kraków) 58:209–216

    Article  Google Scholar 

  • Rost-Roszkowska MM, Jansta P, Vilimova J (2010b) Fine structure of the midgut epithelium in two Archaeognatha, Lepismachilis notata and Machilis hrabei (Insecta), in relation to its degeneration and regeneration. Protoplasma 247:91–101

    Article  CAS  PubMed  Google Scholar 

  • Rost-Roszkowska MM, Vilimova J, Chajec L (2010c) Fine structure of the midgut epithelium of Nicoletia phytophila Gervais, 1844 (Zygentoma: Nicoletiidae: Nicoletiinae) with special emphasis on its degeneration. Folia Biol (Kraków) 58:217–227

    Article  Google Scholar 

  • Rost-Roszkowska MM, Machida R, Fukui M (2010d) The role of cell death in the midgut epithelium in Filientomon takanawanum (Protura). Tissue Cell 42:24–31

    Article  CAS  PubMed  Google Scholar 

  • Rost-Roszkowska MM, Vilimova J, Chajec L (2010e) Fine structure of the midgut epithelium in Atelura formicaria (Hexapoda, Zygentoma, Ateluridae), with special reference to its regeneration and degeneration. Zool Stud 49:10–18

    Google Scholar 

  • Rost-Roszkowska MM, Vilimova J, Włodarczyk A, Sonakowska L, Kamińska K, Kaszuba F, Marchewka A, Sadílek D (2017) Investigation of the midgut structure and ultrastructure in Cimex lectularius and Cimex pipistrelli (Hemiptera: Cimicidae). Neotrop Entomol 46:45–57

    Article  CAS  PubMed  Google Scholar 

  • Russell VW, Dunn PE (1991) Lysozyme in the midgut of Manduca sexta during metamorphosis. Arch Insect Biochem Physiol 17:67–80

    Article  CAS  PubMed  Google Scholar 

  • Ryu JH, Ha EM, Lee WJ (2010) Innate immunity and gut-microbe mutualism in Drosophila. Dev Comp Immunol 34:369–376

    Article  CAS  PubMed  Google Scholar 

  • Sadrud-Din S, Hakim R, Loeb M (1994) Proliferation and differentiation of midgut cells from Manduca sexta, in vitro. Invertebr Reprod Dev 26:197–204

    Article  Google Scholar 

  • Sakai T, Satake H, Takeda M (2006) Nutrient-induced α-amylase and protease activity is regulated by crustacean cardioactive peptide (CCAP) in the cockroach midgut. Peptides 27:157–2164

    Article  CAS  Google Scholar 

  • Sano H, Nakamura A, Texada MJ, Truman JW, Ishimoto H, Kamikouchi A, Nibu Y, Kume K, Ida T, Kojima M (2015) The nutrient-responsive hormone CCHamide-2 controls growth by regulating insulin-like peptides in the brain of Drosophila melanogaster. PLoS Genet 11(5):e1005209. https://doi.org/10.1371/journal.pgen.1005209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos HP, Rost-Roszkowska M, Vilimova J, Serrão JE (2017) Ultrastructure of the midgut in Heteroptera (Hemiptera) with different feeding habits. Protoplasma 254:1743–1753

    Article  PubMed  Google Scholar 

  • Schols D, Verhaert P, Huybrecht R, Vaudry H, Jégou S, De Loof A (1987) Immunocytochemical demonstration of proopiomelanocortin- and other opioid related substances and a CRF-like peptide in the gut of the american cockroach, Periplaneta americana L. Histochemistry 86:345–351

    Article  CAS  PubMed  Google Scholar 

  • Scopelliti A, Cordero JB, Diao F, Strathdee K, White BH, Sansom OJ, Vidal M (2014) Local control of intestinal stem cell homeostasis by enteroendocrine cells in the adult Drosophila midgut. Curr Biol 24:1199–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehnal F, Žitňan D (1996) Midgut endocrine cells. In: Lehane MJ, Billingsley PF (eds) Biology of the insect midgut. Chapman & Hall, London, pp 55–85

    Chapter  Google Scholar 

  • Shanbhag S, Tripathi S (2009) Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. J Exp Biol 212:1731–1744

    Article  CAS  PubMed  Google Scholar 

  • Shen P, Cai HN (2001) Drosophila neuropeptide F mediates integration of chemosensory stimulation and conditioning of the nervous system by food. J Neurobiol 47:16–25

