Neuropeptides in sensory signal processing

Abstract

Peptides released from trigeminal fibers fulfill well-understood functions in neuroinflammatory processes and in the modulation of nociceptive signal processing. In particular, calcitonin gene-related peptide (CGRP) and substance P (SP), released from afferent nerve terminals, exert paracrine effects on the surrounding tissue and this has been recently highlighted by the prominent parcrine role of CGRP in the development of headache and migraine. Some recent communications suggest that these sensory neuropeptides may also modulate the workings of sensory organs and influence afferent signals from nose, tongue, eyes and ears. Here, we briefly review the evidence for modulatory effects of CGRP and SP in the sensory periphery.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alamri A, Bron R, Brock JA, Ivanusic JJ (2015) Transient receptor potential cation channel subfamily V member 1 expressing corneal sensory neurons can be subdivided into at least three subpopulations. Front Neuroanat 9:71

    Article  PubMed  PubMed Central  Google Scholar 

  2. Amores AE, Sprekelsen C, Bernal-Sprekelsen M (1991) Immunoreactive nerve fibers in the nasal mucosa. An experimental study on neuropeptides Y, calcitonin gene-related peptide and galanin. Eur Arch Otorhinolaryngol 248:487–491

    Article  CAS  PubMed  Google Scholar 

  3. Astback J, Arvidson K, Johansson O (1997) An immunohistochemical screening of neurochemical markers in fungiform papillae and taste buds of the anterior rat tongue. Arch Oral Biol 42:137–147

    Article  CAS  PubMed  Google Scholar 

  4. Barnes PJ, Baraniuk JN, Belvisi MG (1991) Neuropeptides in the respiratory tract. Part II. Am Rev Respir Dis 144:1391–1399

    Article  CAS  PubMed  Google Scholar 

  5. Beckers HJ, Klooster J, Vrensen GF, Lamers WP (1992) Ultrastructural identification of trigeminal nerve endings in the rat cornea and iris. Invest Ophthalmol Vis Sci 33:1979–1986

    CAS  PubMed  Google Scholar 

  6. Belmonte C, Acosta MC, Gallar J (2004) Neural basis of sensation in intact and injured corneas. Exp Eye Res 78:513–525

    Article  CAS  Google Scholar 

  7. Bergua A, Schrodl F, Neuhuber WL (2003) Vasoactive intestinal and calcitonin gene-related peptides, tyrosine hydroxylase and nitrergic markers in the innervation of the rat central retinal artery. Exp Eye Res 77:367–374

    Article  CAS  PubMed  Google Scholar 

  8. Blixt FW, Radziwon-Balicka A, Edvinsson L, Warfvinge K (2017) Distribution of CGRP and its receptor components CLR and RAMP1 in the rat retina. Exp Eye Res 161:124–131

    Article  CAS  PubMed  Google Scholar 

  9. Bortolami R, Calza L, Lucchi ML, Giardino L, Callegari E, Manni E, Pettorossi VE, Barazzoni AM, Lalatta CG (1991) Peripheral territory and neuropeptides of the trigeminal ganglion neurons centrally projecting through the oculomotor nerve demonstrated by fluorescent retrograde double-labeling combined with immunocytochemistry. Brain Res 547:82–88

    Article  CAS  PubMed  Google Scholar 

  10. Brand G (2006) Olfactory/trigeminal interactions in nasal chemoreception. Neurosci Biobehav Rev 30:908–917

    Article  PubMed  Google Scholar 

  11. Bron R, Wood RJ, Brock JA, Ivanusic JJ (2014) Piezo2 expression in corneal afferent neurons. J Comp Neurol 522:2967–2979

    Article  CAS  PubMed  Google Scholar 

  12. Bronzetti E, Artico M, Kovacs I, Felici LM, Magliulo G, Vignone D, D'Ambrosio A, Forte F, Di Liddo R, Feher J (2007) Expression of neurotransmitters and neurotrophins in neurogenic inflammation of the rat retina. Eur J Histochem 51:251–260

