Skip to main content

Advertisement

Log in

Oxytocin facilitates adaptive fear and attenuates anxiety responses in animal models and human studies—potential interaction with the corticotropin-releasing factor (CRF) system in the bed nucleus of the stria terminalis (BNST)

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Despite its relatively well-understood role as a reproductive and pro-social peptide, oxytocin (OT) tells a more convoluted story in terms of its modulation of fear and anxiety. This nuanced story has been obscured by a great deal of research into the therapeutic applications of exogenous OT, driving more than 400 ongoing clinical trials. Drawing from animal models and human studies, we review the complex evidence concerning OT’s role in fear learning and anxiety, clarifying the existing confusion about modulation of fear versus anxiety. We discuss animal models and human studies demonstrating the prevailing role of OT in strengthening fear memory to a discrete signal or cue, which allows accurate and rapid threat detection that facilitates survival. We also review ostensibly contrasting behavioral studies that nonetheless provide compelling evidence of OT attenuating sustained contextual fear and anxiety-like behavior, arguing that these OT effects on the modulation of fear vs. anxiety are not mutually exclusive. To disambiguate how endogenous OT modulates fear and anxiety, an understudied area compared to exogenous OT, we survey behavioral studies utilizing OT receptor (OTR) antagonists. Based on emerging evidence about the role of OTR in rat dorsolateral bed nucleus of stria terminalis (BNST) and elsewhere, we postulate that OT plays a critical role in facilitating accurate discrimination between stimuli representing threat and safety. Supported by human studies, we demonstrate that OT uniquely facilitates adaptive fear but reduces maladaptive anxiety. Last, we explore the limited literature on endogenous OT and its interaction with corticotropin-releasing factor (CRF) with a special emphasis on the dorsolateral BNST, which may hold the key to the neurobiology of phasic fear and sustained anxiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1: Effects of brain-specific exogenous OT or OTR antagonist infusion on fear learning in animal models.
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin

ACC:

Anterior cingulate cortex

AAV:

Adeno-associated viral vector

am:

Anteromedial

AN:

Accessory nuclei of the hypothalamus

ASR :

Acoustic startle response

AVP :

Arginine-vasopressin

BBB:

Blood-brain barrier

BLA:

Basolateral nucleus of the amygdala

BNST:

Bed nucleus of the stria terminalis

CeA:

Central nucleus of the amygdala

CeL:

Lateral central nucleus of the amygdala

CeM :

Medial central nucleus of the amygdala

ChR2:

Channel Rhodopsin

CNO:

Clozapine-N-oxide

CNS:

Central nervous system

CORT:

Corticosterone (rodents) or cortisol (humans)

CRF:

Corticotropin-releasing factor

CRFR:

Corticotropin-releasing factor receptor

CS+ :

Signaled conditioned stimulus (paired)

CS :

Unsignaled conditioned stimulus or unpaired stimulus

CSC:

Chronic subordinate colony

dl:

Dorsolateral

DI:

Discrimination index

DREADD:

Designer receptors exclusively activated by designer drugs

EPM:

Elevated plus maze

fMRI:

Functional magnetic resonance imaging

FPS:

Fear-potentiated startle

FST :

Forced swim test

GABA:

Gamma-aminobutyric acid

GAD:

Generalized anxiety disorder

GSAD:

Generalized social anxiety disorder

HAB :

High-anxiety-related behavior

HPA :

Hypothalamic-pituitary-adrenal

HR:

Heart rate

ICV :

Intracerebroventricular

IN:

Intranasal

IP:

Intraperitoneal

ITC:

Intercalated cell masses of the amygdala

ITI:

Inter-trial interval

IU:

International unit

IV:

Intravenous

LA:

Lateral amygdala

LAB:

Low-anxiety-related behavior

LDB :

Light-dark box

LH:

Lateral hypothalamus

LS:

Lateral septum

LTP :

Long-term potentiation

mPFC:

Medial prefrontal cortex

MeA:

Medial amygdala

NAc:

Nucleus accumbens

NPS:

Neuropeptide S

OF:

Open field

OT:

Oxytocin

OTKO:

Oxytocin knockout

OTR:

Oxytocin receptor

OTR-A:

Oxytocin receptor antagonist

OTRKO:

Oxytocin receptor knockout

PAG:

Periaqueductal gray

PKCδ:

Protein kinase C delta

PLC:

Placebo

PND:

Post-natal day

PPI:

Pre-pulse inhibition

PTSD :

Post-traumatic stress disorder

PVN:

Paraventricular nucleus of the hypothalamus

RF:

Reticular formation

SAD:

Social anxiety disorder

SON:

Supraoptic nucleus of the hypothalamus

SC:

Subcutaneously

STAI:

State-Trait Anxiety Inventory

TGOT:

(Thr4, Gly7)-oxytocin; potent oxytocin receptor agonist

TMD :

Total movement distance

TSST :

Trier social stress test

Ucn:

Urocortin

US:

Unconditioned stimulus

V1AR:

Vasopressin V1A receptor

WAY:

WAY-267464; oxytocin analog

WNB:

White noise burst

References

  • Abdullahi PR, Eskandarian S, Ghanbari A, Rashidy-Pour A (2018) Oxytocin receptor antagonist atosiban impairs consolidation, but not reconsolidation of contextual fear memory in rats. Brain Res

  • Acheson D, Feifel D, de Wilde S, McKinney R, Lohr J, Risbrough V (2013) The effect of intranasal oxytocin treatment on conditioned fear extinction and recall in a healthy human sample. Psychopharmacology 229:199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acheson DT, Feifel D, Kamenski M, McKinney R, Risbrough VB (2015) Intranasal oxytocin administration prior to exposure therapy for arachnophobia impedes treatment response. Depression and anxiety 32:400–407

    Article  CAS  PubMed  Google Scholar 

  • Adolphs R, Tranel D, Damasio H, Damasio A (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372:669–672

    Article  CAS  PubMed  Google Scholar 

  • Amico JA, Mantella RC, Vollmer RR, Li X (2004) Anxiety and stress responses in female oxytocin deficient mice. J Neuroendocrinol 16:319–324

    Article  CAS  PubMed  Google Scholar 

  • Andreatta M, Glotzbach-Schoon E, Muhlberger A, Schulz SM, Wiemer J, Pauli P (2015) Initial and sustained brain responses to contextual conditioned anxiety in humans. Cortex; a journal devoted to the study of the nervous system and behavior 63:352–363

    Article  PubMed  Google Scholar 

  • Arima H, Aguilera G (2000) Vasopressin and oxytocin neurones of hypothalamic supraoptic and paraventricular nuclei co-express mRNA for Type-1 and Type-2 corticotropin-releasing hormone receptors. J Neuroendocrinol 12:833–842

    Article  CAS  PubMed  Google Scholar 

  • Asok A, Schulkin J, Rosen JB (2016) Corticotropin releasing factor type-1 receptor antagonism in the dorsolateral bed nucleus of the stria terminalis disrupts contextually conditioned fear, but not unconditioned fear to a predator odor. Psychoneuroendocrinology 70:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asok A, Draper A, Hoffman AF, Schulkin J, Lupica CR, Rosen JB (2018) Optogenetic silencing of a corticotropin-releasing factor pathway from the central amygdala to the bed nucleus of the stria terminalis disrupts sustained fear. Mol Psychiatry 23:914–922

    Article  CAS  PubMed  Google Scholar 

  • Ayers LW, Missig G, Schulkin J, Rosen JB (2011) Oxytocin reduces background anxiety in a fear-potentiated startle paradigm: peripheral vs central administration. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 36:2488–2497

    Article  CAS  Google Scholar 

  • Ayers L, Agostini A, Schulkin J, Rosen JB (2016) Effects of oxytocin on background anxiety in rats with high or low baseline startle. Psychopharmacology 233:2165–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babic S, Pokusa M, Danevova V, Ding ST, Jezova D (2015) Effects of atosiban on stress-related neuroendocrine factors. J Endocrinol 225:9–17

