Skip to main content

Advertisement

Log in

Transplantation of stem cells from umbilical cord blood as therapy for type I diabetes

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In recent years, human umbilical cord blood has emerged as a rich source of stem, stromal and immune cells for cell-based therapy. Among the stem cells from umbilical cord blood, CD45+ multipotent stem cells and CD90+ mesenchymal stem cells have the potential to treat type I diabetes mellitus (T1DM), to correct autoimmune dysfunction and replenish β-cell numbers and function. In this review, we compare the general characteristics of umbilical cord blood-derived multipotent stem cells (UCB-SCs) and umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) and introduce their applications in T1DM. Although there are some differences in surface marker expression between UCB-SCs and UCB-MSCs, the two cell types display similar functions such as suppressing function of stimulated lymphocytes and imparting differentiation potential to insulin-producing cells (IPCs) in the setting of low immunogenicity, thereby providing a promising and safe approach for T1DM therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdi R, Moore R, Sakai S, Donnelly CB, Mounayar M, Sackstein R (2015) Hcell expression on murine MSC licenses pancreatotropism and confers durable reversal of autoimmune diabetes in nod mice. Stem Cells 33:1523–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almici C, Carlo-Stella C, Wagner JE, Rizzoli V (1995) Umbilical cord blood as a source of hematopoietic stem cells: from research to clinical application. Haematologica 80:473–479

    CAS  PubMed  Google Scholar 

  • Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383:69–82

    PubMed  Google Scholar 

  • Barachini S, Trombi L, Danti S, D’Alessandro D, Battolla B, Legitimo A, Nesti C, Mucci I, D’Acunto M, Cascone MG, Lazzeri L, Mattii L, Consolini R, Petrini M (2009) Morpho-functional characterization of human mesenchymal stem cells from umbilical cord blood for potential uses in regenerative medicine. Stem Cells Dev 18:293–305

    PubMed  Google Scholar 

  • Bhandari DR, Seo K-W, Sun B, Seo M-S, Kim H-S, Seo Y-J, Marcin J, Forraz N, Roy HL, Larry D, Colin M, Kang K-S (2011) The simplest method for in vitro β-cell production from human adult stem cells. Differentiation 82:144–152

    CAS  PubMed  Google Scholar 

  • Bieback K, Kern S, Klüter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634

    PubMed  Google Scholar 

  • Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464:1293–1300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, Arny M, Thomas L, Boyse EA (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A 86:3828–3832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruni A, Gala-Lopez B, Pepper AR, Abualhassan NS, Shapiro AJ (2014) Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab Syndr Obes 7:211–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai J, Wu Z, Xu X, Liao L, Chen J, Huang L, Wu W, Luo F, Wu C, Pugliese A, Pileggi A, Ricordi C, Tan J (2016) Umbilical cord mesenchymal stromal cell with autologous bone marrow cell transplantation in established type 1 diabetes: a pilot randomized controlled open-label clinical study to assess safety and impact on insulin secretion. Diabetes Care 39:149–157

    CAS  PubMed  Google Scholar 

  • Cappellesso-Fleury S, Puissant-Lubrano B, Apoil P-A, Titeux M, Winterton P, Casteilla L, Bourin P, Blancher A (2010) Human fibroblasts share immunosuppressive properties with bone marrow mesenchymal stem cells. J Clin Immunol 30:607–619

    PubMed  Google Scholar 

  • Chang J-W, Hung S-P, Wu H-H, Wu W-M, Yang A-H, Tsai H-L, Yang L-Y, Lee OK (2011) Therapeutic effects of umbilical cord blood-derived mesenchymal stem cell transplantation in experimental lupus nephritis. Cell Transplant 20:245–257

    PubMed  Google Scholar 

  • Chatenoud L, Warncke K, Ziegler A-G (2012) Clinical immunologic interventions for the treatment of type 1 diabetes. Cold Spring Harb Perspect Med 2

    PubMed  PubMed Central  Google Scholar 

  • Davies JE, Walker JT, Keating A (2017) Concise review: Wharton’s jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl Med 6:1620–1630

