Skip to main content

Advertisement

Log in

Co-expression network analysis identified key genes in association with mesenchymal stem cell osteogenic differentiation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

A Correction to this article was published on 21 October 2019

This article has been updated

Abstract

Although several studies have shown that osteogenic differentiation of different mesenchymal stem cell (MSC) lines can be guided by the 3D scaffold with growth factors or biochemical agent, the key mechanism regulating osteogenic differentiation is not known yet. Here, this study was designed to investigate key genes that regulate the induction of osteogenesis by different MSC lines in different ways. Expression profiling by array (GSE58919 and GSE18043) was downloaded and analyzed using weighted gene co-expression network analysis (WGCNA) to narrow genes associated with osteogenic differentiation. A protein-protein interactive (PPI) network was built to find the key genes and the role of these key genes was confirmed by statistical analysis. To understand the function of genes associated with osteogenesis, gene ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG) were analyzed, which showed that key genes in MSC osteogenic differentiation induced by a biochemical agent involve regulation of cell apoptosis and proliferation while key genes in MSC osteogenic differentiation induced by the 3D scaffold with growth factors involve regulation of cajal body and centromeres. Furthermore, 58 key genes are involved in Wnt signaling pathway, ion response and focal adhesion. Proteasome also played a key role in osteogenic differentiation. Seven potential key genes were found essential in the osteogenic differentiation of MSCs in the PPI network, especially the five key genes, CCT2, NOP58, FBL, EXOSC8 and SNRPD1. This study will provide important targets of MSC osteogenic differentiation that will help us understand the mechanism of osteogenic differentiation in MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 21 October 2019

    The authors regret that in our published paper entitled “Co-expression network analysis identified key genes in association with mesenchymal stem cell osteogenic differentiation” Cell Tissue Res (2019). <ExternalRef><RefSource>https://doi.org/10.1007/s00441-019-03071-1;</RefSource><RefTarget Address="10.1007/s00441-019-03071-1;" TargetType="DOI"/></ExternalRef> there is a typo in the text

References

  • Alves RD, Eijken M, Swagemakers S, Chiba H, Titulaer MK, Burgers PC, Luider TM, van Leeuwen JP (2010) Proteomic analysis of human osteoblastic cells: relevant proteins and functional categories for differentiation. J Proteome Res 9:4688–4700

    Article  CAS  Google Scholar 

  • Bouffard S, Dambroise E, Brombin A, Lempereur S, Hatin I, Simion M, Corre R, Bourrat F, Joly JS, Jamen F (2018) Fibrillarin is essential for S-phase progression and neuronal differentiation in zebrafish dorsal midbrain and retina. Dev Biol 437:1–16

    Article  CAS  Google Scholar 

  • Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma'ayan A (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14:128

    Article  Google Scholar 

  • Chen X, Yan J, He F, Zhong D, Yang H, Pei M, Luo ZP (2018) Mechanical stretch induces antioxidant responses and osteogenic differentiation in human mesenchymal stem cells through activation of the AMPK-SIRT1 signaling pathway. Free Radic Biol Med 126:187–201

    Article  CAS  Google Scholar 

  • Gao C, Peng S, Feng P, Shuai C (2017) Bone biomaterials and interactions with stem cells. Bone Res 5:17059

    Article  CAS  Google Scholar 

  • Giunta M, Edvardson S, Xu Y, Schuelke M, Gomez-Duran A, Boczonadi V, Elpeleg O, Muller JS, Horvath R (2016) Altered RNA metabolism due to a homozygous RBM7 mutation in a patient with spinal motor neuropathy. Hum Mol Genet 25:2985–2996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golpanian S, Wolf A, Hatzistergos KE, Hare JM (2016) Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiol Rev 96:1127–1168

    Article  CAS  Google Scholar 

  • Hamidouche Z, Fromigue O, Ringe J, Haupl T, Vaudin P, Pages JC, Srouji S, Livne E, Marie PJ (2009) Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci U S A 106:18587–18591

