Skip to main content

Advertisement

Log in

Experimental pulmonary fibrosis was suppressed by microRNA-506 through NF-kappa-mediated apoptosis and inflammation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Fibrosis in the lungs usually occurs in the initial phase of acute respiratory distress syndrome (ARDS), which exacerbates poor prognosis among patients. MicroRNAs (miRs) have the ability to modulate the expression profiles of many genes, thus essentially altering cell phenotypes. We hypothesize that miRs may be involved in the development of lung fibrosis in mice. In this study, mice were treated with lipopolysaccharide (LPS) to establish the lung fibrosis animal model. Hematoxylin and eosin (H&E) staining and western blot (WB) were performed to confirm the successful establishment of the model. Quantitative PCR (qPCR) and WB were utilized to monitor the expression of miRs and proteins. A dual-luciferase reporter assay was used to detect the interaction between miR and genes. We observed miR-506 downregulation in lung tissues during lung fibrosis after ARDS rat modeling by LPS exposure. We also observed that its expression level was similar to that observed in TGF-β1-induced human MRC-5 cells. The proportion of apoptotic cells decreased, while levels of inflammatory cytokines were upregulated in lung tissues during lung fibrosis and in fibroblasts after TGF-β1 treatment. In order to elucidate the possible role of miR-506, it was overexpressed in mice with ARDS. It was revealed that miR-506 significantly ameliorated the degree and spread of pulmonary damage stimulated by LPS. miR-506 also induced apoptosis in vivo and in vitro, while also ameliorating the inflammatory response. Notably, p65, a subunit of NF-κB, acts as a target of miR-506. p65 expression was downregulated in TGF-β1-treated MRC-5 cells upon transfection with miR-506 mimic. Indeed, the 3′-UTR of human p65 contained functional human miR-506-responsive sequences. LPS induction and TGF-β1 stimulation in mice led to p65 upregulation. In addition, p65 knockdown in the ARDS mouse model partially ameliorated the severity of lung lesions, induced apoptosis and reduced inflammation in lung tissue. Our findings revealed that miR-506 could be an important modulator of apoptosis and inflammation and a regulator of lung fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albert S, Baldwin J (1996) The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol 14:649–681

    Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    CAS  Google Scholar 

  • Arlt A, Muerkoster SS, Schafer H (2013) Targeting apoptosis pathways in pancreatic cancer. Cancer Lett 332:346–358

    CAS  PubMed  Google Scholar 

  • Arora H, Qureshi R, Park WY (2013) miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines. PLoS One 8:e64273

    PubMed  PubMed Central  Google Scholar 

  • Burnham EL, Janssen WJ, Riches DW, Moss M, Downey GP (2014) The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance. Eur Respir J 43:276–285

    PubMed  Google Scholar 

  • Cao Y, Liu Y, Ping F, Yi L, Zeng Z, Li Y (2018a) miR-200b/c attenuates lipopolysaccharide-induced early pulmonary fibrosis by targeting ZEB1/2 via p38 MAPK and TGF-beta/smad3 signaling pathways. Lab Investig 98:339–359

    CAS  PubMed  Google Scholar 

  • Cao Y, Liu Y, Ping F, Yi L, Zeng Z, Li Y (2018b) miR-200b/c attenuates lipopolysaccharide-induced early pulmonary fibrosis by targeting ZEB1/2 via p38 MAPK and TGF-β/smad3 signaling pathways. Lab Investig 98:339

    CAS  PubMed  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    CAS  PubMed  Google Scholar 

  • Chapman HA (2011) Epithelial-mesenchymal interactions in pulmonary fibrosis. Annu Rev Physiol 73:413–435