    PubMed  PubMed Central  Google Scholar 

  • Delgado E, Perez-Basterrechea M, Suarez-Alvarez B, Zhou H, Revuelta EM, Garcia-Gala JM, Perez S, Alvarez-Viejo M, Menendez E, Lopez-Larrea C, Tang R, Zhu Z, Hu W, Moss T, Guindi E, Otero J, Zhao Y (2015) Modulation of autoimmune t-cell memory by stem cell educator therapy: phase 1/2 clinical trial. EBioMedicine 2:2024–2036

    PubMed  PubMed Central  Google Scholar 

  • Denner L, Bodenburg Y, Zhao JG, Howe M, Cappo J, Tilton RG, Copland JA, Forraz N, McGuckin C, Urban R (2007) Directed engineering of umbilical cord blood stem cells to produce C-peptide and insulin. Cell Prolif 40:367–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317

    CAS  PubMed  Google Scholar 

  • Erices AA, Allers CI, Conget PA, Rojas CV, Minguell JJ (2003) Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodeficient mice after systemic infusion. Cell Transplant 12:555–561

    PubMed  Google Scholar 

  • Gao F, Wu D, Hu Y, Jin G (2008a) Extracellular matrix gel is necessary for in vitro cultivation of insulin producing cells from human umbilical cord blood derived mesenchymal stem cells. Chin Med J 121:811–818

    CAS  PubMed  Google Scholar 

  • Gao F, Wu D-Q, Hu Y-H, Jin G-X, Li G-D, Sun T-W, Li F-J (2008b) In vitro cultivation of islet-like cell clusters from human umbilical cord blood-derived mesenchymal stem cells. Transl Res 151:293–302

    CAS  PubMed  Google Scholar 

  • Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, Esperou H, Thierry D, Socie G, Lehn P (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321:1174–1178

    CAS  PubMed  Google Scholar 

  • Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA (2001) Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant 7:581–588

    CAS  PubMed  Google Scholar 

  • Haller MJ, Viener H-L, Wasserfall C, Brusko T, Atkinson MA, Schatz DA (2008) Autologous umbilical cord blood infusion for type 1 diabetes. Exp Hematol 36:710–715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haller MJ, Wasserfall CH, Hulme MA, Cintron M, Brusko TM, McGrail KM, Sumrall TM, Wingard JR, Theriaque DW, Shuster JJ, Atkinson MA, Schatz DA (2011) Autologous umbilical cord blood transfusion in young children with type 1 diabetes fails to preserve C-peptide. Diabetes Care 34:2567–2569

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Li H, Zhang F, Zhang G, Tang X, Zhu T, Huang N, Li X (2016) Immunotherapeutic effects of lymphocytes co-cultured with human cord blood-derived multipotent stem cells transplantation on APP/PS1 mice. Behav Brain Res 315:94–102

    PubMed  Google Scholar 

  • Hematti P, Kim J, Stein AP, Kaufman D (2013) Potential role of mesenchymal stromal cells in pancreatic islet transplantation. Transplant Rev (Orlando) 27:21–29

    Google Scholar 

  • Hisanaga E, Park K-Y, Yamada S, Hashimoto H, Takeuchi T, Mori M, Seno M, Umezawa K, Takei I, Kojima I (2008) A simple method to induce differentiation of murine bone marrow mesenchymal cells to insulin-producing cells using conophylline and betacellulin-delta4. Endocr J 55:535–543

    CAS  PubMed  Google Scholar 

  • Hu Y-H, Wu D-Q, Gao F, Li G-D, Yao L, Zhang X-C (2009) A secretory function of human insulin-producing cells in vivo. HBPD Int 8:255–260

    CAS  PubMed  Google Scholar 

  • Hu J, Yu X, Wang Z, Wang F, Wang L, Gao H, Chen Y, Zhao W, Jia Z, Yan S, Wang Y (2013) Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocr J 60:347–357

