Skip to main content

Advertisement

Log in

Afferent nerve fibres in the wall of the rat urinary bladder

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Structure and distribution of afferent nerve fibres in the rat bladder were studied by fluorescence microscopy after selective staining with antibodies against neuropeptide CGRP. Afferent fibres are very abundant (by comparison with other viscera) and interconnected in all bladder parts: muscle, urothelium, connective tissue, blood vessels, serosa. Their highest concentration is beneath the urothelium in equatorial and caudal regions, where they form a plexus, while individually maintaining a tree-like structure with innumerable branches running without preferential orientation. In cranial regions, mucosal afferent fibres become rare or absent. Abundant fibres are found in the detrusor, within each muscle bundle, with long strings of varicosities parallel to muscle cells. Afferent fibres, invariably varicose over hundreds of micrometres of their terminal parts and while still branching, comprise chains of hundreds of varicosities. Varicosities are irregular in size, frequency and separation, without specialised terminal structures around them, or within or around the fibre’s ending. The possibility that varicosities are transduction points for sensory inputs is discussed, with the implication of a process taking place over considerable length in each branch of each fibre. Interconnectedness of afferent nerves of various bladder tissues, distribution of varicosities over hundreds of micrometres along axonal branches, absence of clear target structures for the fibres, apparent irregularity in the size and sequence of varicosities suggest an innervation that is not rigidly wired with distinct sensory pathways. In fact, the structural evidence suggests extensive afferent integration at the periphery, with wide distribution of source points and broad range of physical detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alm P, Alumets J, Brodin E, Hakanson R, Nilsson G, Sjöberg N-O, Sundler F (1978) Peptidergic (substance P) nerves in the genito-urinary tract. Neuroscience 3:419–425

    Article  CAS  PubMed  Google Scholar 

  • Andersson KE, McCloskey KD (2014) Lamina propria: the functional center of the bladder. Neurourol Urodynam 33:9–16

    Article  Google Scholar 

  • Applebaum AE, Vance WH Coggeshall RE (1980) Segmental localization of sensory cells that innervate the bladder. J Comp Neurol 192:203–209

  • Apodaca G (2004) The uroepithelium not just a passive barrier. Traffic 5:117–128

    Article  CAS  PubMed  Google Scholar 

  • Araki I, Du S, Kobayashi H, Sawada N, Mochizuki T, Zakoji H, Takeda M (2008) Roles of mechanosensitive ion channels in bladder sensory transduction and overactive bladder. Int J Urol 15:681–687

    Article  PubMed  Google Scholar 

  • Bennett MR (1996) Autonomic neuromuscular transmission at a varicosity. Prog Neurobiol 50:505–532

    Article  CAS  PubMed  Google Scholar 

  • Birder LA (2014) Nervous network for lower urinary tract function. Int J Urol 20:4–12

    Article  Google Scholar 

  • Birder L, Andersson KE (2013) Urothelial signaling. Physiol Rev 93:653–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burcher E, Zeng X-P, Stigas J, Shang F, Millard RJ, Moore KH (2000) Autoradiographic localization of tachykinin and calcitonin gene-related peptide receptors in adult urinary bladder. J Urol 163:331–337

    Article  CAS  PubMed  Google Scholar 

  • de Groat WC, Yoshimura N. (2009) Afferent nerve regulation of bladder function in health and disease. Handbook Exp Pharmacol. 2009;194: 91–138. [In: Sensory Nerves, edited by Canning B & Spina D]

  • Dixon JS, Gilpin CJ (1987) Presumptive sensory axons of the human urinary bladder: a fine structural study. J Anat 151:199–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson DR, Kennedy I, Burton TJ (1997) ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes – a possible sensory mechanism? J Physiol 505: 503–11

  • Franco-Cereceda A, Henke H, Lundberg JM, Petermann JB, Hökfelt T, Fischer JA (1987) Calcitonin gene-related peptide (CGRP) in capsaicin-sensitive substance P-immunoreactive sensory neurons in animals and man: distribution and release by capsaicin. Peptide 8:399–410

    Article  CAS  Google Scholar 

  • Gabella G (1995) The structural relations between nerve fibres and muscle cells in the urinary bladder of the rat. J Neurocytol 24:159–187

