Skip to main content
Log in

Electrical coupling between hippocampal neurons: contrasting roles of principal cell gap junctions and interneuron gap junctions

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

There is considerable experimental evidence, anatomical and physiological, that gap junctions exist in the hippocampus. Electrical coupling through these gap junctions may be divided into three types: between principal neurons, between interneurons and at mixed chemical (glutamatergic)/electrical synapses. An approach, combining in vitro experimental with modeling techniques, sheds some light on the functional consequences of electrical coupling, for network oscillations and for seizures. Additionally, in vivo experiments, using mouse connexin knockouts, suggest that the presence of electrical coupling is important for optimal performance on selected behavioral tasks; however, the interpretation of such data, in cellular terms, has so far proven difficult. Given that invertebrate central pattern generators so often depend on both chemical and electrical synapses, our hypothesis is that hippocampus-mediated and -influenced behaviors will act likewise. Experiments, likely hard ones, will be required to test this intuition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Acsády L, Kamondi A, Sík A, Freund T, Buzsáki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18:3386–3403

    Article  PubMed  Google Scholar 

  • Adelberg EA, Pittard J (1965) Chromosome transfer in bacterial conjugation. Bacteriol Rev 29:161–172

    PubMed  PubMed Central  CAS  Google Scholar 

  • Allen K, Fuchs EC, Jaschonek H, Bannerman DM, Monyer H (2011) Gap junctions between interneurons are required for normal spatial coding in the hippocampus and short-term spatial memory. J Neurosci 31:6542–6552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allison DW, Ohran AJ, Stobbs SH, Mameli M, Valenzuela CF, Sudweeks SN, Ray AP, Henriksen SJ, Steffensen SC (2006) Connexin-36 gap junctions mediate electrical coupling between ventral tegmental area GABA neurons. Synapse 60:20–31

    Article  PubMed  CAS  Google Scholar 

  • Amitai Y, Gibson JR, Beierlein M, Patrick SL, Ho AM, Connors BW, Golomb D (2002) The spatial dimensions of electrically coupled networks of interneurons in the neocortex. J Neurosci 22:4142–4152

    Article  PubMed  CAS  Google Scholar 

  • Archibald K, Perry MJ, Molnár E, Henley JM (1998) Surface expression and metabolic half-life of AMPA receptors in cultured rat cerebellar granule cells. Neuropharmacology 37:1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Badoux S, Empson RM, Richards CD (2003) Pentobarbitone modulates calcium transients in axons and synaptic boutons of hippocampal CA1 neurons. Br J Pharmacol 140:971–979

    Article  CAS  Google Scholar 

  • Bähner F, Weiss EK, Birke G, Maier N, Schmitz D, Rudolph U, Frotscher M, Traub RD, Both M, Draguhn A (2011) Cellular correlate of assembly formation in oscillating hippocampal networks in vitro. Proc Natl Acad Sci U S A 108:E607–E616

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartos M, Vida I, Frotscher M, Meyer A, Monyer A, Geiger JRP, Jonas P (2002) Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc Natl Acad Sci U S A 99:13222–13227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baude A, Bleasdale C, Dalezios, Somogyi P, Klausberger T (2007) Immunoreactivity for the GABAA receptor α1 subunit, somatostatin and connexin36 distinguishes axoaxonic, basket, and bistratified interneurons of the rat hippocampus. Cereb Cortex 17:2094–2107

    Article  PubMed  Google Scholar 

  • Bennett MVL (2000) Electrical synapses, a personal perspective (or history). Brain Res Rev 32:16–28

    Article  PubMed  CAS  Google Scholar 

  • Bennett MV, Nakajima Y, Pappas GD (1967) Physiology and ultrastructure of electrotonic junctions. I. Supramedullary neurons. J Neurophysiol 30:161–179

    Article  PubMed  CAS  Google Scholar 

  • Betsuyaku T, Nnebe NS, Sundset R, Patibandia S, Krueger CM, Yamada KA (2006) Overexpression of cardiac connexin45 increases susceptibility to ventricular tachyarrhythmias in vivo. Am J Physiol Heart Circ Physiol 290:H163–H171

    Article  PubMed  CAS  Google Scholar 

  • Bollobás B, Riordan O (2006) Percolation. Cambridge Univ Press

  • Bukalo O, Campanac E, Hoffman DA, Fields RD (2013) Synaptic plasticity by antidromic firing during hippocampal network oscillations. Proc Natl Acad Sci U S A 110:5175–5180