    PubMed  Google Scholar 

  13. Cabanillas LA, Luebke AE (2002) CGRP- and cholinergic-containing fibers project to Guinea pig outer hair cells. Hear Res 172:14–17

    Article  CAS  PubMed  Google Scholar 

  14. Cain WS (1977) Bilateral interaction in olfaction. Nature 268:50–52

    Article  CAS  PubMed  Google Scholar 

  15. Cain WS, Murphy CL (1980) Interaction between chemoreceptive modalities of odour and irritation. Nature 284:255–257

    Article  CAS  Google Scholar 

  16. Canto Soler MV, Suburo AM (1998) Innervation of blood vessels in the vomeronasal complex of the rat. Brain Res 811:47–56

    Article  CAS  PubMed  Google Scholar 

  17. Cao W, Drumheller A, Zaharia M, Lafond G, Brunette JR, Jolicoeur FB (1993) Effects of calcitonin gene-related peptide on the rabbit electroretinogram. Neuropept 24:151–157

    Article  CAS  Google Scholar 

  18. Carlisle L, Aberdeen J, Forge A, Burnstock G (1990) Neural basis for regulation of cochlear blood flow: peptidergic and adrenergic innervation of the spiral modiolar artery of the Guinea pig. Hear Res 43:107–113

    Article  CAS  PubMed  Google Scholar 

  19. Caruso DM, Owczarzak MT, Pourcho RG (1990) Colocalization of substance P and GABA in retinal ganglion cells: a computer-assisted visualization. Vis Neurosci 5:389–394

    Article  CAS  PubMed  Google Scholar 

  20. Ciuman RR (2010) The efferent system or olivocochlear function bundle - fine regulator and protector of hearing perception. Int J Biomed Sci 6:276–288

    PubMed  PubMed Central  Google Scholar 

  21. Daiber P, Genovese F, Schriever VA, Hummel T, Mohrlen F, Frings S (2013) Neuropeptide receptors provide a signalling pathway for trigeminal modulation of olfactory transduction. Eur J Neurosci 37:572–582

    Article  Google Scholar 

  22. De Felipe CD, Gonzalez GG, Gallar J, Belmonte C (1999) Quantification and immunocytochemical characteristics of trigeminal ganglion neurons projecting to the cornea: effect of corneal wounding. Eur J Pain 3:31–39

    Article  CAS  PubMed  Google Scholar 

  23. De Hoz HR, Ramirez AI, Salazar JJ, Rojas B, Ramirez JM, Trivino A (2008) Substance P and calcitonin gene-related peptide intrinsic choroidal neurons in human choroidal whole-mounts. Histol Histopathol 23:1249–1258

    PubMed  Google Scholar 

  24. Dickerson IM, Bussey-Gaborski R, Holt JC, Jordan PM, Luebke AE (2016) Maturation of suprathreshold auditory nerve activity involves cochlear CGRP-receptor complex formation. Physiol Rep 4:e12869

  25. Doty RL, Brugger WE, Jurs PC, Orndorff MA, Snyder PJ, Lowry LD (1978) Intranasal trigeminal stimulation from odorous volatiles: psychometric responses from anosmic and normal humans. Physiol Behav 20:175–185

    Article  CAS  PubMed  Google Scholar 

  26. Finger TE, St Jeor VL, Kinnamon JC, Silver WL (1990) Ultrastructure of substance P- and CGRP-immunoreactive nerve fibers in the nasal epithelium of rodents. J Comp Neurol 294:293–305

    Article  CAS  PubMed  Google Scholar 

  27. Finger TE, Bottger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL (2003) Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci U S A 100:8981–8986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frasnelli J, Schuster B, Hummel T (2007) Interactions between olfaction and the trigeminal system: what can be learned from olfactory loss. Cereb Cortex 17:2268–2275