    CAS  PubMed  Google Scholar 

  • Cullinan P, Reid P (2013) Pneumoconiosis. Prim Care Respir J 22:249–252

    PubMed  PubMed Central  Google Scholar 

  • Cunningham AJ (1991) Acute respiratory distress syndrome--two decades later. Yale J Biol Med 64:387–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Degryse AL, Tanjore H, Xu XC, Polosukhin VV, Jones BR, Boomershine CS, Ortiz C, Sherrill TP, McMahon FB, Gleaves LA, Blackwell TS, Lawson WE (2011) TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar injury and fibroblast recruitment. Am J Physiol Lung Cell Mol Physiol 300:L887–L897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding XM (2014) MicroRNAs: regulators of cancer metastasis and epithelial-mesenchymal transition (EMT). Chin J Cancer 33:140–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparini C, Celeghini C, Monasta L, Zauli G (2014) NF-kappaB pathways in hematological malignancies. Cell Mol Life Sci 71:2083–2102

    CAS  PubMed  Google Scholar 

  • Gerondakis S, Grumont R, Gugasyan R, Wong L, Isomura I, Ho W, Banerjee A (2006) Unravelling the complexities of the NF-kappaB signalling pathway using mouse knockout and transgenic models. Oncogene 25:6781–6799

    CAS  PubMed  Google Scholar 

  • Gyrd-Hansen M, Meier P (2010) IAPs: from caspase inhibitors to modulators of NF-κB, inflammation and cancer. Nat Rev Cancer 10:561

    CAS  PubMed  Google Scholar 

  • Kang HR, Lee CG, Homer RJ, Elias JA (2007) Semaphorin 7A plays a critical role in TGF-beta1-induced pulmonary fibrosis. J Exp Med 204:1083–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, Sheppard D, Chapman HA (2006) Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci 103:13180–13185

    CAS  PubMed  Google Scholar 

  • Lawson WE, Cheng DS, Degryse AL, Tanjore H, Polosukhin VV, Xu XC, Newcomb DC, Jones BR, Roldan J, Lane KB, Morrisey EE, Beers MF, Yull FE, Blackwell TS (2011) Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc Natl Acad Sci U S A 108:10562–10567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18:816–827

    CAS  PubMed  Google Scholar 

  • Lee CG, Cho SJ, Kang MJ, Chapoval SP, Lee PJ, Noble PW, Yehualaeshet T, Lu B, Flavell RA, Milbrandt J, Homer RJ, Elias JA (2004) Early growth response gene 1–mediated apoptosis is essential for transforming growth factor β(1)–induced pulmonary fibrosis. J Exp Med 200:377–389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Du S, Yang L, Chen Y, Huang W, Zhang R, Cui Y, Yang J, Chen D, Li Y, Zhang S, Zhou J, Wei Z, Yao Z (2009) Rapid pulmonary fibrosis induced by acute lung injury via a lipopolysaccharide three-hit regimen. Innate Immun 15:143–154

    CAS  PubMed  Google Scholar 

  • Li M, Krishnaveni MS, Li C, Zhou B, Xing Y, Banfalvi A, Li A, Lombardi V, Akbari O, Borok Z, Minoo P (2011) Epithelium-specific deletion of TGF-beta receptor type II protects mice from bleomycin-induced pulmonary fibrosis. J Clin Invest 121:277–287

    CAS  PubMed  Google Scholar 

  • Li Z, Liu Z, Dong S, Zhang J, Tan J, Wang Y, Ge C, Li R, Xue Y, Li M, Wang W, Xiang X, Yang J, Ding H, Geng T, Yao K, Song X (2015) miR-506 inhibits epithelial-to-mesenchymal transition and angiogenesis in gastric cancer. Am J Pathol 185:2412–2420

    CAS  PubMed  Google Scholar 

  • Li J, Ju J, Ni B, Wang H (2016) The emerging role of miR-506 in cancer. Oncotarget 7:62778–62788

    PubMed  PubMed Central  Google Scholar 

  • Luo Y, Xu W, Chen H, Warburton D, Dong R, Qian B, Selman M, Gauldie J, Kolb M, Shi W (2015) A novel profibrotic mechanism mediated by TGFβ-stimulated collagen prolyl hydroxylase expression in fibrotic lung mesenchymal cells. J Pathol 236:384–394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall RP, Bellingan G, Webb S, Puddicombe A, Goldsack N, McAnulty RJ, Laurent GJ (2000) Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome. Am J Respir Crit Care Med 162:1783–1788