    Article  PubMed  PubMed Central  Google Scholar 

  • Bukauskas FF (2012) Neurons and β-cells of the pancreas express connexin36, forming gap junction channels that exhibit strong cationic selectivity. J Membr Biol 245:243–253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buzsáki G (2015) Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25:1073–1188

    Article  PubMed  PubMed Central  Google Scholar 

  • Carr MF, Jadhav SP, Frank LM (2011) Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci 14:147–153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cembrowski MS, Wang L, Sugino K, Shields BC, Spruston N (2016) Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons. Elife 5:e14997. https://doi.org/10.7554/eLife.14997

    Article  PubMed  PubMed Central  Google Scholar 

  • Chow CC, White JA, Ritt J, Kopell N (1998) Frequency control in synchronized networks of inhibitory neurons. J Comput Neurosci 5:407–420

    Article  PubMed  CAS  Google Scholar 

  • Church J, Baimbridge KG (1991) Exposure to high-pH medium increases the incidence and extent of dye coupling between rat hippocampal CA1 pyramidal neurons in vitro. J Neurosci 11:3289–3295

    Article  PubMed  CAS  Google Scholar 

  • Ciocchi S, Passecker J, Malagon-Vina H, Mikus N, Klausberger T (2015) Brain computation. Selective information routing by ventral hippocampal CA1 projection neurons. Science 348:560–563

    Article  PubMed  CAS  Google Scholar 

  • Condorelli DF, Parenti R, Spinella F, Salinaro AT, Belluardo N, Cardile V, Cicirata F (1998) Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons. Eur J Neurosci 10:1202–1208

    Article  PubMed  CAS  Google Scholar 

  • Condorelli DF, Trovato-Salinaro A, Mudo G, Mirone MB, Belluardo N (2003) Cellular expression of connexins in the rat brain: neuronal localization, effects of kainate-induced seizures and expression in apoptotic neuronal cells. Eur J Neurosci 18:1807–1827

    Article  PubMed  Google Scholar 

  • Coombs JS, Curtis DR, Eccles JC (1957) The generation of impulses in motoneurones. J Physiol 139:232–249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cruikshank SJ, Hopperstad M, Younger M, Connors BW, Spray DC, Srinivas M (2004) Potent block of Cx36 and Cx50 gap junction channels by mefloquine. Proc Natl Acad Sci U S A 101:12364–12369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cunningham MO, Roopun AK, Schofield IS, Whittaker RG, Duncan R, Russell A, Jenkins A, Nicholson C, Whittington MA, Traub RD (2012) Glissandi: transient fast electrocorticographic oscillation of steadily increasing frequency, explained by temporally increasing gap junction conductance. Epilepsia 53:1205–1214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deans MR, Gibson JR, Sellitto C, Connors BW, Paul DL (2001) Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31:477–485

    Article  PubMed  CAS  Google Scholar 

  • Draguhn A, Traub RD, Schmitz D, Jefferys JGR (1998) Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394:189–192

    Article  PubMed  CAS  Google Scholar 

  • Dugladze T, Schmitz D, Whittington MA, Vida I, Gloveli T (2012) Segregation of axonal and somatic activity during fast network oscillations. Science 336:1458–1461

    Article  PubMed  CAS  Google Scholar 

  • Dye J (1991) Ionic and synaptic mechanisms underlying a brainstem oscillator: an in vitro study of the pacemaker nucleus of Apteronotus. J Comp Physiol A 168:521–532

    Article  PubMed  CAS  Google Scholar 

  • Elekes K, Szabo T (1985) Synaptology of the medullary command (pacemaker) nucleus of the weakly electric fish (Apteronotus leptorhynchus) with particular reference to comparative aspects. Exp Brain Res 60:509–520

    Article  PubMed  CAS  Google Scholar 

  • Epsztein J, Lee AK, Chorev E, Brecht M (2010) Impact of spikelets on hippocampal CA1 pyramidal cell activity during spatial exploration. Science 327:474–477

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout GB, Kopell N (1984) Frequency plateaus in a chain of weakly coupled oscillators, I. SIAM J Math Anal 15:215–237

    Article  Google Scholar 

  • Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394:186–189

    Article  PubMed  CAS  Google Scholar 

  • Fisher ME (1961) Critical probabilities for cluster size and percolation problems. J Math Phys 2:620–627

    Article  Google Scholar 

  • Flores CE, Nannapaneni S, Davidson KG, Yasumura T, Bennett MV, Rash JE, Pereda AE (2012) Trafficking of gap junction channels at a vertebrate electrical synapse in vivo. Proc Natl Acad Sci U S A 109:E573–E582

