Skip to main content
Log in

Tyrosine hydroxylase-immunoreactive neurons in the mushroom body of the field cricket, Gryllus bimaculatus

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The mushroom body of the insect brain participates in processing and integrating multimodal sensory information and in various forms of learning. In the field cricket, Gryllus bimaculatus, dopamine plays a crucial role in aversive memory formation. However, the morphologies of dopamine neurons projecting to the mushroom body and their potential target neurons, the Kenyon cells, have not been characterized. Golgi impregnations revealed two classes of Kenyon cells (types I and II) and five different types of extrinsic fibers in the mushroom body. Type I cells, which are further divided into two subtypes (types I core and I surface), extend their dendrites into the anterior calyx, whereas type II cells extend many bushy dendritic branches into the posterior calyx. Axons of the two classes bifurcate between the pedunculus and lobes to form the vertical, medial and γ lobes. Immunocytochemistry to tyrosine hydroxylase (TH), a rate-limiting enzyme in dopamine biosynthesis, revealed the following four distinct classes of neurons: (1) TH-SLP projecting to the distal vertical lobe; (2) TH-IP1 extending to the medial and γ lobes; (3) TH-IP2 projecting to the basal vertical lobe; and (4) a multiglomerular projection neuron invading the anterior calyx and the lateral horn (TH-MPN). We previously proposed a model in the field cricket in which the efficiency of synapses from Kenyon cells transmitting a relevant sensory stimulus to output neurons commanding an appropriate behavioral reaction can be modified by dopaminergic neurons mediating aversive signals and here, we provide putative neural substrates for the cricket’s aversive learning. These will be instrumental in understanding the principle of aversive memory formation in this model species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aso Y, Siwanowicz I, Bräcker L, Ito K, Kitamoto T, Tanimoto H (2010) Specific dopaminergic neurons for the formation of labile aversive memory. Curr Biol 20:1445–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aso Y, Herb A, Ogueta M, Siwanowicz I, Templier T, Friedrich AB, Ito K, Scholz H, Tanimoto H (2012) Three dopamine pathways induce aversive odor memories with different stability. PLoS Genet 8:e1002768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo T-TB, Dionne H, Abbott LF, Axel R, Tanimoto H, Rubin GM (2014) The neuronal architecture of the mushroom body provides a logic for associative learning. eLife 3:e04577

    Article  PubMed  PubMed Central  Google Scholar 

  • Awata H, Watanabe T, Hamanaka Y, Mito T, Noji S, Mizunami M (2015) Knockout crickets for the study of learning and memory: dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets. Sci Rep 5:15885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awata H, Wakuda R, Ishimaru Y, Matsuoka Y, Terao K, Katata S, Matsumoto Y, Hamanaka Y, Noji S, Mito T, Mizunami M (2016) Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies. Sci Rep 6:29696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balling A, Technau GM, Heisenberg M (1987) Are the structural changes in adult Drosophila mushroom bodies memory traces? Studies on biochemical learning mutants. J Neurogenet 4:65–73

    Article  CAS  PubMed  Google Scholar 

  • Blenau W, Baumann A (2001) Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera. Arch Insect Biochem Physiol 48:13–38

    Article  CAS  PubMed  Google Scholar 

  • Burke CJ, Huetteroth W, Owald D, Perisse E, Krashes MJ, Das G, Gohl D, Silies M, Certel S, Waddell S (2012) Layered reward signalling through octopamine and dopamine in Drosophila. Nature 492:433–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claridge-Chang A, Roorda RD, Vrontou E, Sjulson L, Li H, Hirsh J, Miesenböck G (2009) Writing memories with light-addressable reinforcement circuitry. Cell 139:405–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cognigni P, Felsenberg J, Waddell S (2018) Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila. Curr Opin Neurobiol 49:51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denker M, Finke R, Schaupp F, Grün S, Menzel R (2010) Neural correlates of odor learning in the honeybee antennal lobe. Eur J Neurosci 31:119–133

    Article  PubMed  Google Scholar 

  • Frambach I, Schürmann F-W (2004) Separate distribution of deutocerebral projection neurons in the mushroom bodies of the cricket brain. Acta Biol Hung 55:21–29

    Article  PubMed  Google Scholar 

  • Friggi-Grelin F, Coulom H, Meller M, Gomez D, Hirsh J, Birman S (2003) Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J Neurobiol 54:618–627

    Article  CAS  PubMed  Google Scholar 

  • Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A 193:801–824

    Article  Google Scholar 

  • Hamada A, Miyawaki K, Honda-sumi E, Tomioka K, Mito T, Ohuchi H, Noji S (2009) Loss-of-function analyses of the fragile X-related and dopamine receptor genes by RNA interference in the cricket Gryllus bimaculatus. Dev Dyn 238:2025–2033

    Article  CAS  PubMed  Google Scholar 

  • Hamanaka Y, Minoura R, Nishino H, Miura T, Mizunami M (2016) Dopamine- and tyrosine hydroxylase-immunoreactive neurons in the brain of the American cockroach, Periplaneta americana. PLoS ONE 11:e0160531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275