    Article  PubMed  Google Scholar 

  29. Genovese F, Bauersachs HG, Grasser I, Kupke J, Magin L, Daiber P, Nakajima J, Mohrlen F, Messlinger K, Frings S (2017) Possible role of calcitonin gene-related peptide in trigeminal modulation of glomerular microcircuits of the rodent olfactory bulb. Eur J Neurosci 45:587–600

    Article  PubMed  Google Scholar 

  30. Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S (2017) Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev 97:553–622

    Article  PubMed  PubMed Central  Google Scholar 

  31. Green BG (2012) Chemesthesis and the chemical senses as components of a “chemofensor complex”. Chem Senses 37:201–206

    Article  CAS  PubMed  Google Scholar 

  32. Grunditz T, Uddman R, Sundler F (1994) Origin and peptide content of nerve fibers in the nasal mucosa of rats. Anat Embryol 189:327–337

    Article  CAS  PubMed  Google Scholar 

  33. Gulbransen BD, Clapp TR, Finger TE, Kinnamon SC (2008) Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro. J Neurophysiol 99:2929–2937

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hara H, Takeno K, Shimogori H, Yamashita H (2005) CGRP expression in the vestibular periphery after transient blockage of bilateral vestibular input. ORL J Otorhinolaryngol Relat Spec 67:259–265

    Article  CAS  PubMed  Google Scholar 

  35. Hayakawa T, Kuwahara S, Maeda S, Tanaka K, Seki M (2010) Calcitonin gene-related peptide immunoreactive neurons innervating the soft palate, the root of tongue, and the pharynx in the superior glossopharyngeal ganglion of the rat. J Chem Neuroanat 39:221–227

    Article  CAS  PubMed  Google Scholar 

  36. He J, Bazan HE (2016) Neuroanatomy and neurochemistry of mouse cornea. Invest Ophthalmol Vis Sci 57:664–674

    Article  PubMed  PubMed Central  Google Scholar 

  37. Heino P, Oksala O, Luhtala J, Uusitalo H (1995) Localization of calcitonin gene-related peptide binding sites in the eye of different species. Curr Eye Res 14:783–790

    Article  CAS  PubMed  Google Scholar 

  38. Heppt W, Peiser C, Cryer A, Dinh QT, Zweng M, Witt C, Fischer A, Groneberg DA (2002) Innervation of human nasal mucosa in environmentally triggered hyperreflectoric rhinitis. J Occup Environ Med 44:924–929

    Article  CAS  PubMed  Google Scholar 

  39. Herzog M, Scherer EQ, Albrecht B, Rorabaugh B, Scofield MA, Wangemann P (2002) CGRP receptors in the gerbil spiral modiolar artery mediate a sustained vasodilation via a transient cAMP-mediated Ca2+−decrease. J Membr Biol 189:225–236

    Article  CAS  PubMed  Google Scholar 

  40. Hino N, Masuko S, Katsuki T (1993) An immunohistochemical study of sensory and autonomic innervation of the dog tongue with special reference to substance P- and calcitonin gene-related peptide-containing fibers in blood vessels and the intralingual ganglia. Arch Histol Cytol 56:505–516

    Article  CAS  PubMed  Google Scholar 

  41. Hiura A, Nakagawa H (2012) Innervation of TRPV1-, PGP-, and CGRP-immunoreactive nerve fibers in the subepithelial layer of a whole mount preparation of the rat cornea. Okajimas Folia Anat Jpn 89:47–50

    Article  CAS  PubMed  Google Scholar 

  42. Huang AY, Wu SY (2015) Calcitonin gene-related peptide reduces taste-evoked ATP secretion from mouse taste buds. J Neurosci 35:12714–12724

    Article  CAS  PubMed  Google Scholar 

  43. Hummel T, Livermore A (2002) Intranasal chemosensory function of the trigeminal nerve and aspects of its relation to olfaction. Int Arch Occup Environ Health 75:305–313

    Article  PubMed  Google Scholar 

  44. Ishida Y, Ugawa S, Ueda T, Murakami S, Shimada S (2002) Vanilloid receptor subtype-1 (VR1) is specifically localized to taste papillae. Brain Res Mol Brain Res 107:17–22