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukuda T, Kosaka T (2000) Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus. J Neurosci 20:1519–1528

    Article  PubMed  CAS  Google Scholar 

  • Furshpan EJ, Potter DD (1959) Transmission at the giant motor synapses of the crayfish. J Physiol 145:289–325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402:72–75

    Article  PubMed  CAS  Google Scholar 

  • Galarreta M, Hestrin S (2002) Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proc Natl Acad Sci U S A 99:12438–12443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402:75–79

    Article  PubMed  CAS  Google Scholar 

  • Gibson JR, Beierlein M, Connors BW (2005) Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4. J Neurophysiol 93:467–480

    Article  PubMed  Google Scholar 

  • González-Nieto D, Gómez-Hernández JM, Larrosa B, Gutiérrez C, Muñoz MD, Fasciani I, O’Brien JO, Zappalà A, Cicirata F, Barrio LC (2008) Regulation of neuronal connexin-36 channels by pH. Proc Natl Acad Sci U S A 105:17169–17174

    Article  PubMed  PubMed Central  Google Scholar 

  • Gulyás AI, Freund TT (2015) Generation of physiological and pathological high frequency oscillations: the role of perisomatic inhibition in sharp-wave ripple and interictal spike generation. Curr Opin Neurobiol 31:26–32

    Article  PubMed  CAS  Google Scholar 

  • Haas HL, Jefferys JGR (1984) Low-calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices. J Physiol 354:185–201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamzei-Sichani F, Davidson KGV, Yasumura T, Janssen WGM, Wearne SL, Hof PR, Traub RD, Gutiérrez R, Ottersen OP, Rash JE (2012) Mixed electrical–chemical synapses in adult rat hippocampus are primarily glutamatergic and coupled by connexin-36. Front Neuroanat 6:13. https://doi.org/10.3389/fnana.2012.00013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harvey CD, Collman F, Dombeck DA, Tank DW (2009) Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461:941–946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hormuzdi SG, Pais I, LeBeau FEN, Towers SK, Rozov A, Buhl EH, Whittington MA, Monyer H (2001) Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 31:487–495

    Article  PubMed  CAS  Google Scholar 

  • Jaffe DB, Gutiérrez R (2007) Mossy fiber synaptic transmission: communication from the dentate gyrus to area CA3. Prog Brain Res 163:109–132

    Article  PubMed  CAS  Google Scholar 

  • Jefferys JGR, Haas HL (1982) Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature 300:448–450

    Article  PubMed  CAS  Google Scholar 

  • Jing J, Sasaki K, Perkins MH, Siniscalchi MJ, Ludwar BC, Cropper EC, Weiss KR (2011) Coordination of distinct motor structures through remote axonal coupling of projection interneurons. J Neurosci 31:15438–15449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katsumaru H, Kosaka T, Heizmann CW, Hama K (1988) Gap junctions on GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus (CA1 region). Exp Brain Res 72:363–370

    PubMed  CAS  Google Scholar 

  • Knowles WD, Funch PG, Schwartzkroin PA (1982) Electrotonic and dye coupling in hippocampal CA1 pyramidal cells in vitro. Neuroscience 7:1713–1722

    Article  PubMed  CAS  Google Scholar 

  • Konopacki J, Bocian R, Kowalczyk T, Klos-Wojtczak P (2014) The electrical coupling and the hippocampal formation theta rhythm in rats. Brain Res Bull 107:1–17

    Article  PubMed  Google Scholar 

  • Kosaka T (1983a) Gap junctions between non-pyramidal cell dendrites in the rat hippocampus (CA1 and CA3 regions). Brain Res 271:157–161

    Article  PubMed  CAS  Google Scholar 

  • Kosaka T (1983b) Neuronal gap junctions in the polymorph layer of the rat dentate gyrus. Brain Res 277:347–351

    Article  PubMed  CAS  Google Scholar 

  • Kosaka T, Hama K (1985) Gap junctions between non-pyramidal cell dendrites in the rat hippocampus (CA1 and CA3 regions): a combined Golgi-electron microscopy study. J Comp Neurol 231:150–161

    Article  PubMed  CAS  Google Scholar 

  • Kraglund N, Andreasen M, Nedergaard S (2010) Differential influence of non-synaptic mechanisms in two in vitro models of epileptic field bursts. Brain Res 1324:85–95