    Article  CAS  Google Scholar 

  • Hige T (2018) What can tiny mushrooms in fruit flies tell us about learning and memory? Neurosci Res 129:8–16

    Article  PubMed  Google Scholar 

  • Hinke W (1961) Das relative postembryonale Wachstum der Hirnteile von Culex pipiens, Drosophila melanogaster und Drosophila mutanten. Z Morph Ökol Tiere 50:81–118

    Article  Google Scholar 

  • Hörner M, Spörhase-Eichmann U, Helle J, Venus B, Schürmann F-W (1995) The distribution of neurones immunoreactive for ß-tyrosine hydroxylase, dopamine and serotonin in the ventral nerve cord of the cricket, Gryllus bimaculatus. Cell Tissue Res 280:583–604

    Article  Google Scholar 

  • Ito K, Shinomiya K, Ito M, Armstrong JD, Boyan G, Hartenstein V, Harzsch S, Heisenberg M, Homberg U, Jenett A, Keshishian H, Restifo LL, Rössler W, Simpson JH, Strausfeld NJ, Strauss R, Vosshall LB (2014) A systematic nomenclature for the insect brain. Neuron 81:755–765

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Plaçais PY, Yamagata N, Pfeiffer BD, Aso Y, Friedrich AB, Siwanowicz I, Rubin GM, Preat T, Tanimoto H (2012) A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature 488:512–516

    Article  CAS  PubMed  Google Scholar 

  • Malaterre J, Strambi C, Chiang A-S, Aouane A, Strambi A, Cayre M (2002) Development of cricket mushroom bodies. J Comp Neurol 452:215–227

    Article  PubMed  Google Scholar 

  • Mao Z, Davis RL (2009) Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front Neural Circuits 3:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto H, Tian J, Uchida N, Watabe-Uchida M (2016) Midbrain dopamine neurons signal aversion in a reward-context-dependent manner. eLife 5:e17328

    Article  PubMed  PubMed Central  Google Scholar 

  • Menzel R, Leboulle G, Eisenhardt D (2006) Small brains, bright minds. Cell 124:237–239

    Article  CAS  PubMed  Google Scholar 

  • Mizunami M, Matsumoto Y (2010) Roles of aminergic neurons in formation and recall of associative memory in crickets. Front Behav Neurosci 4:172

    PubMed  PubMed Central  Google Scholar 

  • Mizunami M, Iwasaki M, Okada R, Nishikawa M (1998) Topography of modular subunits in the mushroom bodies of the cockroach. J Comp Neurol 399:153–161

    Article  CAS  PubMed  Google Scholar 

  • Mizunami M, Yokohari F, Takahata M (1999) Exploration into the adaptive design of the arthropod “microbrain”. Zool Sci 16:703–709

    Article  Google Scholar 

  • Mizunami M, Yokohari F, Takahata M (2004) Further exploration into the adaptive design of the arthropod “microbrain”: I. Sensory and memory-processing systems. Zool Sci 21:1141–1151

    Article  PubMed  Google Scholar 

  • Mizunami M, Unoki S, Mori Y, Hirashima D, Hatano A, Matsumoto Y (2009) Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect. BMC Biol 7:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizunami M, Matsumoto Y, Watanabe H, Nishino H (2013) Olfactory and visual learning in cockroaches and crickets. In: Menzel R, Benjamin P (eds) Invertebrate learning and memory. Academic Press, San Diego, pp 549–560

    Chapter  Google Scholar 

  • Mizunami M, Hamanaka Y, Nishino H (2015) Toward elucidating diversity of neural mechanisms underlying insect learning. Zool Lett 1:8

    Article  Google Scholar 

  • Mobbs PG (1982) The brain of the honeybee Apis mellifera. I. The connections and spatial organization of the mushroom bodies. Philos Trans R Soc Lond B 298:309–354

    Article  Google Scholar 

  • Nakatani Y, Matsumoto Y, Mori Y, Hirashima D, Nishino H, Arikawa K, Mizunami M (2009) Why the carrot is more effective than the stick: different dynamics of punishment memory and reward memory and its possible biological basis. Neurobiol Learn Mem 92:370–380

    Article  PubMed  Google Scholar 

  • Nässel DR, Elekes K (1992) Aminergic neurons in the brain of blowflies and Drosophila: dopamine- and tyrosine hydroxylase-immunoreactive neurons and their relationship with putative histaminergic neurons. Cell Tissue Res 267:147–167

    Article  PubMed  Google Scholar 

  • Neder R (1959) Allometrisches Wachstum von Hirnteilen bei drei verschieden großen Schabenarten. Zool Jahrb Anat 4:411–464

    Google Scholar 

  • Owald D, Waddell S (2015) Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila. Curr Opin Neurobiol 35:178–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In: Black A, Prokasy WR (eds) Classical conditioning II. Academic Press, New York, pp 64–99