    Article  CAS  PubMed  Google Scholar 

  45. Ishiyama A, Lopez I, Wackym PA (1994) Subcellular innervation patterns of the calcitonin gene-related peptidergic efferent terminals in the chinchilla vestibular periphery. Otolaryngol Head Neck Surg 111:385–395

    Article  CAS  PubMed  Google Scholar 

  46. Jones MA, Marfurt CF (1991) Calcitonin gene-related peptide and corneal innervation: a developmental study in the rat. J Comp Neurol 313:132–150

    Article  CAS  PubMed  Google Scholar 

  47. Jones MA, Marfurt CF (1998) Peptidergic innervation of the rat cornea. Exp Eye Res 66:421–435

    Article  CAS  PubMed  Google Scholar 

  48. Kawashima M, Imura K, Sato I (2012) Topographical organization of TRPV1-immunoreactive epithelium and CGRP-immunoreactive nerve terminals in rodent tongue. Eur J Histochem 56:e21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kinnamon SC, Finger TE (2013) A taste for ATP: neurotransmission in taste buds. Front Cell Neurosci 7:264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kiyama H, Katayama Y, Hillyard CJ, Girgis S, MacIntyre I, Emson PC, Tohyama M (1985) Occurrence of calcitonin gene-related peptide in the chicken amacrine cells. Brain Res 327:367–369

    Article  CAS  PubMed  Google Scholar 

  51. Kong WJ, Scholtz AW, Kammen-Jolly K, Gluckert R, Hussl B, von Cauvenberg PB, Schrott-Fischer A (2002) Ultrastructural evaluation of calcitonin gene-related peptide immunoreactivity in the human cochlea and vestibular endorgans. Eur J Neurosci 15:487–497

    Article  PubMed  Google Scholar 

  52. Lacroix JS (2003) Chronic rhinosinusitis and neuropeptides. Swiss Med Wkly 133:560–562

    CAS  PubMed  Google Scholar 

  53. Lee SH, Iwanaga T, Hoshi O, Adachi I, Fujita T (1995) Regional differences of CGRP-immunoreactive nerve fibers in nasal epithelium of the rat. Arch Histol Cytol 58:117–126

    Article  CAS  PubMed  Google Scholar 

  54. Lee RJ, Kofonow JM, Rosen PL, Siebert AP, Chen B, Doghramji L, Xiong G, Adappa ND, Palmer JN, Kennedy DW, Kreindler JL, Margolskee RF, Cohen NA (2014) Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest 124:1393–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lim KG, Rank MA, Kita H, Patel A, Moore E (2011) Neuropeptide levels in nasal secretions from patients with and without chronic cough. Ann Allergy Asthma Immunol 107:360–363

    Article  CAS  PubMed  Google Scholar 

  56. Lin W, Ezekwe EA Jr, Zhao Z, Liman ER, Restrepo D (2008a) TRPM5-expressing microvillous cells in the main olfactory epithelium. BMC Neurosci 9:114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lin W, Ogura T, Margolskee RF, Finger TE, Restrepo D (2008b) TRPM5-expressing solitary chemosensory cells respond to odorous irritants. J Neurophysiol 99:1451–1460

    Article  CAS  PubMed  Google Scholar 

  58. Lu JT, Son YJ, Lee J, Jetton TL, Shiota M, Moscoso L, Niswender KD, Loewy AD, Magnuson MA, Sanes JR, Emeson RB (1999) Mice lacking alpha-calcitonin gene-related peptide exhibit normal cardiovascular regulation and neuromuscular development. Mol Cell Neurosci 14:99–120

    Article  CAS  PubMed  Google Scholar 

  59. Luebke AE, Holt JC, Jordan PM, Wong YS, Caldwell JS, Cullen KE (2014) Loss of alpha-calcitonin gene-related peptide (alphaCGRP) reduces the efficacy of the Vestibulo-ocular reflex (VOR). J Neurosci 34:10453–10458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lyon MJ, Payman RN (2000) Comparison of the vascular innervation of the rat cochlea and vestibular system. Hear Res 141:189–198