    Article  CAS  PubMed  Google Scholar 

  • Bale TL, Davis AM, Auger AP, Dorsa DM, McCarthy MM (2001) CNS region-specific oxytocin receptor expression: importance in regulation of anxiety and sex behavior. J Neurosci 21:2546–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bales KL, Pfeifer LA, Carter CS (2004) Sex differences and developmental effects of manipulations of oxytocin on alloparenting and anxiety in prairie voles. Dev Psychobiol 44:123–131

  • Bangasser DA, Shors TJ (2008) The bed nucleus of the stria terminalis modulates learning after stress in masculinized but not cycling females. J Neurosci 28:6383–6387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels A (2012) Oxytocin and the social brain: beware the complexity. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 37:1795–1796

    Article  CAS  Google Scholar 

  • Blume A, Bosch OJ, Miklos S, Torner L, Wales L, Waldherr M, Neumann ID (2008) Oxytocin reduces anxiety via ERK1/2 activation: local effect within the rat hypothalamic paraventricular nucleus. Eur J Neurosci 27:1947–1956

    Article  PubMed  Google Scholar 

  • Bosch OJ (2005) Brain oxytocin correlates with maternal aggression: link to anxiety. J Neurosci 25:6807–6815

  • Bosch OJ, Young LJ (2017) Oxytocin and social relationships: from attachment to bond disruption. Curr Top Behav Neurosci

  • Bosch OJ, Dabrowska J, Modi ME, Johnson ZV, Keebaugh AC, Barrett CE, Ahern TH, Guo J, Grinevich V, Rainnie DG, Neumann ID, Young LJ (2016) Oxytocin in the nucleus accumbens shell reverses CRFR2-evoked passive stress-coping after partner loss in monogamous male prairie voles. Psychoneuroendocrinology 64:66–78

    Article  CAS  PubMed  Google Scholar 

  • Bowen MT, Carson DS, Spiro A, Arnold JC, McGregor IS (2011) Adolescent oxytocin exposure causes persistent reductions in anxiety and alcohol consumption and enhances sociability in rats. PLoS One 6:e27237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley R, Greene J, Russ E, Dutra L, Westen D (2005) A multidimensional meta-analysis of psychotherapy for PTSD. Am J Psychiatry 162:214–227

    Article  PubMed  Google Scholar 

  • Bruhn TO, Sutton SW, Plotsky PM, Vale WW (1986) Central administration of corticotropin-releasing factor modulates oxytocin secretion in the rat. Endocrinology 119:1558–1563

    Article  CAS  PubMed  Google Scholar 

  • Bulbul M, Babygirija R, Cerjak D, Yoshimoto S, Ludwig K, Takahashi T (2011) Hypothalamic oxytocin attenuates CRF expression via GABA(A) receptors in rats. Brain Res 1387:39–45

    Article  CAS  PubMed  Google Scholar 

  • Caballero A, Tseng KY (2016) GABAergic function as a limiting factor for prefrontal maturation during adolescence. Trends Neurosci 39:441–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caballero A, Granberg R, Tseng KY (2016) Mechanisms contributing to prefrontal cortex maturation during adolescence. Neurosci Biobehav Rev 70:4–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Caldeyro-Barcia R, Poseiro JJ (1959) Oxytocin and contractility of the pregnant human uterus. Ann N Y Acad Sci 75:813–830

    Article  CAS  PubMed  Google Scholar 

  • Campbell-Smith EJ, Holmes NM, Lingawi NW, Panayi MC, Westbrook RF (2015) Oxytocin signaling in basolateral and central amygdala nuclei differentially regulates the acquisition, expression, and extinction of context-conditioned fear in rats. Learn Mem 22:247–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalli J, Ruttorf M, Pahi MR, Zidda F, Flor H, Nees F (2017) Oxytocin differentially modulates pavlovian cue and context fear acquisition. Soc Cogn Affect Neurosci 12:976–983

    Article  PubMed  PubMed Central  Google Scholar 

  • Chalmers DT, Lovenberg TW, De Souza EB (1995) Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci 15:6340–6350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen AM, Perrin MH, Digruccio MR, Vaughan JM, Brar BK, Arias CM, Lewis KA, Rivier JE, Sawchenko PE, Vale WW (2005) A soluble mouse brain splice variant of type 2alpha corticotropin-releasing factor (CRF) receptor binds ligands and modulates their activity. Proc Natl Acad Sci U S A 102:2620–2625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen H, Kaplan Z, Kozlovsky N, Gidron Y, Matar MA, Zohar J (2010) Hippocampal microinfusion of oxytocin attenuates the behavioural response to stress by means of dynamic interplay with the glucocorticoid-catecholamine responses. J Neuroendocrinol 22:889–904

    CAS  PubMed  Google Scholar 

  • Cohen BE, Edmondson D, Kronish IM (2015) State of the art review: depression, stress, anxiety, and cardiovascular disease. Am J Hypertens 28:1295–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper MA, Huhman KL (2005) Corticotropin-releasing factor type II (CRF-sub-2) receptors in the bed nucleus of the stria terminalis modulate conditioned defeat in Syrian hamsters (Mesocricetus auratus). Behav Neurosci 119:1042–1051

    Article  PubMed  Google Scholar 

  • Dabrowska J, Hazra R, Ahern TH, Guo JD, McDonald AJ, Mascagni F, Muller JF, Young LJ, Rainnie DG (2011) Neuroanatomical evidence for reciprocal regulation of the corticotrophin-releasing factor and oxytocin systems in the hypothalamus and the bed nucleus of the stria terminalis of the rat: implications for balancing stress and affect. Psychoneuroendocrinology 36:1312–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabrowska J, Hazra R, Guo JD, Dewitt S, Rainnie DG (2013a) Central CRF neurons are not created equal: phenotypic differences in CRF-containing neurons of the rat paraventricular hypothalamus and the bed nucleus of the stria terminalis. Front Neurosci 7:156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabrowska J, Hazra R, Guo JD, Li C, Dewitt S, Xu J, Lombroso PJ, Rainnie DG (2013b) Striatal-enriched protein tyrosine phosphatase-STEPs toward understanding chronic stress-induced activation of corticotrophin releasing factor neurons in the rat bed nucleus of the stria terminalis. Biol Psychiatry 74:817–826

    Article  CAS  PubMed  Google Scholar 

  • Dabrowska J, Martinon D, Moaddab M, Rainnie DG (2016) Targeting corticotropin-releasing factor (CRF) projections from the oval nucleus of the BNST using cell-type specific neuronal tracing studies in mouse and rat brain. J Neuroendocrinol

  • Daniel SE, Rainnie DG (2016) Stress modulation of opposing circuits in the bed nucleus of the stria terminalis. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 41:103–125

    Article  Google Scholar 

  • Davis M, Walker DL, Miles L, Grillon C (2010) Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 35:105–135

    Article  Google Scholar 

  • De Bundel D, Zussy C, Espallergues J, Gerfen CR, Girault JA, Valjent E (2016) Dopamine D2 receptors gate generalization of conditioned threat responses through mTORC1 signaling in the extended amygdala. Mol Psychiatry 21:1545–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira DC, Zuardi AW, Graeff FG, Queiroz RH, Crippa JA (2012) Anxiolytic-like effect of oxytocin in the simulated public speaking test. J Psychopharmacol 26:497–504

    Article  CAS  PubMed  Google Scholar 

  • Demet EM, Chicz-Demet A, Shaffer E (1990) Influence of protein concentration on platelet 3H-imipramine binding. Prog Neuro-Psychopharmacol Biol Psychiatry 14:553–561

    Article  CAS  Google Scholar 

  • Di Simplicio M, Massey-Chase R, Cowen PJ, Harmer CJ (2009) Oxytocin enhances processing of positive versus negative emotional information in healthy male volunteers. J Psychopharmacol 23:241–248

    Article  CAS  PubMed  Google Scholar 

  • Domes G, Heinrichs M, Glascher J, Buchel C, Braus DF, Herpertz SC (2007) Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol Psychiatry 62:1187–1190