    CAS  PubMed  Google Scholar 

  • Hu J, Wang Y, Wang F, Wang L, Yu X, Sun R, Wang Z, Wang L, Gao H, Fu Z, Zhao W, Yan S (2015) Effect and mechanisms of human Wharton’s jelly-derived mesenchymal stem cells on type 1 diabetes in NOD model. Endocrine 48:124–134

    CAS  PubMed  Google Scholar 

  • Jaing T-H (2014) Umbilical cord blood: a trustworthy source of multipotent stem cells for regenerative medicine. Cell Transplant 23:493–496

    PubMed  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    CAS  PubMed  Google Scholar 

  • Jin HJ, Bae YK, Kim M, Kwon S-J, Jeon HB, Choi SJ, Kim SW, Yang YS, Oh W, Chang JW (2013) Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci 14:17986–18001

    PubMed  PubMed Central  Google Scholar 

  • Jung J-A, Yoon Y-D, Lee H-W, Kang S-R, Han S-K (2018) Comparison of human umbilical cord blood-derived mesenchymal stem cells with healthy fibroblasts on wound-healing activity of diabetic fibroblasts. Int Wound J 15:133–139

    PubMed  Google Scholar 

  • Kang S-Y, Park D-E, Song W-J, Bae B-R, Lee J-W, Sohn K-H, Lee H-S, Kang H-R, Park H-W, Chang Y-S, Choi S-J, Oh W-I, Min K-U, Cho S-H (2017) Immunologic regulatory effects of human umbilical cord blood-derived mesenchymal stem cells in a murine ovalbumin asthma model. Clin Exp Allergy 47:937–945

    CAS  PubMed  Google Scholar 

  • Kebriaei P, Isola L, Bahceci E, Holland K, Rowley S, McGuirk J, Devetten M, Jansen J, Herzig R, Schuster M, Monroy R, Uberti J (2009) Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant 15:804–811

    CAS  PubMed  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    CAS  PubMed  Google Scholar 

  • Kim J-Y, Jeon HB, Yang YS, Oh W, Chang JW (2010) Application of human umbilical cord blood-derived mesenchymal stem cells in disease models. World J Stem Cells 2:34–38

    PubMed  PubMed Central  Google Scholar 

  • Kim H-S, Shin T-H, Lee B-C, Yu K-R, Seo Y, Lee S, Seo M-S, Hong I-S, Choi SW, Seo K-W, Núñez G, Park J-H, Kang K-S (2013) Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2. Gastroenterology 145:1392–1403.e1–8

    CAS  PubMed  Google Scholar 

  • Kim H-S, Yun J-W, Shin T-H, Lee S-H, Lee B-C, Yu K-R, Seo Y, Lee S, Kang T-W, Choi SW, Seo K-W, Kang K-S (2015) Human umbilical cord blood mesenchymal stem cell-derived PGE2 and TGF-β1 alleviate atopic dermatitis by reducing mast cell degranulation. Stem Cells 33:1254–1266

    CAS  PubMed  Google Scholar 

  • Koblas T, Harman SM, Saudek F (2005) The application of umbilical cord blood cells in the treatment of diabetes mellitus. Rev Diabet Stud 2:228–234

    PubMed  Google Scholar 

  • Koblas T, Zacharovová K, Berková Z, Leontovic I, Dovolilová E, Zámecník L, Saudek F (2009) In vivo differentiation of human umbilical cord blood-derived cells into insulin-producing beta cells. Folia Biol (Praha) 55:224–232

    CAS  Google Scholar 

  • Kögler G, Sensken S, Wernet P (2006) Comparative generation and characterization of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood. Exp Hematol 34:1589–1595

    PubMed  Google Scholar 

  • Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringdén O (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586

    PubMed  Google Scholar 

  • Lee C, Shim S, Jang H, Myung H, Lee J, Bae C-H, Myung JK, Kim M-J, Lee SB, Jang W-S, Lee S-J, Kim H-Y, Lee S-S, Park S (2017a) Human umbilical cord blood-derived mesenchymal stromal cells and small intestinal submucosa hydrogel composite promotes combined radiation-wound healing of mice. Cytotherapy 19:1048–1059