    Article  CAS  Google Scholar 

  • Huebsch N, Lippens E, Lee K, Mehta M, Koshy ST, Darnell MC, Desai RM, Madl CM, Xu M, Zhao X, Chaudhuri O, Verbeke C, Kim WS, Alim K, Mammoto A, Ingber DE, Duda GN, Mooney DJ (2015) Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat Mater 14:1269–1277

    Article  CAS  Google Scholar 

  • Killcoyne S, Carter GW, Smith J, Boyle J (2009) Cytoscape: a community-based framework for network modeling. Methods Mol Biol 563:219–239

    Article  CAS  Google Scholar 

  • Koyuncu S, Saez I, Lee HJ, Gutierrez-Garcia R, Pokrzywa W, Fatima A, Hoppe T, Vilchez D (2018) The ubiquitin ligase UBR5 suppresses proteostasis collapse in pluripotent stem cells from Huntington's disease patients. Nat Commun 9:2886

    Article  Google Scholar 

  • Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma'ayan A (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90–W97

    Article  CAS  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  Google Scholar 

  • Li J, Huang Y, Song J, Li X, Zhang X, Zhou Z, Chen D, Ma PX, Peng W, Wang W, Zhou G (2018) Cartilage regeneration using arthroscopic flushing fluid-derived mesenchymal stem cells encapsulated in a one-step rapid cross-linked hydrogel. Acta Biomater

  • Liu W, Wei Y, Zhang X, Xu M, Yang X, Deng X (2013) Lower extent but similar rhythm of osteogenic behavior in hBMSCs cultured on nanofibrous scaffolds versus induced with osteogenic supplement. ACS Nano 7:6928–6938

    Article  CAS  Google Scholar 

  • Liu Y, Yang R, Liu X, Zhou Y, Qu C, Kikuiri T, Wang S, Zandi E, Du J, Ambudkar IS, Shi S (2014) Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca(2+) channel sulfhydration. Cell Stem Cell 15:66–78

    Article  CAS  Google Scholar 

  • Lloret-Llinares M, Karadoulama E, Chen Y, Wojenski LA, Villafano GJ, Bornholdt J, Andersson R, Core L, Sandelin A, Jensen TH (2018) The RNA exosome contributes to gene expression regulation during stem cell differentiation. Nucleic Acids Res 46:11502–11513

    Article  CAS  Google Scholar 

  • Makino DL, Halbach F, Conti E (2013) The RNA exosome and proteasome: common principles of degradation control. Nat Rev Mol Cell Biol 14:654–660

    Article  CAS  Google Scholar 

  • Mathiasen AB, Qayyum AA, Jorgensen E, Helqvist S, Fischer-Nielsen A, Kofoed KF, Haack-Sorensen M, Ekblond A, Kastrup J (2015) Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur Heart J 36:1744–1753

    Article  CAS  Google Scholar 

  • McMillan A, Nguyen MK, Gonzalez-Fernandez T, Ge P, Yu X, Murphy WL, Kelly DJ, Alsberg E (2018) Dual non-viral gene delivery from microparticles within 3D high-density stem cell constructs for enhanced bone tissue engineering. Biomaterials 161:240–255

    Article  CAS  Google Scholar 

  • Minegishi Y, Nakaya N, Tomarev SI (2018) Mutation in the zebrafish cct2 gene leads to abnormalities of cell cycle and cell death in the retina: a model of CCT2-related leber congenital amaurosis. Invest Ophthalmol Vis Sci 59:995–1004

    Article  CAS  Google Scholar 

  • Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273

    Article  CAS  Google Scholar 

  • Neben CL, Lay FD, Mao X, Tuzon CT, Merrill AE (2017) Ribosome biogenesis is dynamically regulated during osteoblast differentiation. Gene 612:29–35