    Article  CAS  PubMed  Google Scholar 

  • Domes G, Lischke A, Berger C, Grossmann A, Hauenstein K, Heinrichs M, Herpertz SC (2010) Effects of intranasal oxytocin on emotional face processing in women. Psychoneuroendocrinology 35:83–93

    Article  CAS  PubMed  Google Scholar 

  • Donadon MF, Martin-Santos R, Osorio FL (2018) The associations between oxytocin and trauma in humans: a systematic review. Front Pharmacol 9:154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong N, Du P, Hao X, He Z, Hou W, Wang L, Yuan W, Yang J, Jia R, Tai F (2017) Involvement of GABA A receptors in the regulation of social preference and emotional behaviors by oxytocin in the central amygdala of female mandarin voles. Neuropeptides 66:8–17

  • Dos Santos Junior ED, Da Silva AV, Da Silva KR, Haemmerle CA, Batagello DS, Da Silva JM, Lima LB, Da Silva RJ, Diniz GB, Sita LV, Elias CF, Bittencourt JC (2015) The centrally projecting Edinger-Westphal nucleus—I: Efferents in the rat brain. J Chem Neuroanat 68:22–38

    Article  PubMed  Google Scholar 

  • Dumais KM, Bredewold R, Mayer TE, Veenema AH (2013) Sex differences in oxytocin receptor binding in forebrain regions: correlations with social interest in brain region- and sex- specific ways. Horm Behav 64:693–701

    Article  CAS  PubMed  Google Scholar 

  • Dunsmoor JE, Paz R (2015) Fear generalization and anxiety: behavioral and neural mechanisms. Biol Psychiatry 78:336–343

    Article  PubMed  Google Scholar 

  • Duque-Wilckens N, Steinman MQ, Busnelli M, Chini B, Yokoyama S, Pham M, Laredo SA, Hao R, Perkeybile AM, Minie VA, Tan PB, Bales KL, Trainor BC (2018) Oxytocin receptors in the anteromedial bed nucleus of the stria terminalis promote stress-induced social avoidance in female California mice. Biol Psychiatry 83:203–213

    Article  CAS  PubMed  Google Scholar 

  • Duvarci S, Bauer EP, Pare D (2009) The bed nucleus of the stria terminalis mediates inter-individual variations in anxiety and fear. J Neurosci 29:10357–10361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckstein M, Becker B, Scheele D, Scholz C, Preckel K, Schlaepfer TE, Grinevich V, Kendrick KM, Maier W, Hurlemann R (2015) Oxytocin facilitates the extinction of conditioned fear in humans. Biol Psychiatry 78:194–202

    Article  CAS  PubMed  Google Scholar 

  • Eckstein M, Scheele D, Patin A, Preckel K, Becker B, Walter A, Domschke K, Grinevich V, Maier W, Hurlemann R (2016) Oxytocin facilitates Pavlovian fear learning in males. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 41:932–939

    Article  CAS  Google Scholar 

  • Eidelman-Rothman M, Goldstein A, Levy J, Weisman O, Schneiderman I, Mankuta D, Zagoory-Sharon O, Feldman R (2015) Oxytocin affects spontaneous neural oscillations in trauma-exposed war veterans. Front Behav Neurosci 9:165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellenbogen MA, Linnen AM, Cardoso C, Joober R (2014) Intranasal oxytocin attenuates the human acoustic startle response independent of emotional modulation. Psychophysiology 51:1169–1177

    Article  PubMed  Google Scholar 

  • Ermisch A, Ruhle HJ, Landgraf R, Hess J (1985) Blood-brain barrier and peptides. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 5:350–357

    Article  CAS  Google Scholar 

  • Eskandarian S, Vafaei AA, Vaezi GH, Taherian F, Kashefi A, Rashidy-Pour A (2013) Effects of systemic administration of oxytocin on contextual fear extinction in a rat model of post-traumatic stress disorder. Basic and clinical neuroscience 4:315–322

    PubMed  PubMed Central  Google Scholar 

  • Etkin A, Wager TD (2007) Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. The American journal of psychiatry 164:1476–1488

    Article  PubMed  PubMed Central  Google Scholar 

  • Feeser M, Fan Y, Weigand A, Hahn A, Gartner M, Aust S, Boker H, Bajbouj M, Grimm S (2014) The beneficial effect of oxytocin on avoidance-related facial emotion recognition depends on early life stress experience. Psychopharmacology 231:4735–4744

    Article  CAS  PubMed  Google Scholar 

  • Fischer-Shofty M, Shamay-Tsoory SG, Harari H, Levkovitz Y (2010) The effect of intranasal administration of oxytocin on fear recognition. Neuropsychologia 48:179–184

    Article  CAS  PubMed  Google Scholar 

  • Frijling JL, van Zuiden M, Koch SB, Nawijn L, Veltman DJ, Olff M (2016) Effects of intranasal oxytocin on amygdala reactivity to emotional faces in recently trauma-exposed individuals. Soc Cogn Affect Neurosci 11:327–336

    Article  PubMed  Google Scholar 

  • Gale GD, Anagnostaras SG, Godsil BP, Mitchell S, Nozawa T, Sage JR, Wiltgen B, Fanselow MS (2004) Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J Neurosci 24:3810–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gewirtz JC, McNish KA, Davis M (1998) Lesions of the bed nucleus of the stria terminalis block sensitization of the acoustic startle reflex produced by repeated stress, but not fear-potentiated startle. Prog Neuro-Psychopharmacol Biol Psychiatry 22:625–648

    Article  CAS  Google Scholar 

  • Goode TD, Maren S (2017) Role of the bed nucleus of the stria terminalis in aversive learning and memory. Learn Mem 24:480–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goode TD, Kim JJ, Maren S (2015) Reversible inactivation of the bed nucleus of the stria terminalis prevents reinstatement but not renewal of extinguished fear. eNeuro 2

  • Gorka SM, Fitzgerald DA, Labuschagne I, Hosanagar A, Wood AG, Nathan PJ, Phan KL (2015) Oxytocin modulation of amygdala functional connectivity to fearful faces in generalized social anxiety disorder. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 40:278–286

    Article  CAS  Google Scholar 

  • Grillon C, Pine DS, Lissek S, Rabin S, Bonne O, Vythilingam M (2009) Increased anxiety during anticipation of unpredictable aversive stimuli in posttraumatic stress disorder but not in generalized anxiety disorder. Biol Psychiatry 66:47–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Grillon C, Krimsky M, Charney DR, Vytal K, Ernst M, Cornwell B (2013) Oxytocin increases anxiety to unpredictable threat. Mol Psychiatry 18:958–960

    Article  CAS  PubMed  Google Scholar 

  • Grillon C, Hale E, Lieberman L, Davis A, Pine DS, Ernst M (2015) The CRH1 antagonist GSK561679 increases human fear but not anxiety as assessed by startle. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 40:1064–1071

    Article  CAS  Google Scholar 

  • Grippo AJ, Gerena D, Huang J, Kumar N, Shah M, Ughreja R, Carter CS (2007) Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles. Psychoneuroendocrinology 32:966–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grippo AJ, Trahanas DM, Zimmerman RR 2nd, Porges SW, Carter CS (2009) Oxytocin protects against negative behavioral and autonomic consequences of long-term social isolation. Psychoneuroendocrinology 34:1542–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grippo AJ, Pournajafi-Nazarloo H, Sanzenbacher L, Trahanas DM, McNeal N, Clarke DA, Porges SW, Sue Carter C (2012) Peripheral oxytocin administration buffers autonomic but not behavioral responses to environmental stressors in isolated prairie voles. Stress 15:149–161

    Article  CAS  PubMed  Google Scholar 

  • Grund T, Goyon S, Li Y, Eliava M, Liu H, Charlet A, Grinevich V, Neumann ID (2017) Neuropeptide S activates paraventricular oxytocin neurons to induce anxiolysis. J Neurosci 37:12214–12225