    CAS  PubMed  Google Scholar 

  • Lee YS, Sah SK, Lee JH, Seo K-W, Kang K-S, Kim T-Y (2017b) Human umbilical cord blood-derived mesenchymal stem cells ameliorate psoriasis-like skin inflammation in mice. Biochem Biophys Rep 9:281–288

    PubMed  Google Scholar 

  • Li X, Li H, Bi J, Chen Y, Jain S, Zhao Y (2012) Human cord blood-derived multipotent stem cells (CB-SCs) treated with all-trans-retinoic acid (ATRA) give rise to dopamine neurons. Biochem Biophys Res Commun 419:110–116

    CAS  PubMed  Google Scholar 

  • Li X-Y, Zheng Z-H, Li X-Y, Guo J, Zhang Y, Li H, Wang Y-W, Ren J, Wu Z-B (2013) Treatment of foot disease in patients with type 2 diabetes mellitus using human umbilical cord blood mesenchymal stem cells: response and correction of immunological anomalies. Curr Pharm Des 19:4893–4899

    CAS  PubMed  Google Scholar 

  • Li Y, Yan B, Wang H, Li H, Li Q, Zhao D, Chen Y, Zhang Y, Li W, Zhang J, Wang S, Shen J, Li Y, Guindi E, Zhao Y (2015) Hair regrowth in alopecia areata patients following stem cell educator therapy. BMC Med 13:87

    PubMed  PubMed Central  Google Scholar 

  • Li L, Hui H, Jia X, Zhang J, Liu Y, Xu Q, Zhu D (2016) Infusion with human bone marrow-derived mesenchymal stem cells improves β-cell function in patients and non-obese mice with severe diabetes. Sci Rep 6:37894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mabed M (2011) The potential utility of bone marrow or umbilical cord blood transplantation for the treatment of type I diabetes mellitus. Biol Blood Marrow Transplant 17:455–464

    PubMed  Google Scholar 

  • Markov V, Kusumi K, Tadesse MG, William DA, Hall DM, Lounev V, Carlton A, Leonard J, Cohen RI, Rappaport EF, Saitta B (2007) Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles. Stem Cells Dev 16:53–73

    CAS  PubMed  Google Scholar 

  • Montanucci P, Alunno A, Basta G, Bistoni O, Pescara T, Caterbi S, Pennoni I, Bini V, Gerli R, Calafiore R (2016) Restoration of t cell substes of patients with type 1 diabetes mellitus by microencapsulated human umbilical cord Wharton jelly-derived mesenchymal stem cells: an in vitro study. Clin Immunol 163:34–41

    CAS  PubMed  Google Scholar 

  • Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K i, Eguchi H, Onitsuka I, Matsui K, Imaizumi T (2000) Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 105:1527–1536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh W, Kim D-S, Yang YS, Lee JK (2008) Immunological properties of umbilical cord blood-derived mesenchymal stromal cells. Cell Immunol 251:116–123

    CAS  PubMed  Google Scholar 

  • Park JH, Hwang I, Hwang SH, Han H, Ha H (2012) Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine action. Diabetes Res Clin Pract 98:465–473

    CAS  PubMed  Google Scholar 

  • Phuc PV, Nhung TH, Loan DTT, Chung DC, Ngoc PK (2011) Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells. In Vitro Cell Dev Biol Anim 47:54–63

    CAS  PubMed  Google Scholar 

  • Prabakar KR, Domínguez-Bendala J, Molano RD, Pileggi A, Villate S, Ricordi C, Inverardi L (2012) Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells. Cell Transplant 21:1321–1339

    PubMed  Google Scholar 

  • Reddi AS, Kuppasani K, Ende N (2010) Human umbilical cord blood as an emerging stem cell therapy for diabetes mellitus. Curr Stem Cell Res Ther 5:356–361