    Google Scholar 

  • Roeder T (2002) Biochemistry and molecular biology of receptors for biogenic amines in locusts. Microsc Res Tech 56:237–247

    Article  CAS  PubMed  Google Scholar 

  • Schäfer S, Rehder V (1989) Dopamine-like immunoreactivity in the brain and suboesophageal ganglion of the honeybee. J Comp Neurol 280:43–58

    Article  PubMed  Google Scholar 

  • Schildberger K (1984) Multimodal interneurons in the cricket brain: properties of identified extrinsic mushroom body cells. J Comp Physiol A 154:71–79

    Article  Google Scholar 

  • Schultz W (2006) Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 57:87–115

    Article  PubMed  Google Scholar 

  • Schultz W (2013) Updating dopamine reward signals. Curr Opin Neurobiol 23:229–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schürmann F-W (1973) Über die Struktur der Pilzkörper des Insektenhirns. I I I. Die Anatomie der Nervenfasern in den Corpora pedunculata bei Acheta domesticus L. (Orthoptera): eine Golgi-Studie. Z Zellforsch 145:247–285

    Article  PubMed  Google Scholar 

  • Schürmann F-W (2016) Fine structure of synaptic sites and circuits in mushroom bodies of insect brains. Arthropod Struct Dev 45:399–421

    Article  Google Scholar 

  • Schürmann F-W, Frambach I, Elekes K (2008) GABAergic synaptic connections in mushroom bodies of insect brains. Acta Biol Hung 59:173–181

    Article  PubMed  Google Scholar 

  • Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman S, Heisenberg M (2003) Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23:10495–10502

    Article  CAS  PubMed  Google Scholar 

  • Steinberg EE, Keiflin R, Boivin JR, Witten IB, Deisseroth K, Janak PH (2013) A causal link between prediction errors, dopamine neurons and learning. Nat Neurosci 16:966–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka NK, Endo K, Ito K (2012) Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain. J Comp Neurol 520:4067–4130

    Article  PubMed  Google Scholar 

  • Tedjakumala SR, Rouquette J, Boizeau M-L, Mesce KA, Hotier L, Massou I, Giurfa M (2017) A tyrosine-hydroxylase characterization of dopaminergic neurons in the honey bee brain. Front Syst Neurosci 11:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terao K, Mizunami M (2017) Roles of dopamine neurons in mediating the prediction error in aversive learning in insects. Sci Rep 7:14694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terao K, Matsumoto Y, Mizunami M (2015) Critical evidence for the prediction error theory in associative learning. Sci Rep 5:8929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unoki S, Matsumoto Y, Mizunami M (2005) Participation of octopaminergic reward system and dopaminergic punishment system in insect olfactory learning revealed by pharmacological study. Eur J Neurosci 22:1409–1416

    Article  PubMed  Google Scholar 

  • Unoki S, Matsumoto Y, Mizunami M (2006) Roles of octopaminergic and dopaminergic neurons in mediating reward and punishment signals in insect visual learning. Eur J Neurosci 24:2031–2038

    Article  PubMed  Google Scholar 

  • Vergoz V, Roussel E, Sandoz JC, Giurfa M (2007) Aversive learning in honeybees revealed by the olfactory conditioning of the sting extension reflex. PLoS One 2:e288

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogt K, Schnaitmann C, Dylla KV, Knapek S, Aso Y, Rubin GM, Tanimoto H (2014) Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. eLife 3:e02395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waddell S (2013) Reinforcement signalling in Drosophila; dopamine does it all after all. Curr Opin Neurobiol 23:324–329

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Sadamoto H, Aonuma H (2013) Molecular basis of the dopaminergic system in the cricket Gryllus bimaculatus. Invertebr Neurosci 13:107–123

    Article  CAS  Google Scholar 

  • Watanabe T, Noji S, Mito T (2017) Genome editing in the cricket, Gryllus bimaculatus. In: Hatada I (ed) Genome editing in animals: methods and protocols. Humana Press, New York, pp 219–233

    Chapter  Google Scholar 

  • Wendt B, Homberg U (1992) Immunocytochemistry of dopamine in the brain of the locust Schistocerca gregaria. J Comp Neurol 321:387–403

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Ponomarev A, Davis RL (2004) Altered representation of the spatial code for odors after olfactory classical conditioning: memory trace formation by synaptic recruitment. Neuron 42:437–449

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ian A. Meinertzhagen (Dalhousie University, Canada) for critically reading this manuscript. We are also grateful to Ms. Yoshimi Watanabe for technical support in Golgi impregnation. This work was supported by Grant-in-Aid for Scientific Research (No. 16H04814 and 16K18586) to MM and Grant-in-Aid for Young Scientists (B) No. 26840109 to YH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Hamanaka.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamanaka, Y., Mizunami, M. Tyrosine hydroxylase-immunoreactive neurons in the mushroom body of the field cricket, Gryllus bimaculatus. Cell Tissue Res 376, 97–111 (2019). https://doi.org/10.1007/s00441-018-2969-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2969-9

Keywords

Navigation