  • Guastella AJ, Howard AL, Dadds MR, Mitchell P, Carson DS (2009) A randomized controlled trial of intranasal oxytocin as an adjunct to exposure therapy for social anxiety disorder. Psychoneuroendocrinology 34:917–923

    Article  CAS  PubMed  Google Scholar 

  • Gungor NZ, Pare D (2016) Functional heterogeneity in the bed nucleus of the stria terminalis. J Neurosci 36:8038–8049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gungor NZ, Yamamoto R, Pare D (2015) Optogenetic study of the projections from the bed nucleus of the stria terminalis to the central amygdala. J Neurophysiol 114:2903–2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman YF, Tronson NC, Jovasevic V, Sato K, Guedea AL, Mizukami H, Nishimori K, Radulovic J (2013) Fear-enhancing effects of septal oxytocin receptors. Nat Neurosci 16:1185–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammack SE, Richey KJ, Watkins LR, Maier SF (2004) Chemical lesion of the bed nucleus of the stria terminalis blocks the behavioral consequences of uncontrollable stress. Behav Neurosci 118:443–448

    Article  PubMed  Google Scholar 

  • Hammack SE, Guo JD, Hazra R, Dabrowska J, Myers KM, Rainnie DG (2009) The response of neurons in the bed nucleus of the stria terminalis to serotonin: implications for anxiety. Prog Neuro-Psychopharmacol Biol Psychiatry

  • Han JS, Maeda Y, Knepper MA (1993) Dual actions of vasopressin and oxytocin in regulation of water permeability in terminal collecting duct. Am J Phys 265:F26–F34

    CAS  Google Scholar 

  • Harden SW, Frazier CJ (2016) Oxytocin depolarizes fast-spiking hilar interneurons and induces GABA release onto mossy cells of the rat dentate gyrus. Hippocampus

  • Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, Biag J, Dong HW, Deisseroth K, Callaway EM, Fanselow MS, Luthi A, Anderson DJ (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468:270–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haufler D, Nagy FZ, Pare D (2013) Neuronal correlates of fear conditioning in the bed nucleus of the stria terminalis. Learn Mem (Cold Spring Harbor, NY) 20:633–641

    Article  Google Scholar 

  • Hauger RL, Olivares-Reyes JA, Braun S, Catt KJ, Dautzenberg FM (2003a) Mediation of corticotropin releasing factor type 1 receptor phosphorylation and desensitization by protein kinase C: a possible role in stress adaptation. J Pharmacol Exp Ther 306:794–803

    Article  CAS  PubMed  Google Scholar 

  • Hauger RL, Grigoriadis DE, Dallman MF, Plotsky PM, Vale WW, Dautzenberg FM (2003b) International Union of Pharmacology. XXXVI. Current status of the nomenclature for receptors for corticotropin-releasing factor and their ligands. Pharmacol Rev 55:21–26

    Article  CAS  PubMed  Google Scholar 

  • Havranek T, Zatkova M, Lestanova Z, Bacova Z, Mravec B, Hodosy J, Strbak V, Bakos J (2015) Intracerebroventricular oxytocin administration in rats enhances object recognition and increases expression of neurotrophins, microtubule-associated protein 2, and synapsin I. J Neurosci Res 93:893–901

    Article  CAS  PubMed  Google Scholar 

  • Henckens M, Printz Y, Shamgar U, Dine J, Lebow M, Drori Y, Kuehne C, Kolarz A, Eder M, Deussing JM, Justice NJ, Yizhar O, Chen A (2017) CRF receptor type 2 neurons in the posterior bed nucleus of the stria terminalis critically contribute to stress recovery. Mol Psychiatry 22:1691–1700

    Article  CAS  PubMed  Google Scholar 

  • Herrmann MJ, Boehme S, Becker MP, Tupak SV, Guhn A, Schmidt B, Brinkmann L, Straube T (2016) Phasic and sustained brain responses in the amygdala and the bed nucleus of the stria terminalis during threat anticipation. Hum Brain Mapp 37:1091–1102

    Article  PubMed  Google Scholar 

  • Hicks C, Jorgensen W, Brown C, Fardell J, Koehbach J, Gruber CW, Kassiou M, Hunt GE, McGregor IS (2012) The nonpeptide oxytocin receptor agonist WAY 267,464: receptor-binding profile, prosocial effects and distribution of c-Fos expression in adolescent rats. J Neuroendocrinol 24:1012–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hitchcock JM, Davis M (1991) Efferent pathway of the amygdala involved in conditioned fear as measured with the fear-potentiated startle paradigm. Behav Neurosci 105:826–842

    Article  CAS  PubMed  Google Scholar 

  • Huber D, Veinante P, Stoop R (2005) Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science (New York NY) 308:245–248

    Article  CAS  Google Scholar 

  • Hurlemann R, Patin A, Onur OA, Cohen MX, Baumgartner T, Metzler S, Dziobek I, Gallinat J, Wagner M, Maier W, Kendrick KM (2010) Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. J Neurosci 30:4999–5007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram CD, Cutler KL, Wakerley JB (1990) Oxytocin excites neurones in the bed nucleus of the stria terminalis of the lactating rat in vitro. Brain Res 527:167–170

    Article  CAS  PubMed  Google Scholar 

  • Jaferi A, Pickel VM (2009) Mu-opioid and corticotropin-releasing-factor receptors show largely postsynaptic co-expression, and separate presynaptic distributions, in the mouse central amygdala and bed nucleus of the stria terminalis. Neuroscience 159:526–539

    Article  CAS  PubMed  Google Scholar 

  • Jamieson BB, Nair BB, Iremonger KJ (2017) Regulation of hypothalamic CRH neuron excitability by oxytocin. J Neuroendocrinol

  • Jovanovic T, Ressler KJ (2010) How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am J Psychiatry 167:648–662

    Article  PubMed  PubMed Central  Google Scholar 

  • Jovanovic T, Norrholm SD, Fennell JE, Keyes M, Fiallos AM, Myers KM, Davis M, Duncan EJ (2009) Posttraumatic stress disorder may be associated with impaired fear inhibition: relation to symptom severity. Psychiatry Res 167:151–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Jurek B, Slattery DA, Hiraoka Y, Liu Y, Nishimori K, Aguilera G, Neumann ID, van den Burg EH (2015) Oxytocin regulates stress-induced Crf gene transcription through CREB-regulated transcription coactivator 3. J Neurosci 35:12248–12260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kash TL, Winder DG (2006) Neuropeptide Y and corticotropin-releasing factor bi-directionally modulate inhibitory synaptic transmission in the bed nucleus of the stria terminalis. Neuropharmacology 51:1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Fanselow MS (1992) Modality-specific retrograde amnesia of fear. Science (New York, NY) 256:675–677

    Article  CAS  Google Scholar 

  • Kim SJ, Park SH, Choi SH, Moon BH, Lee KJ, Kang SW, Lee MS, Choi SH, Chun BG, Shin KH (2006) Effects of repeated tianeptine treatment on CRF mRNA expression in non-stressed and chronic mild stress-exposed rats. Neuropharmacology 50:824–833

    Article  CAS  PubMed  Google Scholar 

  • King MG, Brown R, Kusnecov A (1985) An increase in startle response in rats administered oxytocin. Peptides 6:567–568

    Article  CAS  PubMed  Google Scholar 

  • Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhanti S, Gruppe H, Mattay VS, Gallhofer B, Meyer-Lindenberg A (2005) Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 25:11489–11493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klampfl SM, Schramm MM, Gassner BM, Hubner K, Seasholtz AF, Brunton PJ, Bayerl DS, Bosch OJ (2018) Maternal stress and the MPOA: activation of CRF receptor 1 impairs maternal behavior and triggers local oxytocin release in lactating rats. Neuropharmacology 133:440–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klenerova V, Krejci I, Sida P, Hlinak Z, Hynie S (2009) Oxytocin and carbetocin effects on spontaneous behavior of male rats: modulation by oxytocin receptor antagonists. Neuro endocrinology letters 30:335–342

