Sponge digestive system diversity and evolution: filter feeding to carnivory


Sponges are an ancient basal life form, so understanding their evolution is key to understanding all metazoan evolution. Sponges have very unusual feeding mechanisms, with an intricate network of progressively optimized filtration units: from the simple choanocyte lining of a central cavity, or spongocoel, to more complex chambers and canals. Furthermore, in a single evolutionary event, a group of sponges transitioned to carnivory. This major evolutionary transition involved replacing the filter-feeding apparatus with mobile phagocytic cells that migrate collectively towards the trapped prey. Here, we focus on the diversity and evolution of sponge nutrition systems and the amazing adaptation to carnivory.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Bergquist PR (1978) Sponges. Hutchinson, London & University of California Press, Berkeley & Los Angeles, pp 1–268

  2. Cavalcanti FF, Klautau M (2011) Solenoid: a new aquiferous system to Porifera. Zoomorphology 130:255–260. https://doi.org/10.1007/s00435-011-0139-7

    Article  Google Scholar 

  3. Cavalier-Smith T (2017) Origin of animal multicellularity: precursors, causes, consequences—the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. Philos Trans R Soc B 372:20150476. https://doi.org/10.1098/rstb.2015.0476

    Article  Google Scholar 

  4. Diaz J (1979) Variations, différenciations et fonctions des catégories cellulaires de la démosponge d’eaux saumâtres, Suberites massa Nardo, au cours du cycle biologique annuel et dans des conditions expérimentales. Docteur d’Etat Mention Sciences, Université des sciences et techniques du Languedoc

  5. Dupont S, Corre E, Li Y et al (2013) First insights into the microbiome of a carnivorous sponge. FEMS Microbiol Ecol 86:520–531. https://doi.org/10.1111/1574-6941.12178

    Article  CAS  PubMed  Google Scholar 

  6. Dupont S, Carre-Mlouka A, Domart-Coulon I et al (2014) Exploring cultivable Bacteria from the prokaryotic community associated with the carnivorous sponge Asbestopluma hypogea. FEMS Microbiol Ecol 88:160–174. https://doi.org/10.1111/1574-6941.12279

    Article  CAS  PubMed  Google Scholar 

  7. Fukushima K, Fang X, Alvarez-Ponce D et al (2017) Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nat Ecol Evolut 1:0059. https://doi.org/10.1038/s41559-016-0059

    Article  Google Scholar 

  8. Funayama N (2013) The stem cell system in demosponges: suggested involvement of two types of cells: archeocytes (active stem cells) and choanocytes (food-entrapping flagellated cells). Dev Genes Evol 223:23–38. https://doi.org/10.1007/s00427-012-0417-5

    Article  PubMed  Google Scholar 

  9. Gober JW, Alley MR, Shapiro L (1991) Positional information during Caulobacter cell differentiation. Curr Opin Genet Dev 1:324–329

    Article  CAS  PubMed  Google Scholar 

  10. Hahn-Keser B, Stockem W (1998) Intracellular pathways and degradation of endosomal contents in basal epithelial cells of freshwater sponges (Porifera, Spongillidae). Zoomorphology 117:223–236. https://doi.org/10.1007/s004350050047

    Article  Google Scholar 

  11. Hestetun JT, Dahle H, Jørgensen SL et al (2016) The microbiome and occurrence of methanotrophy in carnivorous sponges. Front Microbiol 7:1781. https://doi.org/10.3389/fmicb.2016.01781

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hestetun JT, Tompkins-Macdonald G, Rapp HT (2017) A review of carnivorous sponges (Porifera: Cladorhizidae) from the boreal North Atlantic and Arctic. Zool J Linnean Soc 181:1–69. https://doi.org/10.1093/zoolinnean/zlw022

    Article  Google Scholar 

  13. Krasko A, Gamulin V, Seack J et al (1997) Cathepsin, a major protease of the marine sponge Geodia cydonium: purification of the enzyme and molecular cloning of cDNA. Mol Mar Biol Biotechnol 6:296–307