    CAS  PubMed  Google Scholar 

  • Reddi AS, Kothari N, Kuppasani K, Ende N (2015) Human umbilical cord blood cells and diabetes mellitus: recent advances. Curr Stem Cell Res Ther 10:266–270

    CAS  PubMed  Google Scholar 

  • Sahraneshin Samani F, Ebrahimi M, Zandieh T, Khoshchehreh R, Baghaban Eslaminejad M, Aghdami N, Baharvand H (2015) In vitro differentiation of human umbilical cord blood CD133(+)cells into insulin producing cells in co-culture with rat pancreatic mesenchymal stem cells. Cell J 17:211–220

    PubMed  PubMed Central  Google Scholar 

  • Salazar KD, Lankford SM, Brody AR (2009) Mesenchymal stem cells produce Wnt isoforms and TGF-beta1 that mediate proliferation and procollagen expression by lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 297:L1002–L1011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, Muroi K, Ozawa K (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109:228–234

    CAS  PubMed  Google Scholar 

  • Secco M, Moreira YB, Zucconi E, Vieira NM, Jazedje T, Muotri AR, Okamoto OK, Verjovski-Almeida S, Zatz M (2009) Gene expression profile of mesenchymal stem cells from paired umbilical cord units: cord is different from blood. Stem Cell Rev 5:387–401

    CAS  PubMed Central  Google Scholar 

  • Shin T-H, Kim H-S, Kang T-W, Lee B-C, Lee H-Y, Kim Y-J, Shin J-H, Seo Y, Won Choi S, Lee S, Shin K, Seo K-W, Kang K-S (2016) Human umbilical cord blood-stem cells direct macrophage polarization and block inflammasome activation to alleviate rheumatoid arthritis. Cell Death Dis 7:e2524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sordi V, Pellegrini S, Krampera M, Marchetti P, Pessina A, Ciardelli G, Fadini G, Pintus C, Pantè G, Piemonti L (2017) Stem cells to restore insulin production and cure diabetes. Nutr Metab Cardiovasc Dis 27:583–600

    CAS  PubMed  Google Scholar 

  • Sun L, Wang D, Liang J, Zhang H, Feng X, Wang H, Hua B, Liu B, Ye S, Hu X, Xu W, Zeng X, Hou Y, Gilkeson GS, Silver RM, Lu L, Shi S (2010) Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 62:2467–2475

    CAS  PubMed  Google Scholar 

  • Sun B, Liu R, Xiao Z-D (2015) Induction of insulin-producing cells from umbilical cord blood-derived stromal cells by activation of the c-met/HGF axis. Develop Growth Differ 57:353–361

    CAS  Google Scholar 

  • Van Pham P, Thi-My Nguyen P, Thai-Quynh Nguyen A, Minh Pham V, Nguyen-Tu Bui A, Thi-Tung Dang L, Gia Nguyen K, Kim Phan N (2014) Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells by PDX-1 mRNA transfection. Differentiation 87:200–208

    CAS  PubMed  Google Scholar 

  • von Bonin M, Stölzel F, Goedecke A, Richter K, Wuschek N, Hölig K, Platzbecker U, Illmer T, Schaich M, Schetelig J, Kiani A, Ordemann R, Ehninger G, Schmitz M, Bornhäuser M (2009) Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant 43:245–251

    Google Scholar 

  • Wang M, Yang Y, Yang D, Luo F, Liang W, Guo S, Xu J (2009) The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology 126:220–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang L, Cong X, Liu G, Zhou J, Bai B, Li Y, Bai W, Li M, Ji H, Zhu D, Wu M, Liu Y (2013) Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem Cells Dev 22:3192–3202

    CAS  PubMed  Google Scholar 

  • Wang D, Li J, Zhang Y, Zhang M, Chen J, Li X, Hu X, Jiang S, Shi S, Sun L (2014) Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study. Arthritis Res Ther 16:R79

    PubMed  PubMed Central  Google Scholar 

  • Willcox A, Gillespie KM (2016) Histology of type 1 diabetes pancreas. Methods Mol Biol 1433:105–117