    CAS  PubMed  Google Scholar 

  • Klenerova V, Krejci I, Sida P, Hlinak Z, Hynie S (2010) Oxytocin and carbetocin ameliorating effects on restraint stress-induced short- and long-term behavioral changes in rats. Neuro endocrinology letters 31:622–630

    CAS  PubMed  Google Scholar 

  • Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, Osten P, Schwarz MK, Seeburg PH, Stoop R, Grinevich V (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73:553–566

    Article  CAS  PubMed  Google Scholar 

  • Koch SB, van Zuiden M, Nawijn L, Frijling JL, Veltman DJ, Olff M (2014) Intranasal oxytocin as strategy for medication-enhanced psychotherapy of PTSD: salience processing and fear inhibition processes. Psychoneuroendocrinology 40:242–256

    Article  CAS  PubMed  Google Scholar 

  • Koch SB, van Zuiden M, Nawijn L, Frijling JL, Veltman DJ, Olff M (2016) Intranasal oxytocin normalizes amygdala functional connectivity in posttraumatic stress disorder. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 41:2041–2051

    Article  CAS  Google Scholar 

  • Kovacs GL, Bohus B, Versteeg DH, de Kloet ER, de Wied D (1979) Effect of oxytocin and vasopressin on memory consolidation: sites of action and catecholaminergic correlates after local microinjection into limbic-midbrain structures. Brain Res 175:303–314

    Article  CAS  PubMed  Google Scholar 

  • Kritman M, Lahoud N, Maroun M (2017) Oxytocin in the amygdala and not the prefrontal cortex enhances fear and impairs extinction in the juvenile rat. Neurobiol Learn Mem 141:179–188

    Article  CAS  PubMed  Google Scholar 

  • Labuschagne I, Phan KL, Wood A, Angstadt M, Chua P, Heinrichs M, Stout JC, Nathan PJ (2010) Oxytocin attenuates amygdala reactivity to fear in generalized social anxiety disorder. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 35:2403–2413

    Article  CAS  Google Scholar 

  • Labuschagne I, Phan KL, Wood A, Angstadt M, Chua P, Heinrichs M, Stout JC, Nathan PJ (2012) Medial frontal hyperactivity to sad faces in generalized social anxiety disorder and modulation by oxytocin. Int J Neuropsychopharmacol 15:883–896

    Article  CAS  PubMed  Google Scholar 

  • Lahoud N, Maroun M (2013) Oxytocinergic manipulations in corticolimbic circuit differentially affect fear acquisition and extinction. Psychoneuroendocrinology 38:2184–2195

    Article  CAS  PubMed  Google Scholar 

  • Landgraf R, Wigger A (2002) High vs low anxiety-related behavior rats: an animal model of extremes in trait anxiety. Behav Genet 32:301–314

    Article  PubMed  Google Scholar 

  • Lange MD, Daldrup T, Remmers F, Szkudlarek HJ, Lesting J, Guggenhuber S, Ruehle S, Jungling K, Seidenbecher T, Lutz B, Pape HC (2017) Cannabinoid CB1 receptors in distinct circuits of the extended amygdala determine fear responsiveness to unpredictable threat. Mol Psychiatry 22:1422–1430

    Article  CAS  PubMed  Google Scholar 

  • Lebow MA, Chen A (2016) Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry 21:450–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeDoux J (1998) Fear and the brain: where have we been, and where are we going? Biol Psychiatry 44:1229–1238

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE, Iwata J, Cicchetti P, Reis DJ (1988) Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci 8:2517–2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Davis M (1997) Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J Neurosci 17:6434–6446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Fitz S, Johnson PL, Shekhar A (2008) Repeated stimulation of CRF receptors in the BNST of rats selectively induces social but not panic-like anxiety. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 33:2586–2594

    Article  CAS  Google Scholar 

  • Leng G, Ludwig M (2016) Intranasal oxytocin: myths and delusions. Biol Psychiatry 79:243–250

    Article  CAS  PubMed  Google Scholar 

  • Lever C, Burton S, O'Keefe J (2006) Rearing on hind legs, environmental novelty, and the hippocampal formation. Rev Neurosci 17:111–133

    Article  PubMed  Google Scholar 

  • Lewis K, Li C, Perrin MH, Blount A, Kunitake K, Donaldson C, Vaughan J, Reyes TM, Gulyas J, Fischer W, Bilezikjian L, Rivier J, Sawchenko PE, Vale WW (2001) Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci U S A 98:7570–7575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liddell BJ, Brown KJ, Kemp AH, Barton MJ, Das P, Peduto A, Gordon E, Williams LM (2005) A direct brainstem-amygdala-cortical 'alarm' system for subliminal signals of fear. NeuroImage 24:235–243

    Article  PubMed  Google Scholar 

  • Lissek S, Kaczkurkin AN, Rabin S, Geraci M, Pine DS, Grillon C (2014) Generalized anxiety disorder is associated with overgeneralization of classically conditioned fear. Biol Psychiatry 75:909–915

    Article  PubMed  Google Scholar 

  • LoBue V (2009) More than just another face in the crowd: superior detection of threatening facial expressions in children and adults. Dev Sci 12:305–313

    Article  PubMed  Google Scholar 

  • Lobue V, DeLoache JS (2008) Detecting the snake in the grass: attention to fear-relevant stimuli by adults and young children. Psychol Sci 19:284–289

    Article  PubMed  Google Scholar 

  • Lovenberg TW, Liaw CW, Grigoriadis DE, Clevenger W, Chalmers DT, De Souza EB, Oltersdorf T (1995) Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain. Proc Natl Acad Sci U S A 92:836–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukas M, Toth I, Veenema AH, Neumann ID (2013) Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: male juvenile versus female adult conspecifics. Psychoneuroendocrinology 38:916–926

    Article  CAS  PubMed  Google Scholar 

  • Luyck K, Nuttin B, Luyten L (2017) Electrolytic post-training lesions of the bed nucleus of the stria terminalis block startle potentiation in a cued fear conditioning procedure. Brain Struct Funct

  • Mak P, Broussard C, Vacy K, Broadbear JH (2012) Modulation of anxiety behavior in the elevated plus maze using peptidic oxytocin and vasopressin receptor ligands in the rat. J Psychopharmacol 26:532–542

    Article  CAS  PubMed  Google Scholar 

  • Manning M, Misicka A, Olma A, Bankowski K, Stoev S, Chini B, Durroux T, Mouillac B, Corbani M, Guillon G (2012) Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol 24:609–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantella RC, Vollmer RR, Li X, Amico JA (2003) Female oxytocin-deficient mice display enhanced anxiety-related behavior. Endocrinology 144:2291–2296

    Article  CAS  PubMed  Google Scholar 

  • Marcinkiewcz CA, Mazzone CM, D'Agostino G, Halladay LR, Hardaway JA, DiBerto JF, Navarro M, Burnham N, Cristiano C, Dorrier CE, Tipton GJ, Ramakrishnan C, Kozicz T, Deisseroth K, Thiele TE, McElligott ZA, Holmes A, Heisler LK, Kash TL (2016) Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala. Nature 537:97–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinon D, Dabrowska J (2018) Corticotropin-releasing factor receptors modulate oxytocin release in the dorsolateral bed nucleus of the stria terminalis (BNST) in male rats. Front Neurosci 12:183

    Article  PubMed  PubMed Central  Google Scholar 

  • Matus-Amat P, Higgins EA, Sprunger D, Wright-Hardesty K, Rudy JW (2007) The role of dorsal hippocampus and basolateral amygdala NMDA receptors in the acquisition and retrieval of context and contextual fear memories. Behav Neurosci 121:721–731

    Article  CAS  PubMed  Google Scholar 

  • McCarthy MM, McDonald CH, Brooks PJ, Goldman D (1996) An anxiolytic action of oxytocin is enhanced by estrogen in the mouse. Physiol Behav 60:1209–1215

    Article  CAS  PubMed  Google Scholar 

  • Meloni EG, Jackson A, Gerety LP, Cohen BM, Carlezon WA Jr (2006) Role of the bed nucleus of the stria terminalis (BST) in the expression of conditioned fear. Ann N Y Acad Sci 1071:538–541