    CAS  PubMed  Google Scholar 

  14. Leys SP, Mackie GO, Reiswig HM (2007) The biology of glass sponges. Adv Mar Biol 52:1–145. https://doi.org/10.1016/S0065-2881(06)52001-2

    Article  CAS  PubMed  Google Scholar 

  15. Martinand-Mari C, Vacelet J, Nickel M et al (2012) Cell death and renewal during prey capture and digestion in the carnivorous sponge Asbestopluma hypogea (Porifera: Poecilosclerida). J Exp Biol 215:3937–3943. https://doi.org/10.1242/jeb.072371

    Article  PubMed  Google Scholar 

  16. Monniot C, Monniot F (1975) Abyssal tunicates: an ecological paradox. Ann Inst océanogr 51(1):99–129

    Google Scholar 

  17. Monniot C, Monniot F (1991) Découverte d’une nouvelle lignée évolutive chez les ascidies de grande profondeur : une Ascidiidae carnivore. C R Acad Sci Paris III:383–388

    Google Scholar 

  18. Perez T, Ruiz C (2018) Description of the first Caribbean Oscarellidae (Porifera: Homoscleromorpha). Zootaxa 4369:501–514. https://doi.org/10.11646/zootaxa.4369.4.3

    Article  PubMed  Google Scholar 

  19. Pett W, Adamski M, Adamska M et al (2019) The role of homology and orthology in the phylogenomic analysis of metazoan gene content. Mol Biol Evol. https://doi.org/10.1093/molbev/msz013

  20. Riesgo A, Taylor C, Leys SP (2007) Reproduction in a carnivorous sponge: the significance of the absence of an aquiferous system to the sponge body plan. Evol Dev 9:618–631. https://doi.org/10.1111/j.1525-142X.2007.00200.x

    Article  PubMed  Google Scholar 

  21. Simion P, Philippe H, Baurain D et al (2017) A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr Biol 27:958–967. https://doi.org/10.1016/j.cub.2017.02.031

    Article  CAS  PubMed  Google Scholar 

  22. Srivastava M, Simakov O, Chapman J et al (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–726. https://doi.org/10.1038/nature09201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vacelet J, Boury-Esnault N (1995) Carnivorous sponges. Nature 373(6512):333–335

    Article  CAS  Google Scholar 

  24. Vacelet J, Duport E (2004) Prey capture and digestion in the carnivorous sponge Asbestopluma hypogea (Porifera: Demospongiae). Zoomorphology 123:179–190. https://doi.org/10.1007/s00435-004-0100-0

    Article  Google Scholar 

  25. Verhoeven JTP, Dufour SC (2017) Microbiomes of the Arctic carnivorous sponges Chondrocladia grandis and Cladorhiza oxeata suggest a specific, but differential involvement of bacterial associates. Arctic Sci 4:186–204. https://doi.org/10.1139/as-2017-0015

    Article  Google Scholar 

  26. Willenz P (1980) Kinetic and morphological aspect of particle ingestion by the freshwater sponge Ephydatia fluviatilis L. In: Smith DC, Tiffon Y (eds) Nutrition in the lower Metazoa. Pergamon Press, Oxford & New York

    Google Scholar 

Download references


We thank Laurence Meslin (CNRS, “Plateforme Communication Scientifique Visuelle – ISEM”), for the drawing and elaborating the figures. For the transcriptomic data, we benefited from the Montpellier Bioinformatics Biodiversity platform supported by the LabEx CeMEB, an ANR “Investissements d’avenir” program (ANR-10-LABX-04-01).

Author information



Corresponding authors

Correspondence to Jean Vacelet or Stephen Baghdiguian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Godefroy, N., Le Goff, E., Martinand-Mari, C. et al. Sponge digestive system diversity and evolution: filter feeding to carnivory. Cell Tissue Res 377, 341–351 (2019). https://doi.org/10.1007/s00441-019-03032-8

Download citation


  • Sponge
  • Porifera
  • Evolution
  • Choanocyte
  • Filtration
  • Carnivory