Skip to main content

Advertisement

Log in

Npr2 null mutants show initial overshooting followed by reduction of spiral ganglion axon projections combined with near-normal cochleotopic projection

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Npr2 (natriuretic peptide receptor 2) affects bifurcation of neural crest or placode-derived afferents upon entering the brain stem/spinal cord, leading to a lack of either rostral or caudal branches. Previous work has shown that early embryonic growth of cochlear and vestibular afferents is equally affected in this mutant but later work on postnatal Npr2 point mutations suggested some additional effects on the topology of afferent projections and mild functional defects. Using multicolor lipophilic dye tracing, we show that absence of Npr2 has little to no effect on the initial patterning of inner ear afferents with respect to their dorsoventral cochleotopic-specific projections. However, in contrast to control animals, we found a variable degree of embryonic extension of auditory afferents beyond the boundaries of the anterior cochlear nucleus into the cerebellum that emanates only from apical spiral ganglion neurons. Such expansion has previously only been reported for Hox gene mutants and implies an unclear interaction of Hox codes with Npr2-mediated afferent projection patterning to define boundaries. Some vestibular ganglion neurons expand their projections to reach the cochlear apex and the cochlear nuclei, comparable to previous findings in Neurod1 mutant mice. Before birth, such expansions are reduced or lost leading to truncated projections to the anteroventral cochlear nucleus and expansion of low-frequency fibers of the apex to the posteroventral cochlear nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AC:

anterior canal crista

AVCN:

anteroventral cochlear nucleus

CB:

cerebellum

CN:

cochlear nucleus

CO:

cochlea

CoN:

cochlear nerve

CP:

choroid plexus

CVA:

cochleo-vestibular anastomosis

DCN:

dorsal cochlear nucleus

ED:

endolymphatic duct

FN:

facial nerve

FP:

floor plate

HC:

horizontal canal crista

MesV:

mesencephalic trigeminal projection

NG:

nodose ganglion

NVJ:

NeuroVue Jade

NVM:

NeuroVue Maroon

NVR:

NeuroVue Red

PC:

posterior canal crista

PG:

petrosal ganglion

PVCN:

posteroventral cochlear nucleus

r:

rhombomere

RB:

restiform body

S:

saccule

SG:

spiral ganglion

U:

utricle

VAS:

ventral acoustic stria

(a, p) VG:

(anterior, posterior) vestibular ganglion

VN:

vestibular nerve

V:

trigeminal ganglion

Vm:

trigeminal motor neurons

VIII:

octaval ganglion

VII:

facial (geniculate) ganglion

IX:

proximal glossopharyngeal ganglion

X:

proximal vagal ganglion

XI:

transient accessory ganglia

References

  • Booth KT, Azaiez H, Jahan I, Smith RJ, Fritzsch B (2018) Intracellular regulome variability along the organ of Corti: evidence, approaches, challenges and perspective. Front Genet 9:156

  • Chagnaud BP, Engelmann J, Fritzsch B, Glocr JC, Straka H (2017) Sensing external and self-motion with hair cells, a comparison of the lateral line and vestibular systems from a developmental and evolutionary perspective. Brain Behav Evol 90:98–116

  • Dumoulin A, Ter-Avetisyan G, Schmidt H, Rathjen FG (2018) Molecular analysis of sensory axon branching unraveled a cGMP-dependent signaling cascade. Int J Mol Sci 19:e1266

  • Duncan J, Kersigo J, Gray B, Fritzsch B (2011) Combining lipophilic dye, in situ hybridization, immunohistochemistry and histology. J Vis Exp 49:2451

  • Duncan JS, Elliott KL, Kersigo J, Gray B, Fritzsch B (2015) Combining whole-mount in situ hybridization with neuronal tracing and immunohistochemistry. In: Situ Hybridization Methods. Springer, pp 339–352

  • Elliott KL, Kersigo J, Pan N, Jahan I, Fritzsch B (2017) Spiral ganglion neuron projection development to the hindbrain in mice lacking peripheral and/or central target differentiation. Front Neural Circuits 11:25