    Article  CAS  PubMed  Google Scholar 

  61. Mainland JD, Lundstrom JN, Reisert J, Lowe G (2014) From molecule to mind: an integrative perspective on odor intensity. Trends Neurosci 37:443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maison SF, Adams JC, Liberman MC (2003a) Olivocochlear innervation in the mouse: immunocytochemical maps, crossed versus uncrossed contributions, and transmitter colocalization. J Comp Neurol 455:406–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maison SF, Emeson RB, Adams JC, Luebke AE, Liberman MC (2003b) Loss of alpha CGRP reduces sound-evoked activity in the cochlear nerve. J Neurophysiol 90:2941–2949

    Article  CAS  PubMed  Google Scholar 

  64. Marfurt CF, Murphy CJ, Florczak JL (2001) Morphology and neurochemistry of canine corneal innervation. Invest Ophthalmol Vis Sci 42:2242–2251

    CAS  PubMed  Google Scholar 

  65. Mathews MA, Camp AJ, Murray AJ (2017) Reviewing the role of the efferent vestibular system in motor and vestibular circuits. Front Physiol 8:552

    Article  PubMed  PubMed Central  Google Scholar 

  66. Messlinger K (2018) The big CGRP flood - sources, sinks and signalling sites in the trigeminovascular system. J Headache Pain 19:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Montavon P, Lindstrand K, Luts A, Sundler F (1991) Peptide-containing nerve fibers in the fungiform papillae of pigs and rats. Regul Pept 32:141–150

    Article  CAS  PubMed  Google Scholar 

  68. Murata Y, Masuko S (2006) Peripheral and central distribution of TRPV1, substance P and CGRP of rat corneal neurons. Brain Res 1085:87–94

    Article  CAS  PubMed  Google Scholar 

  69. Nakamura A, Hayakawa T, Kuwahara S, Maeda S, Tanaka K, Seki M, Mimura O (2007) Morphological and immunohistochemical characterization of the trigeminal ganglion neurons innervating the cornea and upper eyelid of the rat. J Chem Neuroanat 34:95–101

    Article  Google Scholar 

  70. Nickla DL, Wallman J (2010) The multifunctional choroid. Prog Retin Eye Res 29:144–168

    Article  Google Scholar 

  71. Noseda R, Kainz V, Jakubowski M, Gooley JJ, Saper CB, Digre K, Burstein R (2010) A neural mechanism for exacerbation of headache by light. Nat Neurosci 13:239–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ogura T, Margolskee RF, Tallini YN, Shui B, Kotlikoff MI, Lin W (2007) Immuno-localization of vesicular acetylcholine transporter in mouse taste cells and adjacent nerve fibers: indication of acetylcholine release. Cell Tissue Res 330:17–28

    Article  CAS  PubMed  Google Scholar 

  73. Ohno K, Takeda N, Tanaka-Tsuji M, Matsunaga T (1993) Calcitonin gene-related peptide in the efferent system of the inner ear. A review. Acta Otolaryngol Suppl 501:16–20

    Article  CAS  PubMed  Google Scholar 

  74. Popper P, Ishiyama A, Lopez I, Wackym PA (2002) Calcitonin gene-related peptide and choline acetyltransferase colocalization in the human vestibular periphery. Audiol Neurootol 7:298–302

    Article  CAS  PubMed  Google Scholar 

  75. Recober A, Kuburas A, Zhang Z, Wemmie JA, Anderson MG, Russo AF (2009) Role of calcitonin gene-related peptide in light-aversive behavior: implications for migraine. J Neurosci 29:8798–8804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Reiner A, Fitzgerald MEC, Del Mar N, Li C (2018) Neural control of choroidal blood flow. Prog Retin Eye Res 64:96–130