    PubMed  Google Scholar 

  • Wu K-H, Chan C-K, Tsai C, Chang Y-H, Sieber M, Chiu T-H, Ho M, Peng C-T, Wu H-P, Huang J-L (2011) Effective treatment of severe steroid-resistant acute graft-versus-host disease with umbilical cord-derived mesenchymal stem cells. Transplantation 91:1412–1416

    PubMed  Google Scholar 

  • Xv J, Ming Q, Wang X, Zhang W, Li Z, Wang S, Li Y, Li L (2017) Mesenchymal stem cells moderate immune response of type 1 diabetes. Cell Tissue Res 368:239–248

    CAS  PubMed  Google Scholar 

  • Yoshida S, Ishikawa F, Kawano N, Shimoda K, Nagafuchi S, Shimoda S, Yasukawa M, Kanemaru T, Ishibashi H, Shultz LD, Harada M (2005) Human cord blood-derived cells generate insulin-producing cells in vivo. Stem Cells 23:1409–1416

    PubMed  Google Scholar 

  • Zhao Y (2012) Stem cell educator therapy and induction of immune balance. Curr Diab Rep 12:517–523

    PubMed  Google Scholar 

  • Zhao Y, Mazzone T (2010) Human cord blood stem cells and the journey to a cure for type 1 diabetes. Autoimmun Rev 10:103–107

    CAS  PubMed  Google Scholar 

  • Zhao Y, Wang H, Mazzone T (2006) Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp Cell Res 312:2454–2464

    CAS  PubMed  Google Scholar 

  • Zhao Y, Huang Z, Qi M, Lazzarini P, Mazzone T (2007) Immune regulation of T lymphocyte by a newly characterized human umbilical cord blood stem cell. Immunol Lett 108:78–87

    CAS  PubMed  Google Scholar 

  • Zhao Y, Lin B, Darflinger R, Zhang Y, Holterman MJ, Skidgel RA (2009) Human cord blood stem cell-modulated regulatory T lymphocytes reverse the autoimmune-caused type 1 diabetes in nonobese diabetic (NOD) mice. PLoS One 4:e4226

    PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Lin B, Dingeldein M, Guo C, Hwang D, Holterman MJ (2010) New type of human blood stem cell: a double-edged sword for the treatment of type 1 diabetes. Transl Res 155:211–216

    CAS  PubMed  Google Scholar 

  • Zhao Y, Jiang Z, Zhao T, Ye M, Hu C, Yin Z, Li H, Zhang Y, Diao Y, Li Y, Chen Y, Sun X, Fisk MB, Skidgel R, Holterman M, Prabhakar B, Mazzone T (2012) Reversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cells. BMC Med 10(3)

  • Zhao Q-S, Xia N, Zhao N, Li M, Bi C-L, Zhu Q, Qiao G-F, Cheng Z-F (2013a) Localization of human mesenchymal stem cells from umbilical cord blood and their role in repair of diabetic foot ulcers in rats. Int J Biol Sci 10:80–89

    PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Jiang Z, Zhao T, Ye M, Hu C, Zhou H, Yin Z, Chen Y, Zhang Y, Wang S, Shen J, Thaker H, Jain S, Li Y, Diao Y, Chen Y, Sun X, Fisk MB, Li H (2013b) Targeting insulin resistance in type 2 diabetes via immune modulation of cord blood-derived multipotent stem cells (CB-SCs) in stem cell educator therapy: phase I/II clinical trial. BMC Med 11:160

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Juvenile Diabetes Research Foundation (Grant No. 17-2013-288), NIH (Grant No. 1DP2CA195763-01) and Juvenile Diabetes Research Foundation (Grant No. 17-2013-491).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. T. Lakey.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stiner, R., Alexander, M., Liu, G. et al. Transplantation of stem cells from umbilical cord blood as therapy for type I diabetes. Cell Tissue Res 378, 155–162 (2019). https://doi.org/10.1007/s00441-019-03046-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03046-2

Keywords

Navigation