Cell and Tissue Research

, Volume 375, Issue 1, pp 311–327 | Cite as

Advanced genetic and viral methods for labelling and manipulation of oxytocin and vasopressin neurones in rats

  • Mitsuhiro Yoshimura
  • Yoichi UetaEmail author


Rats have been widely used as one of the most common laboratory animals for biological research, because their physiology, pathology, and behavioral characteristics are highly similar to humans. Recent developments in rat genetic modification techniques have now led to further their utility for a broad range of research questions, including the ability to specifically label individual neurones, and even manipulate neuronal function in rats. We have succeeded in generating several transgenic rat lines that enable visualization of specific neurones due to their expression of fluorescently-tagged oxytocin, vasopressin, and c-fos protein. Furthermore, we have been able to generate novel transgenic rat lines in which we can activate vasopressin neurones using optogenetic and chemogenetic techniques. In this review, we will summarize the techniques of genetic modification for labeling and manipulating the specific neurones. Successful examples of generating transgenic rat lines in our lab and usefulness of these rats will also be introduced. These transgenic rat lines enable the interrogation of neuronal function and physiology in a way that was not possible in the past, providing novel insights into neuronal mechanisms both in vivo and ex vivo.


Transgenic rat Oxytocin Arginine vasopressin Optogenetics DREADDs 



We thank Dr. Becky Conway-Campbell (University of Bristol) for language editing and robust discussion of the manuscript. This article was supported by a Grant-in-Aid for Scientific Research (B) (no. 17H04027) and a Grant-in-Aid for Scientific Research on Innovative Areas (no. 15H05940) for Y.U. from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author contribution

M.Y. prepared the draft and figures. Final approval was made by Y.U.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.