    Article  PubMed  Google Scholar 

  77. Roper SD (2014) TRPs in taste and chemesthesis. Handb Exp Pharmacol 223:827–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Roper SD, Chaudhari N (2017) Taste buds: cells, signals and synapses. Nat Rev Neurosci 18:485–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rosenblatt MI, Dahl GP, Dickerson IM (2000) Characterization and localization of the rabbit ocular calcitonin gene-related peptide (CGRP)-receptor component protein (RCP). Invest Ophthalmol Vis Sci 41:1159–1167

    CAS  PubMed  Google Scholar 

  80. Sakamoto K, Kuroki T, Okuno Y, Sekiya H, Watanabe A, Sagawa T, Ito H, Mizuta A, Mori A, Nakahara T, Ishii K (2014) Activation of the TRPV1 channel attenuates N-methyl-D-aspartic acid-induced neuronal injury in the rat retina. Eur J Pharmacol 733:13–22

    Article  CAS  PubMed  Google Scholar 

  81. Sato T, Sasahara N, Kanda N, Sasaki Y, Yamaguma Y, Kokubun S, Yajima T, Ichikawa H (2017) Distribution of CGRP and TRPV2 in human paranasal sinuses. Cells Tissues Organs 203:55–64

    Article  CAS  PubMed  Google Scholar 

  82. Saunders RL, Weider D (1985) Tympanic membrane sensation. Brain 108(Pt 2):387–404

    Article  PubMed  Google Scholar 

  83. Saunders CJ, Li WY, Patel TD, Muday JA, Silver WL (2013) Dissecting the role of TRPV1 in detecting multiple trigeminal irritants in three behavioral assays for sensory irritation. F1000Research 2:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Saunders CJ, Christensen M, Finger TE, Tizzano M (2014) Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proc Natl Acad Sci U S A 111:6075–6080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Scarfone E, Ulfendahl M, Lundeberg T (1996) The cellular localization of the neuropeptides substance P, neurokinin A, calcitonin gene-related peptide and neuropeptide Y in Guinea-pig vestibular sensory organs: a high-resolution confocal microscopy study. Neurosci 75:587–600

    Article  CAS  Google Scholar 

  86. Schaefer ML, Bottger B, Silver WL, Finger TE (2002) Trigeminal collaterals in the nasal epithelium and olfactory bulb: a potential route for direct modulation of olfactory information by trigeminal stimuli. J Comp Neurol 444:221–226

    Article  Google Scholar 

  87. Schrodl F, Schweigert M, Brehmer A, Neuhuber WL (2001) Intrinsic neurons in the duck choroid are contacted by CGRP-immunoreactive nerve fibres: evidence for a local pre-central reflex arc in the eye. Exp Eye Res 72:137–146

    Article  CAS  PubMed  Google Scholar 

  88. Schrott-Fischer A, Kammen-Jolly K, Scholtz A, Rask-Andersen H, Glueckert R, Eybalin M (2007) Efferent neurotransmitters in the human cochlea and vestibule. Acta Otolaryngol 127:13–19

    Article  CAS  PubMed  Google Scholar 

  89. Shi X (2011) Physiopathology of the cochlear microcirculation. Hear Res 282:10–24

    Article  PubMed  PubMed Central  Google Scholar 

  90. Silva L, Antunes A (2017) Vomeronasal receptors in vertebrates and the evolution of pheromone detection. Annu Rev Anim Biosci 5:353–370

    Article  CAS  PubMed  Google Scholar 

  91. Silver WL, Moulton DG (1982) Chemosensitivity of rat nasal trigeminal receptors. Physiol Behav 28:927–931

    Article  CAS  PubMed  Google Scholar 

  92. Silverman JD, Kruger L (1989) Calcitonin-gene-related-peptide-immunoreactive innervation of the rat head with emphasis on specialized sensory structures. J Comp Neurol 280:303–330