    Article  PubMed  Google Scholar 

  • Milad MR, Rauch SL, Pitman RK, Quirk GJ (2006) Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol 73:61–71

    Article  PubMed  Google Scholar 

  • Milad MR, Orr SP, Lasko NB, Chang Y, Rauch SL, Pitman RK (2008) Presence and acquired origin of reduced recall for fear extinction in PTSD: results of a twin study. J Psychiatr Res 42:515–520

    Article  PubMed  PubMed Central  Google Scholar 

  • Missig G, Ayers LW, Schulkin J, Rosen JB (2010) Oxytocin reduces background anxiety in a fear-potentiated startle paradigm. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 35:2607–2616

    Article  CAS  Google Scholar 

  • Miyata I, Shiota C, Ikeda Y, Oshida Y, Chaki S, Okuyama S, Inagami T (1999) Cloning and characterization of a short variant of the corticotropin-releasing factor receptor subtype from rat amygdala. Biochem Biophys Res Commun 256:692–696

    Article  CAS  PubMed  Google Scholar 

  • Miyata I, Shiota C, Chaki S, Okuyama S, Inagami T (2001) Localization and characterization of a short isoform of the corticotropin-releasing factor receptor type 2alpha (CRF(2)alpha-tr) in the rat brain. Biochem Biophys Res Commun 280:553–557

    Article  CAS  PubMed  Google Scholar 

  • Moaddab M, Dabrowska J (2017) Oxytocin receptor neurotransmission in the dorsolateral bed nucleus of the stria terminalis facilitates the acquisition of cued fear in the fear-potentiated startle paradigm in rats. Neuropharmacology 121:130–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modi ME, Majchrzak MJ, Fonseca KR, Doran A, Osgood S, Vanase-Frawley M, Feyfant E, McInnes H, Darvari R, Buhl DL, Kablaoui NM (2016) Peripheral administration of a long-acting peptide oxytocin receptor agonist inhibits fear-induced freezing. J Pharmacol Exp Ther 358:164–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JS, Frith CD, Perrett DI, Rowland D, Young AW, Calder AJ, Dolan RJ (1996) A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383:812–815

    Article  CAS  PubMed  Google Scholar 

  • Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12:120–150

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Gorlich A, Heintz N (2014) Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons. Cell 159:295–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann ID, Slattery DA (2016) Oxytocin in general anxiety and social fear: a translational approach. Biol Psychiatry 79:213–221

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID, Torner L, Wigger A (1999) Brain oxytocin: differential inhibition of neuroendocrine stress responses and anxiety-related behaviour in virgin, pregnant and lactating rats. Neuroscience 95:567–575

  • Nickerson K, Bonsness RW, Douglas RG, Condliffe P, Du Vigneaud V (1954) Oxytocin and milk ejection. Am J Obstet Gynecol 67:1028–1034

    Article  CAS  PubMed  Google Scholar 

  • Nomura M, Saito J, Ueta Y, Muglia LJ, Pfaff DW, Ogawa S (2003) Enhanced up-regulation of corticotropin-releasing hormone gene expression in response to restraint stress in the hypothalamic paraventricular nucleus of oxytocin gene-deficient male mice. J Neuroendocrinol 15:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Norrholm SD, Jovanovic T, Olin IW, Sands LA, Karapanou I, Bradley B, Ressler KJ (2011) Fear extinction in traumatized civilians with posttraumatic stress disorder: relation to symptom severity. Biol Psychiatry 69:556–563

    Article  PubMed  Google Scholar 

  • Nyuyki KD, Waldherr M, Baeuml S, Neumann ID (2011) Yes, I am ready now: differential effects of paced versus unpaced mating on anxiety and central oxytocin release in female rats. PLoS One 6:e23599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olff M, Langeland W, Draijer N, Gersons BP (2007) Gender differences in posttraumatic stress disorder. Psychol Bull 133:183–204

    Article  PubMed  Google Scholar 

  • Olff M, Langeland W, Witteveen A, Denys D (2010) A psychobiological rationale for oxytocin in the treatment of posttraumatic stress disorder. CNS spectrums 15:522–530

    Article  PubMed  Google Scholar 

  • Owen SF, Tuncdemir SN, Bader PL, Tirko NN, Fishell G, Tsien RW (2013) Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature 500:458–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagani JH, Lee HJ, Young WS 3rd (2011) Postweaning, forebrain-specific perturbation of the oxytocin system impairs fear conditioning. Genes Brain Behav 10:710–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagani JH, Williams Avram SK, Cui Z, Song J, Mezey E, Senerth JM, Baumann MH, Young WS (2015) Raphe serotonin neuron-specific oxytocin receptor knockout reduces aggression without affecting anxiety-like behavior in male mice only. Genes Brain Behav 14:167–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pare D, Quirk GJ, Ledoux JE (2004) New vistas on amygdala networks in conditioned fear. J Neurophysiol 92:1–9

    Article  PubMed  Google Scholar 

  • Pedersen CA, Caldwell JD, Peterson G, Walker CH, Mason GA (1992) Oxytocin activation of maternal behavior in the rat. Ann N Y Acad Sci 652:58–69

    Article  CAS  PubMed  Google Scholar 

  • Pelrine E, Pasik SD, Bayat L, Goldschmiedt D, Bauer EP (2016) 5-HT2C receptors in the BNST are necessary for the enhancement of fear learning by selective serotonin reuptake inhibitors. Neurobiol Learn Mem 136:189–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters S, Slattery DA, Uschold-Schmidt N, Reber SO, Neumann ID (2014) Dose-dependent effects of chronic central infusion of oxytocin on anxiety, oxytocin receptor binding and stress-related parameters in mice. Psychoneuroendocrinology 42:225–236

    Article  CAS  PubMed  Google Scholar 

  • Petrovic P, Kalisch R, Singer T, Dolan RJ (2008) Oxytocin attenuates affective evaluations of conditioned faces and amygdala activity. J Neurosci 28:6607–6615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    Article  CAS  PubMed  Google Scholar 

  • Phillips ML, Young AW, Scott SK, Calder AJ, Andrew C, Giampietro V, Williams SC, Bullmore ET, Brammer M, Gray JA (1998) Neural responses to facial and vocal expressions of fear and disgust. Proceedings Biological sciences 265:1809–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisansky MT, Hanson LR, Gottesman II, Gewirtz JC (2017) Oxytocin enhances observational fear in mice. Nat Commun 8:2102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitman RK, Orr SP, Lasko NB (1993) Effects of intranasal vasopressin and oxytocin on physiologic responding during personal combat imagery in Vietnam veterans with posttraumatic stress disorder. Psychiatry Res 48:107–117

    Article  CAS  PubMed  Google Scholar 

  • Pitzalis MV, Iacoviello M, Todarello O, Fioretti A, Guida P, Massari F, Mastropasqua F, Russo GD, Rizzon P (2001) Depression but not anxiety influences the autonomic control of heart rate after myocardial infarction. Am Heart J 141:765–771

    Article  CAS  PubMed  Google Scholar 

  • Pomrenze MB, Millan EZ, Hopf FW, Keiflin R, Maiya R, Blasio A, Dadgar J, Kharazia V, De Guglielmo G, Crawford E, Janak PH, George O, Rice KC, Messing RO (2015) A transgenic rat for investigating the anatomy and function of corticotrophin releasing factor circuits. Front Neurosci 9:487

    Article  PubMed  PubMed Central  Google Scholar 

  • Preckel K, Scheele D, Kendrick KM, Maier W, Hurlemann R (2014) Oxytocin facilitates social approach behavior in women. Front Behav Neurosci 8:191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintana DS, Westlye LT, Alnaes D, Rustan OG, Kaufmann T, Smerud KT, Mahmoud RA, Djupesland PG, Andreassen OA (2016) Low dose intranasal oxytocin delivered with breath powered device dampens amygdala response to emotional stimuli: a peripheral effect-controlled within-subjects randomized dose-response fMRI trial. Psychoneuroendocrinology 69:180–188