  1. Agarwal S, Kanaar R, Essers J (2007) The cell biology of homologous recombination. In: Molecular genetics of recombination, pp 335–362Google Scholar
  2. Akagi K, Sandig V, Vooijs M et al (1997) Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res 25:1766–1773. CrossRefGoogle Scholar
  3. Arase K, Hashimoto H, Sonoda S et al (2017) Possible involvement of central oxytocin in cisplatin-induced anorexia in rats. J Physiol Sci.
  4. Armario A (2006) The contribution of immediate early genes to the understanding of brain processing of stressors. In: Immediate early genes in sensory processing, cognitive performance and neurological disorders, pp 199–221CrossRefGoogle Scholar
  5. Armstrong WE, Smith BN, Tian M (1994) Electrophysiological characteristics of immunochemically identified rat oxytocin and vasopressin neurones in vitro. J Physiol 475:115–128. CrossRefGoogle Scholar
  6. Bostick B, Ghosh A, Yue Y et al (2007) Systemic AAV-9 transduction in mice is influenced by animal age but not by the route of administration. Gene Ther 14:1605–1609. CrossRefGoogle Scholar
  7. Brinster RL, Chen HY, Trumbauer M et al (1981) Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27:223–231. CrossRefGoogle Scholar
  8. Brownstein MJ, Russell JT, Gainer H (1980) Synthesis, transport, and release of posterior pituitary hormones. Science 207:373–378. CrossRefGoogle Scholar
  9. Burns KH, Boeke JD (2012) Human transposon tectonics. Cell 149:740–752CrossRefGoogle Scholar
  10. Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:756–761. CrossRefGoogle Scholar
  11. Cockrell AS, Kafri T (2007) Gene delivery by lentivirus vectors. Mol Biotechnol 36:184–204CrossRefGoogle Scholar
  12. Costantini F, Lacy E (1981) Introduction of a rabbit β-globin gene into the mouse germ line. Nature 294:92–94. CrossRefGoogle Scholar
  13. de Bartolomeis A, Buonaguro EF, Latte G et al (2017) Immediate-early genes modulation by antipsychotics: translational implications for a putative gateway to drug-induced long-term brain changes. Front Behav Neurosci 11.
  14. de Kock CPJ, Wierda KDB, Bosman LWJ et al (2003) Somatodendritic secretion in oxytocin neurons is upregulated during the female reproductive cycle. J Neurosci 23:2726–2734CrossRefGoogle Scholar
  15. Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29. CrossRefGoogle Scholar
  16. Eliava M, Melchior M, Knobloch-Bollmann HS et al (2016) A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron 89:1291–1304. CrossRefGoogle Scholar
  17. Fields RL, Ponzio TA, Kawasaki M, Gainer H (2012) Cell-type specific oxytocin gene expression from AAV delivered promoter deletion constructs into the rat supraoptic nucleus in vivo. PLoS One 7.
  18. Fujihara H, Ueta Y, Suzuki H et al (2009) Robust up-regulation of nuclear red fluorescent-tagged fos marks neuronal activation in green fluorescent vasopressin neurons after osmotic stimulation in a double-transgenic rat. Endocrinology 150:5633–5638. CrossRefGoogle Scholar
  19. Fujio T, Fujihara H, Shibata M et al (2006) Exaggerated response of arginine vasopressin-enhanced green fluorescent protein fusion gene to salt loading without disturbance of body fluid homeostasis in rats. J Neuroendocrinol 18:776–785. CrossRefGoogle Scholar
  20. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci 109:E2579–E2586. CrossRefGoogle Scholar
  21. Gordon J, Ruddle F (1981) Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 214:1244–1246. CrossRefGoogle Scholar
  22. Grund T, Goyon S, Li Y et al (2017) Neuropeptide S activates paraventricular oxytocin neurons to induce anxiolysis. J Neurosci 37:12214–12225. CrossRefGoogle Scholar
  23. Hacein-bey-abina S (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. Engl J Med 346Google Scholar
  24. Hamlet MRJ, Yergeau DA, Kuliyev E et al (2006) Tol2 transposon-mediated transgenesis in Xenopus tropicalis. Genesis 44:438–445. CrossRefGoogle Scholar
  25. Harris JA (1998) Using c-fos as a neural marker of pain. Brain Res Bull 45:1–8CrossRefGoogle Scholar