    Article  CAS  PubMed  Google Scholar 

  93. Silverman JD, Kruger L (1990) Analysis of taste bud innervation based on glycoconjugate and peptide neuronal markers. J Comp Neurol 292:575–584

    Article  CAS  PubMed  Google Scholar 

  94. Simon SA, Liu L, Erickson RP (2003) Neuropeptides modulate rat chorda tympani responses. Am J Phys 284:R1494–R1505

    CAS  Google Scholar 

  95. Smith DW, Keil A (2015) The biological role of the medial olivocochlear efferents in hearing: separating evolved function from exaptation. Front Syst Neurosci 9:12

    PubMed  PubMed Central  Google Scholar 

  96. Songu M, Cingi C (2009) Sneeze reflex: facts and fiction. Ther Adv Respir Dis 3:131–141

    Article  PubMed  Google Scholar 

  97. Stead RH, Bienenstock J, Stanisz AM (1987) Neuropeptide regulation of mucosal immunity. Immunol Rev 100:333–359

    Article  CAS  PubMed  Google Scholar 

  98. Stone RA, Kuwayama Y, Terenghi G, Polak JM (1986) Calcitonin gene-related peptide: occurrence in corneal sensory nerves. Exp Eye Res 43:279–283

    Article  CAS  PubMed  Google Scholar 

  99. Stratford JM, Thompson JA, Finger TE (2017) Immunocytochemical organization and sour taste activation in the rostral nucleus of the solitary tract of mice. J Comp Neurol 525:271–290

    Article  CAS  PubMed  Google Scholar 

  100. Tanaka M, Takeda N, Senba E, Tohyama M, Kubo T, Matsunaga T (1989a) Localization and origins of calcitonin gene-related peptide containing fibres in the vestibular end-organs of the rat. Acta Otolaryngol Suppl 468:31–34

    Article  CAS  PubMed  Google Scholar 

  101. Tanaka M, Takeda N, Senba E, Tohyama M, Kubo T, Matsunaga T (1989b) Localization, origin and fine structure of calcitonin gene-related peptide-containing fibers in the vestibular end-organs of the rat. Brain Res 504:31–35

    Article  CAS  PubMed  Google Scholar 

  102. Tizzano M, Finger TE (2013) Chemosensors in the nose: guardians of the airways. Physiology 28:51–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM, Churchill ME, Silver WL, Kinnamon SC, Finger TE (2010) Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci U S A 107:3210–3215

    Article  PubMed  PubMed Central  Google Scholar 

  104. Toriyama Y, Iesato Y, Imai A, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Yamauchi A, Igarashi K, Tanaka M, Liu T, Xian X, Zhai L, Owa S, Murata T, Shindo T (2015) Pathophysiological function of endogenous calcitonin gene-related peptide in ocular vascular diseases. Am J Pathol 185:1783–1794

    Article  CAS  PubMed  Google Scholar 

  105. Troger J, Sellemond S, Kieselbach G, Kralinger M, Schmid E, Teuchner B, Nguyen QA, Schretter-Irschick E, Gottinger W (2003) Inhibitory effect of certain neuropeptides on the proliferation of human retinal pigment epithelial cells. Brit J Ophthalmol 87:1403–1408

    Article  CAS  Google Scholar 

  106. Tso AR, Goadsby PJ (2017) Anti-CGRP monoclonal antibodies: the next era of migraine prevention? Curr Treat Options Neurol 19:27

    Article  PubMed  PubMed Central  Google Scholar 

  107. Uddman R, Grunditz T, Larsson A, Sundler F (1988) Sensory innervation of the ear drum and middle-ear mucosa: retrograde tracing and immunocytochemistry. Cell Tissue Res 252:141–146

    Article  CAS  PubMed  Google Scholar 

  108. Uddman R, Cantera L, Cardell LO, Edvinnsson L (1999) Expression of NPY Y1 and CGRP1 receptors in human nasal mucosa: implications in allergic rhinitis. Ann Otol Rhinol Laryngol 108:969–973