    Article  CAS  PubMed  Google Scholar 

  • Shim J, Gururaja-Rao S, Banerjee U (2013) Nutritional regulation of stem and progenitor cells in Drosophila. Development 140:4647–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva CP, Silva JR, Vasconcelos FF, Petretski MDA, DaMatta RA, Ribeiro AF, Terra WR (2004) Occurrence of midgut perimicrovillar membranes in paraneopteran insect orders with comments on their function and evolutionary significance. Arthropod Struct Dev 33:139–148

    Article  PubMed  Google Scholar 

  • Smagghe G, Vanhassel W, Moeremans C, De Wilde D, Goto S, Loeb MJ, Blackburn MB, Hakim RS (2005) Stimulation of midgut stem cell proliferation and differentiation by insect hormones and peptides. Ann N Y Acad Sci 1040:472–475

    Article  CAS  PubMed  Google Scholar 

  • Song W, Veenstra JA, Perrimon N (2014) Control of lipid metabolism by tachykinin in Drosophila. Cell Rep 9:40–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song W, Cheng D, Hong S, Sappe B, Hu Y, Wei N, Zhu C, O’Connor MB, Pissios P, Perrimon N (2017) Midgut-derived activin regulates glucagon-like action in the fat body and glycemic control. Cell Metab 25:386–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumner JP, Dow JAT, Earley FG, Klein U, Jäger D, Wieczorek H (1995) Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J Biol Chem 270:5649–5653

    Article  CAS  PubMed  Google Scholar 

  • Takashima S, Younossi-Hartenstein A, Ortiz PA, Hartenstein V (2011) A novel tissue in an established model system: the Drosophila pupal midgut. Dev Genes Evol 221:69–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Takashima S, Gold D, Hartenstein V (2013) Stem cells and lineages of the intestine: a developmental and evolutionary perspective. Dev Genes Evol 223:85–102

    Article  PubMed  Google Scholar 

  • Taracena ML, Bottino-Rojas V, Talyuli OAC, Walter-Nuno AB, Oliveira JHM, Angleró-Rodriguez YI, Wells MB, Dimopoulos G, Oliveira PL, Paiva-Silva GO (2018) Regulation of midgut cell proliferation impacts Aedes aegypti susceptibility to dengue virus. PLoS Negl Trop Dis 12:e0006498. https://doi.org/10.1371/journal.pntd.0006498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira A, Fialho Mdo C, Zanuncio JC, Ramalho Fde S, Serrão JE (2013) Degeneration and cell regeneration in the midgut of Podisus nigrispinus (Heteroptera: Pentatomidae) during post-embryonic development. Arthropod Struct Dev 42:237–246

    Article  PubMed  Google Scholar 

  • Terra WR (1988) Physiology and biochemistry of insect digestion: an evolutionary perspective. Braz J Med Biol Res 21:675–734

    CAS  PubMed  Google Scholar 

  • Terra WR, Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol 109:1–62

    Article  Google Scholar 

  • Terra WR, Espinoza-Fuentes FP, Ribeiro AF, Ferreira C (1988) The larval midgut of the housefly (Musca domestica): ultrastructure, fluid fluxes and ion secretion in relation to the organization of digestion. J Insect Physiol 34:463–472

    Article  CAS  Google Scholar 

  • Terra WR, Ferreira C, Baker JE (1996) Compartmentalization of digestion. In: Lehane MJ, Billingsley PF (eds) Biology of the insect midgut. Chapman & Hall, London, pp 206–235

    Chapter  Google Scholar 

  • Tettamanti G, Casartelli M (2019) Cell death during complete metamorphosis. Philos Trans R Soc Lond B:20190065. https://doi.org/10.1098/rstb.2019.0065

  • Tettamanti G, Grimaldi A, Casartelli M, Ambrosetti E, Ponti B, Congiu T, Ferrarese R, Rivas-Pena ML, Pennacchio F, de Eguileor M (2007) Programmed cell death and stem cell differentiation are responsible for midgut replacement in Heliothis virescens during prepupal instar. Cell Tissue Res 330:345–359

    Article  PubMed  Google Scholar 

  • Tettamanti G, Carata E, Montali A, Dini L, Fimia GM (2019) Autophagy in development and regeneration: role in tissue remodelling and cell survival. Eur Zool J 86:113–131

    Article  CAS  Google Scholar 

  • Turbeck BO, Foder B (1970) Studies on a carbonic anhydrase from the midgut epithelium of larvae of lepidoptera. Biochim Biophys Acta 212:134–138