    Article  PubMed  CAS  Google Scholar 

  • Larkum ME, Watanabe S, Lasser-Ross N, Rhodes P, Ross WN (2008) Dendritic properties of turtle pyramidal neurons. J Neurophysiol 99:683–694

    Article  PubMed  Google Scholar 

  • Lewis TJ, Rinzel J (2000) Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions. Netw Comput Neural Syst 11:299–320

    Article  CAS  Google Scholar 

  • Leznik E, Llinás R (2005) Role of gap junctions in synchronized neuronal oscillations in the inferior olive. J Neurophysiol 94:2447–2456

    Article  PubMed  Google Scholar 

  • Li WC, Roberts A, Soffe SR (2009) Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles. J Physiol 587:1677–1693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacVicar BA, Dudek FE (1980) Dye-coupling between CA3 pyramidal cells in slices of rat hippocampus. Brain Res 196:494–497

    Article  PubMed  CAS  Google Scholar 

  • MacVicar BA, Dudek FE (1981) Electrotonic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices. Science 213:782–785

    Article  PubMed  CAS  Google Scholar 

  • Maier N, Güldenagel M, Söhl G, Siegmund H, Willecke K, Draguhn A (2002) Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice. J Physiol 541:521–528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maier N, Nimmrich V, Draguhn A (2003) Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. J Physiol 550:873–887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maier N, Tejero-Cantero A, Dorrn AL, Winterer J, Beed PS, Morris G, Kempter R, Poulet JFA, Leibold C, Schmitz D (2011) Coherent phasic excitation during hippocampal ripples. Neuron 72:137–152

    Article  PubMed  CAS  Google Scholar 

  • Mancilla JG, Lewis TJ, Pinto DJ, Rinzel J, Connors BW (2007) Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex. J Neurosci 27:2058–2073

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Eisen JS (1984) Electrically coupled pacemaker neurons respond differently to same physiological inputs and neurotransmitters. J Neurophysiol 51:1362–1374

    Article  PubMed  CAS  Google Scholar 

  • Maxeiner S, Dedek K, Janssen-Bienhold U, Ammermüller J, Brune H, Kirsch T, Pieper M, Degen J, Krüger O, Willecke K, Weiler R (2005) Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signalling pathway between AII amacrine and ON cone bipolar cells and leads to impaired visual transmission. J Neurosci 25:566–576

    Article  PubMed  CAS  Google Scholar 

  • Mercer A, Bannister AP, Thomson AM (2006) Electrical coupling between pyramidal cells in adult cortical regions. Brain Cell Biol 35:13–27

    Article  PubMed  Google Scholar 

  • Meyer AH, Katona I, Blatow M, Rozov A, Monyer H (2002) In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J Neurosci 22:7055–7064

    Article  PubMed  CAS  Google Scholar 

  • Mola L, Cuoghi B (2004) The supramedullary neurons of fish: present status and goals for the future. Brain Res Bull 64:195–204

    Article  PubMed  Google Scholar 

  • Molchanova SM, Huupponen J, Lauri SE, Taira T (2016) Gap junctions between CA3 pyramidal cells contribute to network synchronization in neonatal hippocampus. Neuropharmacology 107:9–17

    Article  PubMed  CAS  Google Scholar 

  • Munro E, Börgers C (2010) Mechanisms of very fast oscillations in networks of axons coupled by gap junctions. J Comput Neurosci 28:539–555

    Article  PubMed  Google Scholar 

  • Nagy JI (2012) Evidence for connexin36 localization at hippocampal mossy fiber terminals suggesting mixed chemical/electrical transmission by granule cells. Brain Res 1487:107–122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niculescu D, Lohmann C (2014) Gap junctions in developing thalamic and neocortical neuronal networks. Cereb Cortex 24:3097–3106

    Article  PubMed  Google Scholar 

  • Nimmrich V, Maier N, Schmitz D, Draguhn A (2005) Induced sharp wave-ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices. J Physiol 563:663–670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pais I, Hormuzdi SG, Monyer H, Traub RD, Wood IC, Buhl EH, Whittington MA, LeBeau FEN (2003) Sharp wave-like activity in the hippocampus in vitro in mice lacking the gap junction protein connexin 36. J Neurophysiol 89:2046–2054

    Article  PubMed  CAS  Google Scholar 

  • Palacios-Prado N, Briggs SW, Skeberdis VA, Pranevicius M, Bennet MV, Bukauskas FF (2010) pH-dependent modulation of voltage gating in connexin45 homotypic and connexin45/connexin43 heterotypic gap junctions. Proc Natl Acad Sci U S A 107:9897–9902