    CAS  PubMed  Google Scholar 

  • Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA, Rifkin DB, Sheppard D (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96:319–328

    CAS  PubMed  Google Scholar 

  • Nguyen DP, Li J, Yadav SS, Tewari AK (2014) Recent insights into NF-kappaB signalling pathways and the link between inflammation and prostate cancer. BJU Int 114:168–176

    CAS  PubMed  Google Scholar 

  • Ragaller M, Richter T (2010) Acute lung injury and acute respiratory distress syndrome. J Emerg Trauma Shock 3:43–51

    PubMed  PubMed Central  Google Scholar 

  • Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, Cottin V, Flaherty KR, Hansell DM, Inoue Y, Kim DS, Kolb M, Nicholson AG, Noble PW, Selman M, Taniguchi H, Brun M, Le Maulf F, Girard M, Stowasser S, Schlenker-Herceg R, Disse B, Collard HR, Investigators IT (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370:2071–2082

    PubMed  Google Scholar 

  • Rockey DC, Bell PD, Hill JA (2015) Fibrosis--a common pathway to organ injury and failure. N Engl J Med 373:96

    PubMed  Google Scholar 

  • Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J (1997) Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest 100:768–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Mezzanzanica D, Zhang W (2014) MiR-506: a multitasker in suppression of the epithelial-to-mesenchymal transition. RNA Dis 1:e447

    PubMed  PubMed Central  Google Scholar 

  • Trentin PG, Ferreira TP, Arantes AC, Ciambarella BT, Cordeiro RS, Flower RJ, Perretti M, Martins MA, Silva PM (2015) Annexin A1 mimetic peptide controls the inflammatory and fibrotic effects of silica particles in mice. Br J Pharmacol 172:3058–3071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uhal BD (2008) The role of apoptosis in pulmonary fibrosis. Eur Respir Rev 17:138–144

    Google Scholar 

  • Woessner J Jr (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 93:440–447

    CAS  PubMed  Google Scholar 

  • Yang X-P, Li Y, Wang Y, Wang Y, Wang P (2010) β-Tryptase up-regulates vascular endothelial growth factor expression via proteinase-activated receptor-2 and mitogen-activated protein kinase pathways in bone marrow stromal cells in acute myeloid leukemia. Leuk Lymphoma 51:1550–1558

    CAS  PubMed  Google Scholar 

  • Yao J, Qin L, Miao S, Wang X, Wu X (2016) Overexpression of miR-506 suppresses proliferation and promotes apoptosis of osteosarcoma cells by targeting astrocyte elevated gene-1. Oncol Lett 12:1840–1848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin M, Ren X, Zhang X, Luo Y, Wang G, Huang K, Feng S, Bao X, He X, Liang P (2015) Selective killing of lung cancer cells by miRNA-506 molecule through inhibiting NF-κB p65 to evoke reactive oxygen species generation and p53 activation. Oncogene 34:691

    CAS  PubMed  Google Scholar 

  • Zhang HY, Gharaee-Kermani M, Zhang K, Karmiol S, Phan SH (1996) Lung fibroblast alpha-smooth muscle actin expression and contractile phenotype in bleomycin-induced pulmonary fibrosis. Am J Pathol 148:527–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang J, Lu Q, Shen B, Huang X, Shen L, Zheng X, Huang R, Yan J, Guo H (2015) TGFβ1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci Rep 5:11924

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Youth Foundation of the National Natural Science Foundation of China (grant number 81600047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., An, Y., Zhang, X. et al. Experimental pulmonary fibrosis was suppressed by microRNA-506 through NF-kappa-mediated apoptosis and inflammation. Cell Tissue Res 378, 255–265 (2019). https://doi.org/10.1007/s00441-019-03054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03054-2

Keywords

Navigation