    Article  CAS  PubMed  Google Scholar 

  • Gabella G, Davis C (1998) Distribution of afferent axons in the baldder of rats. J Neurocytol 27:141–155

    Article  CAS  PubMed  Google Scholar 

  • Gabella G (1999) Structure of the intramural nerves of the rat bladder. J Neurocytol 28:615–637

    Article  CAS  PubMed  Google Scholar 

  • Gillespie JI, Markeling-van Ittersum M, de Vente J (2006) Sensory collaterals, intramural ganglia and motor nerves in the guinea-pig bladder: evidence for intramural neural circuits. Cell Tissue Res 325:33–45

    Article  CAS  PubMed  Google Scholar 

  • Gosling JA, Dixon JS (1974) Sensory nerves in the mammalian urinary tract. An evaluation using light and electron microscopy. J Anat 117:133–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gulbenkian S, Merighi A, Wharton J, Varndell IM, Polak JM (1986) Ultrastructural evidence for the coexistence of calcitonin gene-related peptide and substance P in secretory vesicles of peripheral nerves in the guinea pig. J Neurocytol 15:535–542

    Article  CAS  PubMed  Google Scholar 

  • Hirst GDS, Choate JK, Cousins HM, Edwards FR, Klemm MF (1996) Transmission by postganglionic axons of the autonomic nervous system: the importance of the specialized neuroeffector junction. Neuroscience 73:7–23

    Article  CAS  PubMed  Google Scholar 

  • Hökfelt T, Schultzberg M, Elde R, Nilsson G, Terenius L, Said S, Goldstein M (1978) Peptide neurons in peripheral tissues including the urinary tract: immunohistochemical studies. Acta Pharmacol Toxicol 43(II):78–89

    Google Scholar 

  • Kanai AJ, Andersson KE (2010) Bladder afferent signaling: recent findings. J Urol 2010(183):1288–1295

    Article  CAS  Google Scholar 

  • Lundberg JM, Franco-Cereceda A, Alving K, Delay-Goyet P, Lou Y-P (1992) Release of calcitonin gene-related peptide from sensory neurons. Ann N Y Acad Sci 657:187–193

    Article  CAS  PubMed  Google Scholar 

  • Maggi CA, Santicioli P, Abelli L, Parlani M, Capasso M, Conte B, Giuliani S, Meli A (1987) Regional differences in the effects of capsaicin and tachykinins on motor activity and vascular permeability of the rat lower urinary tract. Naunyn Schmiedeberg’s Arch Pharmacol 335:636–645

    Article  CAS  Google Scholar 

  • Masunaga K, Yoshida M, Inadome A, Iwashita H, Miyamae K, Ueda S (2006) Prostaglandin E2 release from isolated bladder strips in rats with spinal cord injury. Int J Urol 13:271–276

    Article  CAS  PubMed  Google Scholar 

  • Mattiasson A, Ekblad E, Sundler F, Uvelius B (1985) Origin and distribution of neuropeptide Y-, vasoactive intestinal polypeptide- and substance P-containing nerve fibers in the urinary bladder of the rat. Cell Tissue Res 239:141–146

    Article  CAS  PubMed  Google Scholar 

  • Nakagomi H, Yoshiyama M, Mochizuki T, Miyamoto T, Komatsu R, Imura Y, Moizawa Y, Hiasa M, Miyaji T, Kira S, Araki I, Fujishita K, Shibata K, Shigetomi E, Shinozaki Y, Ichikawa R, Uneyama H, Iwatsuki K, Nomura M, de Groat WC, Moriyama Y, Takeda M, Koizumi S (2016) Urothelial ATP exocytosis: regulation of bladder compliance in the urine storage phase. Scientific Report 6: 1–14

  • Papka RE, McNeill DL (1992) Is there a synaptic innervation of pelvic neurons by CGRP-immunoreactive sensory nerves. Ann N Y Acad Sci 657:477–480