  • Farago AF, Awatramani RB, Dymecki SM (2006) Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50:205–218

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B (2003) Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia. Brain Res Bull 60:423–433

    Article  PubMed  PubMed Central  Google Scholar 

  • Fritzsch B, Elliott KL (2017) Gene, cell and organ multiplication drives inner ear evolution. Dev Biol 431:3–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritzsch B, López-Schier H (2014) Evolution of polarized hair cells in aquatic vertebrates and their connection to directionally sensitive neurons. In: Flow H. Bleckmann et al.(eds): Flow Sensing in Air and Water. Springer, New York, pp 271–294

  • Fritzsch B, Muirhead K, Feng F, Gray B, Ohlsson-Wilhelm B (2005) Diffusion and imaging properties of three new lipophilic tracers, NeuroVue™ Maroon, NeuroVue™ Red and NeuroVue™ Green and their use for double and triple labeling of neuronal profile. Brain Res Bull 66:249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritzsch B, Pauley S, Feng F, Matei V, Nichols D (2006) The molecular and developmental basis of the evolution of the vertebrate auditory system. Int J Comp Psychol 19:1–25

    Google Scholar 

  • Fritzsch B, Pan N, Jahan I, Duncan JS, Kopecky BJ, Elliott KL, Kersigo J, Yang T (2013) Evolution and development of the tetrapod auditory system: an organ of Corti-centric perspective. Evol Dev 15:63–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Fritzsch B, Pan N, Jahan I, Elliott KL (2015) Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm. Cell Tissue Res 361:7–24

    Article  PubMed  Google Scholar 

  • Fritzsch B, Duncan JS, Kersigo J, Gray B, Elliott KL (2016) Neuroanatomical tracing techniques in the ear: history, state of the art and future developments. In: Sokolowski B (ed) Auditory and Vestibular Research: Methods and Protocols, vol 1427. Springer Science+Business Media, New York, pp 243–262

    Chapter  Google Scholar 

  • Fritzsch B, Elliott KL, Pavlinkova G (2019) Primary sensory map formations reflect unique needs and molecular cues specific to each sensory system. F1000Res 8:345

  • Glover JC, Elliott KL, Erives A, Chizhikov VV, Fritzsch B (2018) Wilhelm His’ lasting insights into hindbrain and cranial ganglia development and evolution. Dev Biol 444:S14–S24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodrich LV (2016) Early development of the spiral ganglion. In: Dabdoub A, Fritzsch B, Fay R, Popper A (eds) The primary auditory neurons of the mammalian cochlea. Springer, New York, pp 11–48

  • Gu C, Rodriguez ER, Reimert DV, Shu T, Fritzsch B, Richards LJ, Kolodkin AL, Ginty DD (2003) Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell 5:45–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahan I, Kersigo J, Pan N, Fritzsch B (2010a) Neurod1 regulates survival and formation of connections in mouse ear and brain. Cell Tissue Res 341:95–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahan I, Pan N, Kersigo J, Fritzsch B (2010b) Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS One 5:e11661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen-Smith H, Gray B, Muirhead K, Ohlsson-Wilhelm B, Fritzsch B (2007) Long-distance three-color neuronal tracing in fixed tissue using NeuroVue dyes. Immunol Investig 36:763–789

    Article  CAS  Google Scholar 

  • Jiang T, Kindt K, Wu DK (2017) Transcription factor Emx2 controls stereociliary bundle orientation of sensory hair cells. Elife 6:e23661

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaiser A, Manley GA (1996) Brainstem cconnections of the macula lagenae in the chicken. J Comp Neurol 374:108–117

    Article  CAS  PubMed  Google Scholar 

  • Karis A, Pata I, van Doorninck JH, Grosveld F, de Zeeuw CI, de Caprona D, Fritzsch B (2001) Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. J Comp Neurol 429:615–630

    Article  CAS  PubMed  Google Scholar 

  • Kersigo J, Pan N, Lederman JD, Chatterjee S, Abel T, Pavlinkova G, Silos-Santiago I, Fritzsch B (2018) A RNAscope whole mount approach that can be combined with immunofluorescence to quantify differential distribution of mRNA. Cell Tissue Res 374:251–262