  26. Hemantha KD (2014) Transposon mutagenesis. In: Pseudomonas methods and protocols, pp 271–279Google Scholar
  27. Herrera DG, Robertson HA (1996) Activation of c-fos in the brain. Prog Neurobiol 50:83–107CrossRefGoogle Scholar
  28. Holmes CL, Russell JA (2004) Vasopressin. Semin Respir Crit Care Med 25:705–711CrossRefGoogle Scholar
  29. Houdebine LM (2005) Use of transgenic animals to improve human health and animal production. Reprod Domest Anim:269–281Google Scholar
  30. Iijima N, Miyamoto S, Matsumoto K et al (2017) Development of an imaging system for in vivo real-time monitoring of neuronal activity in deep brain of free-moving rats. Histochem Cell Biol 148:289–298. CrossRefGoogle Scholar
  31. Ishii M, Hashimoto H, Ohkubo J-I et al (2016) Transgenic approach to express the channelrhodopsin 2 gene in arginine vasopressin neurons of rats. Neurosci Lett 630.
  32. Ishikura T, Suzuki H, Yoshimura M et al (2012) Expression of the c-fos-monomeric red fluorescent protein 1 fusion gene in the spinal cord and the hypothalamic paraventricular nucleus in transgenic rats after nociceptive stimulation. Brain Res 1479.
  33. Ivics Z, Li MA, Mátés L et al (2009) Transposon-mediated genome manipulation in vertebrates. Nat Methods 6:415–422CrossRefGoogle Scholar
  34. Iwanaga M, Ohno M, Katoh A et al (2011) Upregulation of arginine vasopressin synthesis in the rat hypothalamus after kainic acid-induced seizures. Brain Res 1424:1–8. CrossRefGoogle Scholar
  35. Jaenisch R, Mintz B (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci 71:1250–1254. CrossRefGoogle Scholar
  36. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. CrossRefGoogle Scholar
  37. Katoh A, Fujihara H, Ohbuchi T et al (2011) Highly visible expression of an oxytocin-monomeric red fluorescent protein 1 fusion gene in the hypothalamus and posterior pituitary of transgenic rats. Endocrinology 152:2768–2774. CrossRefGoogle Scholar
  38. Katoh A, Shoguchi K, Matsuoka H et al (2014) Fluorescent visualisation of the hypothalamic oxytocin neurones activated by cholecystokinin-8 in rats expressing c-fos-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 fusion transgenes. J Neuroendocrinol 26.
  39. Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397:3173–3178. CrossRefGoogle Scholar
  40. Knobloch HS, Charlet A, Hoffmann L et al (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73:553–566. CrossRefGoogle Scholar
  41. Kolb AF, Siddell SG (1996) Genomic targeting with an MBP-Cre fusion protein. Gene 183:53–60. CrossRefGoogle Scholar
  42. Kortus S, Srinivasan C, Forostyak O et al (2016) Physiology of spontaneous [Ca2+]i oscillations in the isolated vasopressin and oxytocin neurones of the rat supraoptic nucleus. Cell Calcium 59:280–288. CrossRefGoogle Scholar
  43. Leon WC, Canneva F, Partridge V et al (2010) A novel transgenic rat model with a full Alzheimer’s-like amyloid pathology displays pre-plaque intracellular amyloid-beta-associated cognitive impairment. J Alzheimers Dis 20:113–126. CrossRefGoogle Scholar
  44. Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7:126–136. CrossRefGoogle Scholar
  45. Magistretti PJ, Allaman I (2013) Chemogenetics: DREADDs. In: Neuroscience in the 21st century, pp 1591–1620Google Scholar
  46. Marshall K (2011) Oxytocin. In: xPharm: the comprehensive pharmacology reference, pp 1–6Google Scholar
  47. Matsuura T, Kawasaki M, Hashimoto H et al (2015) Fluorescent visualisation of oxytocin in the hypothalamo-neurohypophysial/-spinal pathways after chronic inflammation in oxytocin-monomeric red fluorescent protein 1 transgenic rats. J Neuroendocrinol 27.
  48. Matsuura T, Kawasaki M, Hashimoto H et al (2016) Possible involvement of the rat hypothalamo-neurohypophysial/-spinal oxytocinergic pathways in acute nociceptive responses. J Neuroendocrinol 28.
  49. Meek S, Mashimo T, Burdon T (2017) From engineering to editing the rat genome. Mamm Genome 28:302–314. CrossRefGoogle Scholar