    Article  CAS  Google Scholar 

  • Qin W, Lv P, Fan X, Quan B, Zhu Y, Qin K, Chen Y, Wang C, Chen X (2017) Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis. Proc Natl Acad Sci U S A 114:E6749–e6758

    Article  CAS  Google Scholar 

  • Saez I, Koyuncu S, Gutierrez-Garcia R, Dieterich C, Vilchez D (2018) Insights into the ubiquitin-proteasome system of human embryonic stem cells. Sci Rep 8:4092

    Article  Google Scholar 

  • Sanchez CG, Teixeira FK, Czech B, Preall JB, Zamparini AL, Seifert JR, Malone CD, Hannon GJ, Lehmann R (2016) Regulation of ribosome biogenesis and protein synthesis controls germline stem cell differentiation. Cell Stem Cell 18:276–290

    Article  CAS  Google Scholar 

  • Sassoli C, Vallone L, Tani A, Chellini F, Nosi D, Zecchi-Orlandini S (2018) Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration. Cell Tissue Res 372:549–570

    Article  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  Google Scholar 

  • Shuai Y, Mao C, Yang M (2018) Protein nanofibril assemblies templated by graphene oxide nanosheets accelerate early cell adhesion and induce osteogenic differentiation of human mesenchymal stem cells. ACS Appl Mater Interfaces

  • Shubina MY, Musinova YR, Sheval EV (2016) Nucleolar methyltransferase fibrillarin: evolution of structure and functions. Biochemistry (Mosc) 81:941–950

    Article  CAS  Google Scholar 

  • Smolinski DJ, Kolowerzo A (2012) mRNA accumulation in the Cajal bodies of the diplotene larch microsporocyte. Chromosoma 121:37–48

    Article  CAS  Google Scholar 

  • Stedman A, Beck-Cormier S, Le Bouteiller M, Raveux A, Vandormael-Pournin S, Coqueran S, Lejour V, Jarzebowski L, Toledo F, Robine S, Cohen-Tannoudji M (2015) Ribosome biogenesis dysfunction leads to p53-mediated apoptosis and goblet cell differentiation of mouse intestinal stem/progenitor cells. Cell Death Differ 22:1865–1876

    Article  CAS  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550

    Article  CAS  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    Article  CAS  Google Scholar 

  • Vilchez D, Boyer L, Morantte I, Lutz M, Merkwirth C, Joyce D, Spencer B, Page L, Masliah E, Berggren WT, Gage FH, Dillin A (2012) Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489:304–308

    Article  CAS  Google Scholar 

  • Watanabe-Susaki K, Takada H, Enomoto K, Miwata K, Ishimine H, Intoh A, Ohtaka M, Nakanishi M, Sugino H, Asashima M, Kurisaki A (2014) Biosynthesis of ribosomal RNA in nucleoli regulates pluripotency and differentiation ability of pluripotent stem cells. Stem Cells 32:3099–3111

    Article  CAS  Google Scholar 

  • Yan L, Jiang B, Li E, Wang X, Ling Q, Zheng D, Park JW, Chen X, Cheung E, Du X, Li Y, Cheng G, He E, Xu RH (2018) Scalable generation of mesenchymal stem cells from human embryonic stem cells in 3D. Int J Biol Sci 14:1196–1210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kyrkou A and Murphy C for providing the GSE58919 data and Hamidouche Z, Fromigué O, Ringe J, Häupl T, Vaudin P, Srouji S, Livne E and Marie P for the GSE18043 data. We also thank the GEO database.

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 81572139).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoling Zhang, Yulin Li or Lisha Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 162 kb)

ESM 2

(PDF 257 kb)

ESM 3

(PDF 578 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Xia, Y., Qian, X. et al. Co-expression network analysis identified key genes in association with mesenchymal stem cell osteogenic differentiation. Cell Tissue Res 378, 513–529 (2019). https://doi.org/10.1007/s00441-019-03071-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03071-1

Keywords

Navigation