    Article  Google Scholar 

  • Ursic-Bedoya R, Buchhop J, Joy JB, Durvasula R, Lowenberger C (2011) Prolixicin: a novel antimicrobial peptide isolated from Rhodnius prolixus with differential activity against bacteria and Trypanosoma cruzi. Insect Mol Biol 20:775–786

    Article  CAS  PubMed  Google Scholar 

  • Veenstra JA (2009) Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot. Cell Tissue Res 336:309–323

    Article  CAS  PubMed  Google Scholar 

  • Veenstra JA, Ida T (2014) More Drosophila enteroendocrine peptides: orcokinin B and the CCHamides 1 and 2. Cell Tissue Res 357:607–621

    Article  CAS  PubMed  Google Scholar 

  • Veenstra JA, Agricola HJ, Sellami A (2008) Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot. Cell Tissue Res 336:309–323

    Article  CAS  Google Scholar 

  • Vizioli J, Bulet P, Hoffmann JA, Kafatos FC, Müller HM, Dimopoulos G (2001) Gambicin: a novel immune responsive antimicrobial peptide from the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 98:12630–12635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel H, Müller A, Heckel DG, Gutzeit H, Vilcinskas A (2018) Nutritional immunology: diversification and diet-dependent expression of antimicrobial peptides in the black soldier fly Hermetia illucens. Dev Comp Immunol 78:141–148

    Article  CAS  PubMed  Google Scholar 

  • Voss M, Vitavska O, Walz B, Wieczorek H, Baumann O (2007) Stimulus induced phosphorylation of plasma membrane V-ATPase by protein kinase A. J Biol Chem 282:33735–33742

    Article  CAS  PubMed  Google Scholar 

  • Wegener C, Veenstra JA (2015) Chemical identity, function and regulation of enteroendocrine peptides in insects. Curr Opin Insect Sci 11:8–13

    Article  PubMed  Google Scholar 

  • Whetstone PA, Hammock BD (2007) Delivery methods for peptide and protein toxins in insect control. Toxicon 49:576–596

    Article  CAS  PubMed  Google Scholar 

  • Wieczorek H, Weerth S, Schindlbeck M, Klein U (1989) A vacuolar-type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut. J Biol Chem 264:11143–11148

    CAS  PubMed  Google Scholar 

  • Wieczorek H, Putzenlechner M, Zeiske W, Klein U (1991) A vacuolar-type proton pump energizes H+/K+-antiport in an animal plasma membrane. J Biol Chem 266:15340–15347

    CAS  PubMed  Google Scholar 

  • Wieczorek H, Grüber G, Harvey WR, Huss M, Merzendorfer H, Zeiske W (2000) Structure and regulation of insect plasma membrane H+ V-ATPase. J Exp Biol 203:127–135

    CAS  PubMed  Google Scholar 

  • Wieczorek H, Beyenbach KW, Huss M, Vitavska O (2009) Vacuolar-type proton pumps in insect epithelia. J Exp Biol 212:1611–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wigglesworth VB (1972) Digestion and nutrition. In: The principles of insect physiology. Chapman & Hall, London, pp 476–552

  • Winther AM, Nässel DR (2001) Intestinal peptides as circulating hormones: release of tachykinin-related peptide from the locust and cockroach midgut. J Exp Biol 204:1269–1280

    CAS  PubMed  Google Scholar 

  • Wolfersberger MG (1996) Localization of amino acid absorption systems in the larval midgut of the tobacco hornworm Manduca sexta. J Insect Physiol 42:975–982

    Article  CAS  Google Scholar 

  • Wu Q, Patočka J, Kuča K (2018) Insect antimicrobial peptides, a mini review. Toxins 10:461. https://doi.org/10.3390/toxins10110461

    Article  CAS  PubMed Central  Google Scholar 

  • Zielke N, Edgar BA, DePamphilis ML (2013) Endoreplication. Cold Spring Harb Perspect Biol 5(1):a012948. https://doi.org/10.1101/cshperspect.a012948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors apologize to colleagues whose work could not be cited due to space limitation. We are thankful to Daniele Bruno and Aurora Montali for figure preparation.

Funding

This work was financially supported by Fondazione Cariplo (grant no. 2014-0550) and by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) (grant nos. 2017J8JR57 and 2017JLN833).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Tettamanti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caccia, S., Casartelli, M. & Tettamanti, G. The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell Tissue Res 377, 505–525 (2019). https://doi.org/10.1007/s00441-019-03076-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03076-w

Keywords

Navigation