  50. Menon R, Grund T, Zoicas I et al (2018) Oxytocin signaling in the lateral septum prevents social fear during lactation. Curr Biol 28:1066–1078.e6. CrossRefGoogle Scholar
  51. Morbitzer R, Romer P, Boch J, Lahaye T (2010) Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci 107:21617–21622. CrossRefGoogle Scholar
  52. Morgan JI, Cohen DR, Hempstead JL, Curran T (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237:192–197. CrossRefGoogle Scholar
  53. Motojima Y, Kawasaki M, Matsuura T et al (2016) Effects of peripherally administered cholecystokinin-8 and secretin on feeding/drinking and oxytocin-mRFP1 fluorescence in transgenic rats. Neurosci Res 109:63–69. CrossRefGoogle Scholar
  54. Motojima Y, Matsuura T, Yoshimura M et al (2017) Comparison of the induction of c-fos-eGFP and Fos protein in the rat spinal cord and hypothalamus resulting from subcutaneous capsaicin or formalin injection. Neuroscience 356.
  55. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109CrossRefGoogle Scholar
  56. Ohbuchi T, Sato K, Suzuki H et al (2010a) Acid-sensing ion channels in rat hypothalamic vasopressin neurons of the supraoptic nucleus. J Physiol 588:2147–2162. CrossRefGoogle Scholar
  57. Ohbuchi T, Ueta Y (2014) Visible markers of vasopressin and oxytocin activity and their use in identifying the neuronal activity of specific neuroendocrine cell types. In: Neurophysiology of Neuroendocrine Neurons, pp 135–162Google Scholar
  58. Ohbuchi T, Yokoyama T, Fujihara H et al (2010b) Electrophysiological identification of the functional presynaptic nerve terminals on an isolated single vasopressin neurone of the rat supraoptic nucleus. J Neuroendocrinol 22:413–419. CrossRefGoogle Scholar
  59. Ohbuchi T, Yokoyama T, Saito T et al (2009) Brain-derived neurotrophic factor inhibits spontaneous inhibitory postsynaptic currents in the rat supraoptic nucleus. Brain Res 1258:34–42. CrossRefGoogle Scholar
  60. Ohkubo J-I, Ohbuchi T, Yoshimura M et al (2014a) Differences in acid-induced currents between oxytocin-mRFP1 and vasopressin-eGFP neurons isolated from the supraoptic and paraventricular nuclei of transgenic rats. Neurosci Lett 583.
  61. Ohkubo J, Ohbuchi T, Yoshimura M et al (2014b) Electrophysiological effects of kainic acid on vasopressin-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 neurones isolated from the supraoptic nucleus in transgenic rats. J Neuroendocrinol 26.
  62. Ohno M, Fujihara H, Iwanaga M et al (2012) Induction of arginine vasopressin-enhanced green fluorescent protein expression in the locus coeruleus following kainic acid-induced seizures in rats. Stress 15:435–442. CrossRefGoogle Scholar
  63. Ohno S, Hashimoto H, Fujihara H et al (2017) Increased oxytocin-monomeric red fluorescent protein 1 fluorescent intensity with urocortin-like immunoreactivity in the hypothalamo-neurohypophysial system of aged transgenic rats. Neurosci ResGoogle Scholar
  64. Pei H, Sutton AK, Burnett KH et al (2014) AVP neurons in the paraventricular nucleus of the hypothalamus regulate feeding. Mol Metab 3:209–215. CrossRefGoogle Scholar
  65. Persic L, Righi M, Roberts A et al (1997) Targeting vectors for intracellular immunisation. Gene 187:1–8. CrossRefGoogle Scholar
  66. Pfeifer A, Lim T, Zimmermann K (2010) Lentivirus transgenesis. Methods Enzymol 477:3–15. CrossRefGoogle Scholar
  67. Pfeifer A, Verma IM (2001) Gene therapy: promises and problems. Annu Rev Genomics Hum Genet 2:177–211. CrossRefGoogle Scholar
  68. Ponzio TA, Fields RL, Rashid OM et al (2012) Cell-type specific expression of the vasopressin gene analyzed by AAV mediated gene delivery of promoter deletion constructs into the rat SON in vivo. PLoS One 7.
  69. Popova E, Bader M, Krivokharchenko A (2005) Production of transgenic models in hypertension. Methods Mol Med 108:33–50Google Scholar
  70. Roth BL (2016) DREADDs for neuroscientists. Neuron 89:683–694CrossRefGoogle Scholar
  71. Sasakura Y, Oogai Y, Matsuoka T et al (2007) Transposon mediated transgenesis in a marine invertebrate chordate: Ciona intestinalis. Genome Biol 8Google Scholar