    Article  CAS  PubMed  Google Scholar 

  • Ragen BJ, Seidel J, Chollak C, Pietrzak RH, Neumeister A (2015) Investigational drugs under development for the treatment of PTSD. Expert Opin Investig Drugs 24:659–672

    Article  CAS  PubMed  Google Scholar 

  • Rauch SA, Grunfeld TE, Yadin E, Cahill SP, Hembree E, Foa EB (2009) Changes in reported physical health symptoms and social function with prolonged exposure therapy for chronic posttraumatic stress disorder. Depression and anxiety 26:732–738

    Article  PubMed  Google Scholar 

  • Ravinder S, Burghardt NS, Brodsky R, Bauer EP, Chattarji S (2013) A role for the extended amygdala in the fear-enhancing effects of acute selective serotonin reuptake inhibitor treatment. Transl Psychiatry 3:e209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regev L, Neufeld-Cohen A, Tsoory M, Kuperman Y, Getselter D, Gil S, Chen A (2011) Prolonged and site-specific over-expression of corticotropin-releasing factor reveals differential roles for extended amygdala nuclei in emotional regulation. Mol Psychiatry 16:714–728

    Article  CAS  PubMed  Google Scholar 

  • Reinders AA, Glascher J, de Jong JR, Willemsen AT, den Boer JA, Buchel C (2006) Detecting fearful and neutral faces: BOLD latency differences in amygdala-hippocampal junction. NeuroImage 33:805–814

    Article  CAS  PubMed  Google Scholar 

  • Ring RH, Malberg JE, Potestio L, Ping J, Boikess S, Luo B, Schechter LE, Rizzo S, Rahman Z, Rosenzweig-Lipson S (2006) Anxiolytic-like activity of oxytocin in male mice: behavioral and autonomic evidence, therapeutic implications. Psychopharmacology 185:218–225

    Article  CAS  PubMed  Google Scholar 

  • Ring RH, Schechter LE, Leonard SK, Dwyer JM, Platt BJ, Graf R, Grauer S, Pulicicchio C, Resnick L, Rahman Z, Sukoff Rizzo SJ, Luo B, Beyer CE, Logue SF, Marquis KL, Hughes ZA, Rosenzweig-Lipson S (2010) Receptor and behavioral pharmacology of WAY-267464, a non-peptide oxytocin receptor agonist. Neuropharmacology 58:69–77

    Article  CAS  PubMed  Google Scholar 

  • Roman AN, Martinon D, Dabrowska J (2017) Corticotropin-releasing factor (CRF) neurons in the oval nucleus of the bed nucleus of the stria terminalis (BNSTov) modulate fear and anxiety in rats. Society for Neuroscience Annual Meeting Washington DC 513:510

    Google Scholar 

  • Roozendaal B, Schoorlemmer GH, Wiersma A, Sluyter S, Driscoll P, Koolhaas JM, Bohus B (1992) Opposite effects of central amygdaloid vasopressin and oxytocin on the regulation of conditioned stress responses in male rats. Ann N Y Acad Sci 652:460–461

    Article  CAS  PubMed  Google Scholar 

  • Rothbaum BO, Davis M (2003) Applying learning principles to the treatment of post-trauma reactions. Ann N Y Acad Sci 1008:112–121

    Article  PubMed  Google Scholar 

  • Rupp HA, James TW, Ketterson ED, Sengelaub DR, Ditzen B, Heiman JR (2014) Amygdala response to negative images in postpartum vs nulliparous women and intranasal oxytocin. Soc Cogn Affect Neurosci 9:48–54

    Article  PubMed  Google Scholar 

  • Sabihi S, Durosko NE, Dong SM, Leuner B (2014a) Oxytocin in the prelimbic medial prefrontal cortex reduces anxiety-like behavior in female and male rats. Psychoneuroendocrinology 45:31–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabihi S, Dong SM, Durosko NE, Leuner B (2014b) Oxytocin in the medial prefrontal cortex regulates maternal care, maternal aggression and anxiety during the postpartum period. Front Behav Neurosci 8:258

  • Sack M, Spieler D, Wizelman L, Epple G, Stich J, Zaba M, Schmidt U (2017) Intranasal oxytocin reduces provoked symptoms in female patients with posttraumatic stress disorder despite exerting sympathomimetic and positive chronotropic effects in a randomized controlled trial. BMC Med 15:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahuque LL, Kullberg EF, McGeehan AJ, Kinder JR, Hicks MP, Blanton MG, Janak PH, Olive MF (2006) Anxiogenic and aversive effects of corticotropin-releasing factor (CRF) in the bed nucleus of the stria terminalis in the rat: role of CRF receptor subtypes. Psychopharmacology 186:122–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanford CA, Soden ME, Baird MA, Miller SM, Schulkin J, Palmiter RD, Clark M, Zweifel LS (2017) A central amygdala CRF circuit facilitates learning about weak threats. Neuron 93:164–178

    Article  CAS  PubMed  Google Scholar 

  • Schumacher S, Oe M, Wilhelm FH, Rufer M, Heinrichs M, Weidt S, Moergeli H, Martin-Soelch C (2018) Does trait anxiety influence effects of oxytocin on eye-blink startle reactivity? A randomized, double-blind, placebo-controlled crossover study. PLoS One 13:e0190809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selden NR, Everitt BJ, Jarrard LE, Robbins TW (1991) Complementary roles for the amygdala and hippocampus in aversive conditioning to explicit and contextual cues. Neuroscience 42:335–350

    Article  CAS  PubMed  Google Scholar 

  • Shackman AJ, Fox AS (2016) Contributions of the central extended amygdala to fear and anxiety. J Neurosci 36:8050–8063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahrestani S, Kemp AH, Guastella AJ (2013) The impact of a single administration of intranasal oxytocin on the recognition of basic emotions in humans: a meta-analysis. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 38:1929–1936

    Article  CAS  Google Scholar 

  • Sink KS, Walker DL, Freeman SM, Flandreau EI, Ressler KJ, Davis M (2013) Effects of continuously enhanced corticotropin releasing factor expression within the bed nucleus of the stria terminalis on conditioned and unconditioned anxiety. Mol Psychiatry 18:308–319

    Article  CAS  PubMed  Google Scholar 

  • Slattery DA, Neumann ID (2010) Chronic icv oxytocin attenuates the pathological high anxiety state of selectively bred Wistar rats. Neuropharmacology 58:56–61

    Article  CAS  PubMed  Google Scholar 

  • Smith AS, Tabbaa M, Lei K, Eastham P, Butler MJ, Linton L, Altshuler R, Liu Y, Wang Z (2016) Local oxytocin tempers anxiety by activating GABAA receptors in the hypothalamic paraventricular nucleus. Psychoneuroendocrinology 63:50–58

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV (1983) Morphology of vasopressin and oxytocin neurones and their central and vascular projections. Prog Brain Res 60:101–114

    Article  CAS  PubMed  Google Scholar 

  • Somerville LH, Whalen PJ, Kelley WM (2010) Human bed nucleus of the stria terminalis indexes hypervigilant threat monitoring. Biol Psychiatry 68:416–424

    Article  PubMed  PubMed Central  Google Scholar 

  • Sparta DR, Jennings JH, Ung RL, Stuber GD (2013) Optogenetic strategies to investigate neural circuitry engaged by stress. Behav Brain Res 255:19–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Sripada CS, Phan KL, Labuschagne I, Welsh R, Nathan PJ, Wood AG (2013) Oxytocin enhances resting-state connectivity between amygdala and medial frontal cortex. Int J Neuropsychopharmacol 16:255–260

    Article  CAS  PubMed  Google Scholar 

  • Straube T, Mentzel HJ, Miltner WH (2007) Waiting for spiders: brain activation during anticipatory anxiety in spider phobics. NeuroImage 37:1427–1436