    Article  CAS  PubMed  Google Scholar 

  • Kopecky B, Santi P, Johnson S, Schmitz H, Fritzsch B (2011) Conditional deletion of N-Myc disrupts neurosensory and non-sensory development of the ear. Dev Dyn 240:1373–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu CC, Appler JM, Houseman EA, Goodrich LV (2011) Developmental profiling of spiral ganglion neurons reveals insights into auditory circuit assembly. J Neurosci 31:10903–10918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu CC, Cao X-J, Wright S, Ma L, Oertel D, Goodrich LV (2014) Mutation of Npr2 leads to blurred tonotopic organization of central auditory circuits in mice. PLoS Genet 10:e1004823

    Article  PubMed  PubMed Central  Google Scholar 

  • Macova I, Pysanenko K, Chumak T, Dvorakova M, Bohuslavova R, Syka J, Fritzsch B, Pavlinkova G (2019) Neurod1 is essential for the primary tonotopic organization and related auditory information processing in the midbrain. J Neurosci 39:984–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoud A, Reed C, Maklad A (2013) Central projections of lagenar primary neurons in the chick. J Comp Neurol 521:3524–3540

    Article  PubMed  Google Scholar 

  • Maklad A, Fritzsch B (2003a) Development of vestibular afferent projections into the hindbrain and their central targets. Brain Res Bull 60:497–510

    Article  PubMed  PubMed Central  Google Scholar 

  • Maklad A, Fritzsch B (2003b) Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice and its development. Brain Res Dev Brain Res 140:223–236

    Article  CAS  PubMed  Google Scholar 

  • Maklad A, Kamel S, Wong E, Fritzsch B (2010) Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice. Cell Tissue Res 340:303–321

    Article  PubMed  PubMed Central  Google Scholar 

  • Malmierca MS (2015) Auditory system. The rat nervous system, 4th edn. Elsevier, pp 865–946

  • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat. Whitney 18:50–60

  • Mao Y, Reiprich S, Wegner M, Fritzsch B (2014) Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear. PLoS One 9:e94580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maricich SM, Xia A, Mathes EL, Wang VY, Oghalai JS, Fritzsch B, Zoghbi HY (2009) Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei. J Neurosci 29:11123–11133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matei V, Pauley S, Kaing S, Rowitch D, Beisel K, Morris K, Feng F, Jones K, Lee J, Fritzsch B (2005) Smaller inner ear sensory epithelia in Neurog1 null mice are related to earlier hair cell cycle exit. Dev Dyn 234:633–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matei V, Feng F, Pauley S, Beisel K, Nichols M, Fritzsch B (2006) Near-infrared laser illumination transforms the fluorescence absorbing X-gal reaction product BCI into a transparent, yet brightly fluorescent substance. Brain Res Bull 70:33–43

    Article  CAS  PubMed  Google Scholar 

  • Muniak MA, Connelly CJ, Suthakar K, Milinkeviciute G, Ayeni FE, Ryugo DK (2016) Central projections of spiral ganglion neurons. In: A Dabdoub, B Fritzsch, R Fay, A Popper (eds). The primary auditory neurons of the mammalian cochlea. Springer, New York, pp 157–190

  • Nichols DH, Pauley S, Jahan I, Beisel KW, Millen KJ, Fritzsch B (2008) Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell Tissue Res 334:339–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osen KK (1969) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 136:453–483

    Article  CAS  PubMed  Google Scholar 

  • Oury F, Murakami Y, Renaud J-S, Pasqualetti M, Charnay P, Ren S-Y, Rijli FM (2006) Hoxa2-and rhombomere-dependent development of the mouse facial somatosensory map. Science 313:1408–1413

    Article  CAS  PubMed  Google Scholar 

  • Pataskar A, Jung J, Smialowski P, Noack F, Calegari F, Straub T, Tiwari VK (2016) NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program. EMBO J 35:24–45