    Article  CAS  PubMed  Google Scholar 

  109. Uddman R, Malm L, Cardell LO (2007) Neurotransmitter candidates in the vomeronasal organ of the rat. Acta Otolaryngol 127:952–956

    Article  CAS  PubMed  Google Scholar 

  110. Ueda S, del CM, LoCascio JA, Aquavella JV (1989) Peptidergic and catecholaminergic fibers in the human corneal epithelium. An immunohistochemical and electron microscopic study. Acta Ophthalmol Suppl 192:80–90

    CAS  PubMed  Google Scholar 

  111. Usami S, Hozawa J, Ylikoski J (1991) Coexistence of substance P and calcitonin gene-related peptide-like immunoreactivities in the rat vestibular endorgans. Acta Otolaryngol Suppl 481:166–169

    Article  CAS  PubMed  Google Scholar 

  112. Uusitalo H, Krootila K, Palkama A (1989) Calcitonin gene-related peptide (CGRP) immunoreactive sensory nerves in the human and Guinea pig uvea and cornea. Exp Eye Res 48:467–475

    Article  CAS  PubMed  Google Scholar 

  113. Vass Z, Shore SE, Nuttall AL, Miller JM (1998) Direct evidence of trigeminal innervation of the cochlear blood vessels. Neurosci 84:559–567

    Article  CAS  Google Scholar 

  114. Viana F (2011) Chemosensory properties of the trigeminal system. ACS Chem Neurosci 2:38–50

    Article  CAS  PubMed  Google Scholar 

  115. Wackym PA (1993) Ultrastructural organization of calcitonin gene-related peptide immunoreactive efferent axons and terminals in the vestibular periphery. Am J Otolaryngol 14:41–50

    CAS  Google Scholar 

  116. Wackym PA, Popper P, Micevych PE (1993) Distribution of calcitonin gene-related peptide mRNA and immunoreactivity in the rat central and peripheral vestibular system. Acta Otolaryngol 113:601–608

    Article  CAS  PubMed  Google Scholar 

  117. Wakisaka S, Miyawaki Y, Youn SH, Kato J, Kurisu K (1996) Protein gene-product 9.5 in developing mouse circumvallate papilla: comparison with neuron-specific enolase and calcitonin gene-related peptide. Anat Embryol 194:365–372

    Article  CAS  PubMed  Google Scholar 

  118. Wang Y, Li Y, Wang M (2016) Involvement of CGRP receptors in retinal spreading depression. Pharmacol Rep 68:935–938

    Article  CAS  PubMed  Google Scholar 

  119. Watanabe IS, Dias FJ, Mardegan Issa JP, dos Santos Haemmerle CA, Cury DP, Takada SH, Sosthenes MC, Pereira da Silva MC, Campos LM, Nogueira MI, Iyomasa MM (2013) Immunohistochemistry and ultrastructural characteristics of nerve endings in the oral mucosa of rat. Microscopy 62:259–270

    Article  CAS  PubMed  Google Scholar 

  120. Yamazaki M, Sato I (2014) Distribution of substance P and the calcitonin gene-related peptide in the human tensor tympani muscle. Eur Arch Otorhinolaryngol 271:905–911

    Article  PubMed  Google Scholar 

  121. Yang JH, Zhang YQ, Guo Z (2011) Endogenous CGRP protects retinal cells against stress induced apoptosis in rats. Neurosci Lett 501:83–85

    Article  CAS  PubMed  Google Scholar 

  122. Ye XD, Laties AM, Stone RA (1990) Peptidergic innervation of the retinal vasculature and optic nerve head. Invest Ophthalmol Vis Sci 31:1731–1737

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard Carr.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carr, R., Frings, S. Neuropeptides in sensory signal processing. Cell Tissue Res 375, 217–225 (2019). https://doi.org/10.1007/s00441-018-2946-3

Download citation

Keywords

  • Neuropeptide
  • Sensory
  • Trigeminal
  • Chemesthesis
  • CGRP