    Article  PubMed  Google Scholar 

  • Striepens N, Scheele D, Kendrick KM, Becker B, Schafer L, Schwalba K, Reul J, Maier W, Hurlemann R (2012) Oxytocin facilitates protective responses to aversive social stimuli in males. Proc Natl Acad Sci U S A 109:18144–18149

    Article  PubMed  PubMed Central  Google Scholar 

  • Suda T, Kageyama K, Sakihara S, Nigawara T (2004) Physiological roles of urocortins, human homologues of fish urotensin I, and their receptors. Peptides 25:1689–1701

    Article  CAS  PubMed  Google Scholar 

  • Sullivan GM, Apergis J, Bush DE, Johnson LR, Hou M, Ledoux JE (2004) Lesions in the bed nucleus of the stria terminalis disrupt corticosterone and freezing responses elicited by a contextual but not by a specific cue-conditioned fear stimulus. Neuroscience 128:7–14

    Article  CAS  PubMed  Google Scholar 

  • Sun N, Cassell MD (1993) Intrinsic GABAergic neurons in the rat central extended amygdala. J Comp Neurol 330:381–404

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6:269–324

    Article  CAS  PubMed  Google Scholar 

  • Tian JB, Shan X, Bishop GA, King JS (2006) Presynaptic localization of a truncated isoform of the type 2 corticotropin releasing factor receptor in the cerebellum. Neuroscience 138:691–702

    Article  CAS  PubMed  Google Scholar 

  • Toth I, Neumann ID, Slattery DA (2012) Central administration of oxytocin receptor ligands affects cued fear extinction in rats and mice in a timepoint-dependent manner. Psychopharmacology 223:149–158

    Article  CAS  PubMed  Google Scholar 

  • Tribollet E, Dubois-Dauphin M, Dreifuss JJ, Barberis C, Jard S (1992) Oxytocin receptors in the central nervous system. Distribution, development, and species differences. Ann N Y Acad Sci 652:29–38

    Article  CAS  PubMed  Google Scholar 

  • Uvnas-Moberg K, Alster P, Hillegaart V, Ahlenius S (1992) Oxytocin reduces exploratory motor behaviour and shifts the activity towards the centre of the arena in male rats. Acta Physiol Scand 145:429–430

    Article  CAS  PubMed  Google Scholar 

  • Uvnas-Moberg K, Ahlenius S, Hillegaart V, Alster P (1994) High doses of oxytocin cause sedation and low doses cause an anxiolytic-like effect in male rats. Pharmacol Biochem Behav 49:101–106

    Article  CAS  PubMed  Google Scholar 

  • van Zuiden M, Frijling JL, Nawijn L, Koch SBJ, Goslings JC, Luitse JS, Biesheuvel TH, Honig A, Veltman DJ, Olff M (2017) Intranasal oxytocin to prevent posttraumatic stress disorder symptoms: a randomized controlled trial in emergency department patients. Biol Psychiatry 81:1030–1040

    Article  CAS  PubMed  Google Scholar 

  • Veinante P, Freund-Mercier MJ (1997) Distribution of oxytocin- and vasopressin-binding sites in the rat extended amygdala: a histoautoradiographic study. J Comp Neurol 383:305–325

    Article  CAS  PubMed  Google Scholar 

  • Ventura-Silva AP, Pego JM, Sousa JC, Marques AR, Rodrigues AJ, Marques F, Cerqueira JJ, Almeida OF, Sousa N (2012) Stress shifts the response of the bed nucleus of the stria terminalis to an anxiogenic mode. Eur J Neurosci 36:3396–3406

    Article  PubMed  Google Scholar 

  • Verbalis JG, Blackburn RE, Olson BR, Stricker EM (1993) Central oxytocin inhibition of food and salt ingestion: a mechanism for intake regulation of solute homeostasis. Regul Pept 45:149–154

    Article  CAS  PubMed  Google Scholar 

  • Viviani D, Charlet A, van den Burg E, Robinet C, Hurni N, Abatis M, Magara F, Stoop R (2011) Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science 333:104–107

    Article  CAS  PubMed  Google Scholar 

  • Waldherr M, Neumann ID (2007) Centrally released oxytocin mediates mating-induced anxiolysis in male rats. Proc Natl Acad Sci U S A 104:16681–16684

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker DL, Davis M (1997) Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear. J Neurosci 17:9375–9383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker D, Yang Y, Ratti E, Corsi M, Trist D, Davis M (2009a) Differential effects of the CRF-R1 antagonist GSK876008 on fear-potentiated, light- and CRF-enhanced startle suggest preferential involvement in sustained vs phasic threat responses. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 34:1533–1542

    Article  CAS  Google Scholar 

  • Walker DL, Miles LA, Davis M (2009b) Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Prog Neuro-Psychopharmacol Biol Psychiatry 33:1291–1308

    Article  CAS  Google Scholar 

  • Wang T, Shi C, Li X, Zhang P, Liu B, Wang H, Wang Y, Yang Y, Wu Y, Li H, Xu ZD (2018) Injection of oxytocin into paraventricular nucleus reverses depressive-like behaviors in the postpartum depression rat model. Behav Brain Res 336:236–243

    Article  CAS  PubMed  Google Scholar 

  • Weathers FW, Bovin MJ, Lee DJ, Sloan DM, Schnurr PP, Kaloupek DG, Keane TM, Marx BP (2018) The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5): development and initial psychometric evaluation in military veterans. Psychol Assess 30:383–395

    Article  PubMed  Google Scholar 

  • Whalen PJ, Rauch SL, Etcoff NL, McInerney SC, Lee MB, Jenike MA (1998) Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J Neurosci 18:411–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilensky AE, Schafe GE, Kristensen MP, LeDoux JE (2006) Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J Neurosci 26:12387–12396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windle RJ, Shanks N, Lightman SL, Ingram CD (1997) Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology 138:2829–2834

    Article  CAS  PubMed  Google Scholar 

  • Winslow JT, Noble PL, Davis M (2008) AX+/BX- discrimination learning in the fear-potentiated startle paradigm in monkeys. Learn Mem 15:63–66

    Article  PubMed  Google Scholar 

  • Wood RI, Knoll AT, Levitt P (2015) Social housing conditions and oxytocin and vasopressin receptors contribute to ethanol conditioned social preference in female mice. Physiol Behav 151:469–477

  • Yassa MA, Hazlett RL, Stark CE, Hoehn-Saric R (2012) Functional MRI of the amygdala and bed nucleus of the stria terminalis during conditions of uncertainty in generalized anxiety disorder. J Psychiatr Res 46:1045–1052

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida M, Takayanagi Y, Inoue K, Kimura T, Young LJ, Onaka T, Nishimori K (2009) Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci 29:2259–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CJ, Zhang SW, Tai FD (2016) Effects of nucleus accumbens oxytocin and its antagonist on social approach behavior. Behav Pharmacol 27:672–680

    Article  CAS  PubMed  Google Scholar 

  • Zaninetti M, Raggenbass M (2000) Oxytocin receptor agonists enhance inhibitory synaptic transmission in the rat hippocampus by activating interneurons in stratum pyramidale. Eur J Neurosci 12:3975–3984

    Article  CAS  PubMed  Google Scholar 

  • Zoicas I, Slattery DA, Neumann ID (2014) Brain oxytocin in social fear conditioning and its extinction: involvement of the lateral septum. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 39:3027–3035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Rachyl Shanker, CMS’20 from the Dabrowska Lab for the image of PKC-STEP double-immunolabeling in the BNSTdl. This manuscript was supported by the grant from the National Institute of Mental Health R01MH113007 to JD, a DePaul-RFUMS seed research grant to JD, as well as start-up funds from the Chicago Medical School, Rosalind Franklin University of Medicine and Science to JD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Dabrowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janeček, M., Dabrowska, J. Oxytocin facilitates adaptive fear and attenuates anxiety responses in animal models and human studies—potential interaction with the corticotropin-releasing factor (CRF) system in the bed nucleus of the stria terminalis (BNST). Cell Tissue Res 375, 143–172 (2019). https://doi.org/10.1007/s00441-018-2889-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2889-8

Keywords

Navigation