    Article  CAS  PubMed  Google Scholar 

  • Pauley S, Lai E, Fritzsch B (2006) Foxg1 is required for morphogenesis and histogenesis of the mammalian inner ear. Dev Dyn 235:2470–2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruben RJ (1966) Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol Suppl 220:221–244

    Google Scholar 

  • Schmidt H, Werner M, Heppenstall PA, Henning M, Moré MI, Kühbandner S, Lewin GR, Hofmann F, Feil R, Rathjen FG (2002) cGMP-mediated signaling via cGKIα is required for the guidance and connectivity of sensory axons. J Cell Biol 159:489–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt H, Stonkute A, Jüttner R, Schäffer S, Buttgereit J, Feil R, Hofmann F, Rathjen FG (2007) The receptor guanylyl cyclase Npr2 is essential for sensory axon bifurcation within the spinal cord. J Cell Biol 179:331–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt H, Stonkute A, Jüttner R, Koesling D, Friebe A, Rathjen FG (2009) C-type natriuretic peptide (CNP) is a bifurcation factor for sensory neurons. Proc Natl Acad Sci 106:16847–16852

    Article  PubMed  Google Scholar 

  • Schultz JA, Zeller U, Luo ZX (2017) Inner ear labyrinth anatomy of monotremes and implications for mammalian inner ear evolution. J Morphol 278:236–263

    Article  PubMed  Google Scholar 

  • Stefanini M, de Martino C, Zamboni L (1967) Fixation of ejaculated spermatozoa for electron microscopy. Nature 216:173

    Article  CAS  PubMed  Google Scholar 

  • Ter-Avetisyan G, Rathjen FG, Schmidt H (2014) Bifurcation of axons from cranial sensory neurons is disabled in the absence of Npr2-induced cGMP signaling. J Neurosci 34:737–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ter-Avetisyan G, Dumoulin A, Herrel A, Schmidt H, Strump J, Afzal S, Rathjen FG (2018) Loss of axon bifurcation in mesencephalic trigeminal neurons impairs the maximal biting force in Npr2-deficient mice. Front Cell Neurosci 12:153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonniges J, Hansen M, Duncan J, Bassett M, Fritzsch B, Gray B, Easwaran A, Nichols MG (2010) Photo-and bio-physical characterization of novel violet and near-infrared lipophilic fluorophores for neuronal tracing. J Microsc 239:117–134

    CAS  PubMed  Google Scholar 

  • Tröster P, Haseleu J, Petersen J, Drees O, Schmidtko A, Schwaller F, Lewin GR, Ter-Avetisyan G, Winter Y, Peters S (2018) The absence of sensory axon bifurcation affects nociception and termination fields of afferents in the spinal cord. Front Mol Neurosci 11:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji T, Kunieda T (2005) A loss-of-function mutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse. J Biol Chem 280:14288–14292

    Article  CAS  PubMed  Google Scholar 

  • Wolter S, Möhrle D, Schmidt H, Pfeiffer S, Zelle D, Eckert P, Krämer M, Feil R, Pilz PK, Knipper M (2018) GC-B deficient mice with axon bifurcation loss exhibit compromised auditory processing. Front Neural Circuits 12:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang M, Maklad A, Pirvola U, Fritzsch B (2003) Brn3c null mutant mice show long-term, incomplete retention of some afferent inner ear innervation. BMC Neurosci 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang T, Kersigo J, Jahan I, Pan N, Fritzsch B (2011) The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hear Res 278:21–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Kersigo J, Wu S, Fritzsch B, Bassuk AG (2017) Prickle1 regulates neurite outgrowth of apical spiral ganglion neurons but not hair cell polarity in the murine cochlea. PLoS One 12:e0183773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by the NIH (R01 AG060504 to BF) and by the Deutsche Forschungsgemeinschaft (Grant FOR 2060 project SCHM 2371/1 to HS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Fritzsch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, H., Fritzsch, B. Npr2 null mutants show initial overshooting followed by reduction of spiral ganglion axon projections combined with near-normal cochleotopic projection. Cell Tissue Res 378, 15–32 (2019). https://doi.org/10.1007/s00441-019-03050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03050-6

Keywords

Navigation