    Article  CAS  PubMed  Google Scholar 

  • Papka RE, McNeill DL (1993) Light- and electron-microscopic study of synaptic connections in the paracervical ganglion of the female rat: special reference to calcitonin gene-related peptide-, galanin- and tachykinin (substance P and neurokinin A)-immunoreactive nerve fibers and terminals. Cell Tissue Res 271:417–428

    Article  CAS  PubMed  Google Scholar 

  • Schueth A, Spronck B, van Zandvoort MAMJ, van Koeveringe GA (2017) Computer-assisted three-dimensional tracking of sensory innervation in the murine bladder mucosa with two-photo microscopy. J Chemical Neuroanat 85:43–49

    Article  Google Scholar 

  • Senba E, Tohyama M (1988) Calcitonin gene-related peptide containing autonomic efferent pathways to the pelvic ganglia of the rat. Brain Res 449:386–390

    Article  CAS  PubMed  Google Scholar 

  • Sengupta JN, Gebhart GF (1994) Mechanosensitive properties of pelvic nerve afferent fibers innervating the urinary bladder of the rat. J Neurophysiol 72:2420–2430

    Article  CAS  PubMed  Google Scholar 

  • Shea VK, Cai R, Crepps B, Mason JL, Perl ER (2000) Sensory fibers of the pelvic nerve innervating the rat’s urinary bladder. J Neurophysiol 84:1924–1933

    Article  CAS  PubMed  Google Scholar 

  • Smet PJ, Moore KH, Jonavicius J (1997) Distribution and colocalization of calcitonin gene-related peptide, tachykinins, and vasoactive intestinal peptide in normal and idiopathic unstable human urinary bladder. Lab Investig 77:37–49

    CAS  PubMed  Google Scholar 

  • Su HC, Wharton J, Polak JM, Mulderry PK, Ghatei MA, Gibson SJ, Terenghi G, Morrison JFB, Ballesta J, Bloom SR (1986) Calcitonin gene-related peptide immunoreactivity in afferent neurons supplying the urinary tract: combined retrograde tracing and immunocytochemistry. Neuroscience 18:727–747

    Article  CAS  PubMed  Google Scholar 

  • Tamaki M, Iwanaga T, Takeda M, Adachi I, Satu S, Fujita T (1992) Calcitonin gene-related peptide (CGRP)-immunoreactive nerve terminals in the whole mount preparations of the dog urethra. Arch Histol Cytol 55:1–11

    Article  CAS  PubMed  Google Scholar 

  • Vera PL Nadelhaft I (1990) Conduction velocity distribution of afferent fibers innervating the rat urinary bladder. Brain Res 520:83–89

  • Wakabayashi Y, Tomoyoshi T, Fujimiya M, Arai R, Maeda T (1993) Substance P-containing axon terminals in the mucosa of the human urinary bladder: pre-embedding immunohistochemistry using cryostat sections for electron microscopy. Histochemistry 100:401–407

    Article  CAS  PubMed  Google Scholar 

  • Yokokawa K, Sakanaka M, Shiosaka S, Toyama M, Shiotani Y, Sonoda T (1985) Three-dimensional distribution of substance P-like immunoreactivity in the urinary bladder of the rat. J Neural Transmission 63:209–222

    Article  CAS  Google Scholar 

  • Yokokawa K, Tahyama M, Shiosaka S, Shiotani Y, Sonoda T, Emson PC, Hillyard CV, Girgis S, MacIntyre I (1986) Distribution of calcitonin gene-related peptide-containing fibers in the urinary bladder of the rat and their origin. Cell Tissue Res 244:271–278

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Inadome A, Maeda Y, Satoji Y, Masunaga K, Sugiyama Y, Murakami S (2006) Non-neuronal cholinergic system in human bladder urothelium. Urology 67:425–430

    Article  PubMed  Google Scholar 

  • Zagorodnyuk VP, Gibbins IL, Costa M, Brookes SJ Gregory SJ (2007) Properties of the major classes of mechanoreceptors in the guinea pig bladder. J Physiol 585:147–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Gabella.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabella, G. Afferent nerve fibres in the wall of the rat urinary bladder. Cell Tissue Res 376, 25–35 (2019). https://doi.org/10.1007/s00441-018-2965-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2965-0

Keywords

Navigation