  72. Shashikant CS, JL. Carr, Bhargava J et al (1998) Recombinogenic targeting: a new approach to genomic analysis—a review. In: Gene, pp 9–20Google Scholar
  73. Shi P, Martinez MA, Calderon AS et al (2008) Intra-carotid hyperosmotic stimulation increases Fos staining in forebrain organum vasculosum laminae terminalis neurones that project to the hypothalamic paraventricular nucleus. J Physiol 586:5231–5245. CrossRefGoogle Scholar
  74. Shibata M, Fujihara H, Suzuki H et al (2007) Physiological studies of stress responses in the hypothalamus of vasopressin-enhanced green fluorescent protein transgenic rat. J Neuroendocrinol 19:285–292. CrossRefGoogle Scholar
  75. Suzuki H, Kawasaki M, Ohnishi H et al (2009) Exaggerated response of a vasopressin-enhanced green fluorescent protein transgene to nociceptive stimulation in the rat. J Neurosci 29:13182–13189. CrossRefGoogle Scholar
  76. Technologies T (2012) Technical reference guide an introduction to transfection methods. Infection 49:395–401. Google Scholar
  77. Terleph TA, Tremere LA (2006) The use of immediate early genes as mapping tools for neuronal activation: concepts and methods. In: Immediate early genes in sensory processing, cognitive performance and neurological disorders, pp 1–10Google Scholar
  78. Tobin VA, Hashimoto H, Wacker DW et al (2010) An intrinsic vasopressin system in the olfactory bulb is involved in social recognition. Nature 464:413–417. CrossRefGoogle Scholar
  79. Trudeau DL, Smith MA, Arnold FH (2013) Innovation by homologous recombination. Curr Opin Chem Biol 17:902–909CrossRefGoogle Scholar
  80. Tsien R (1998) The green fluorescent protein. Annu Rev Biochem 67:509. CrossRefGoogle Scholar
  81. Tsuji T, Allchorne AJ, Zhang M et al (2017) Vasopressin casts light on the suprachiasmatic nucleus. J Physiol 595:3497–3514. CrossRefGoogle Scholar
  82. Ueta Y, Fujihara H, Serino R et al (2005) Transgenic expression of enhanced green fluorescent protein enables direct visualization for physiological studies of vasopressin neurons and isolated nerve terminals of the rat. Endocrinology 146:406–413. CrossRefGoogle Scholar
  83. Urnov FD, Miller JC, Lee YL et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651. CrossRefGoogle Scholar
  84. von Horsten S, Schmitt I, Nguyen HP et al (2003) Transgenic rat model of Huntington’s disease. Hum Mol Genet 12:617–624. CrossRefGoogle Scholar
  85. Vorburger SA, Hunt KK (2002) Adenoviral gene therapy. Oncologist 7.
  86. Woods NB, Muessig A, Schmidt M et al (2003) Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis. Blood 101:1284–1289. CrossRefGoogle Scholar
  87. Yamaguchi Y (2018) Arginine vasopressin signaling in the suprachiasmatic nucleus on the resilience of circadian clock to jet lag. Neurosci Res 129:57–61. CrossRefGoogle Scholar
  88. Yamashita H, Ueta Y, Dyball REJ (2002) 60 - Electrophysiological and molecular properties of the oxytocin- and vasopressin-secreting systems in mammals. In: Hormones, brain and behavior, pp 1–49Google Scholar
  89. Yoshimura M, Matsuura T, Ohkubo J et al (2014) A role of nesfatin-1/NucB2 in dehydration-induced anorexia. Am J Phys Regul Integr Comp Phys 307:R225–R236. Google Scholar
  90. Yoshimura M, Nishimura K, Nishimura H et al (2017) Activation of endogenous arginine vasopressin neurons inhibit food intake: by using a novel transgenic rat line with DREADDs system. Sci Rep 7.
  91. Yoshimura M, Ohkubo J, Katoh A et al (2013) A c-fos-monomeric red fluorescent protein 1 fusion transgene is differentially expressed in rat forebrain and brainstem after chronic dehydration and rehydration. J Neuroendocrinol 25.
  92. Zeng Q, Foo NC, Funkhouser JM et al (1994) Expression of a rat vasopressin transgene in rat testes. J Reprod Fertil 102:471–481CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiology, School of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan

Personalised recommendations