    Article  PubMed  PubMed Central  Google Scholar 

  • Pangalos M, Donoso JR, Winterer J, Zivkovic AR, Kempter R, Maier N, Schmitz D (2013) Recruitment of oriens-lacunosum-moleculare interneurons during hippocampal ripples. Proc Natl Acad Sci U S A 110:4398–4403

    Article  PubMed  PubMed Central  Google Scholar 

  • Papatheodoropoulos C (2008) A possible role of ectopic action potentials in the in vitro hippocampal sharp wave-ripple complexes. Neuroscience 157:495–501

    Article  PubMed  CAS  Google Scholar 

  • Pereda AE (2014) Electrical synapses and their functional interactions with chemical synapses. Nature Rev Neurosci 15:250–263

  • Pereda A, Faber DS (1996) Activity-dependent short-term enhancement of intercellular coupling. J Neurosci 16:983–992

    Article  PubMed  CAS  Google Scholar 

  • Pereda AE, Curti S, Hoge G, Cachope R, Flores CE, Rash JE (2013) Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity. Biochim Biophys Acta 1828:134–146

    Article  PubMed  CAS  Google Scholar 

  • Perez-Velazquez JL, Han D, Carlen PL (1997) Neurotransmitter modulation of gap junctional communication in the rat hippocampus. Eur J Neurosci 9:2522–2531

    Article  Google Scholar 

  • Perez-Velazquez JL, Valiante TA, Carlen PL (1994) Modulation of gap junctional mechanisms during calcium-free induced field burst activity: a possible role for electrotonic coupling in epileptogenesis. J Neurosci 14:4308–4317

    Article  PubMed  CAS  Google Scholar 

  • Rao G, Barnes CA, McNaughton BL (1987) Occlusion of hippocampal electrical junctions by intracellular calcium injection. Brain Res 408:267–270

    Article  PubMed  CAS  Google Scholar 

  • Rash JE, Vanderpool KG, Yasumura T, Hickman J, Beatty JT, Nagy JI (2016) KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian salutatory conduction. J Neurophysiol 115:1836–1859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasaki T, Matsuki N, Ikegaya Y (2012) Targeted axon-attached recording with fluorescent patch-clamp pipettes in brain slices. Nat Protoc 7:1228–1234

    Article  PubMed  CAS  Google Scholar 

  • Schmitz D, Schuchmann S, Fisahn A, Draguhn A, Buhl EH, Petrasch-Parwez RE, Dermietzel R, Heinemann U, Traub RD (2001) Axo-axonal coupling: a novel mechanism for ultrafast neuronal communication. Neuron 31:831–840

    Article  PubMed  CAS  Google Scholar 

  • Schuchmann S, Schmitz D, Rivera C, Vanhatalo S, Salmen B, Mackie K, Sipilä ST, Voipio J, Kaila K (2006) Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nat Med 12:817–823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schuchmann S, Hauck S, Henning S, Grüters-Kieslich A, Vanhatalo S, Schmitz D, Kaila K (2011) Respiratory alkalosis in children with febrile seizures. Epilepsia 52:1949–1955

    Article  PubMed  Google Scholar 

  • Schweitzer JS, Wang H, Xiong Z-Q, Stringer JL (2000) pH sensitivity of non-synaptic field bursts in the dentate gyrus. J Neurophysiol 84:927–933

    Article  PubMed  CAS  Google Scholar 

  • Sheffield ME, Best TK, Mensh BD, Kath WL, Spruston N (2010) Slow integration leads to persistent action potential firing in distal axons of coupled interneurons. Nat Neurosci 14:200–207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simon A, Traub RD, Vladimirov N, Jenkins A, Nicholson C, Whittaker R, Schofield I, Clowry GJ, Cunningham MO, Whittington MA (2014) Gap junction networks can generate both ripple-like and fast-ripple-like oscillations. Eur J Neurosci 39:46–60

    Article  PubMed  Google Scholar 

  • Spencer WA, Kandel ER (1961) Electrophysiology of hippocampal neurons IV. Fast prepotentials. J Neurophysiol 24:272–285

    Article  PubMed  CAS  Google Scholar 

  • Spray DC, White RL, Mazet F, Bennett MV (1985) Regulation of gap junctional conductance. Am J Phys 248:H753–H764

    CAS  Google Scholar 

  • Srinivas M, Rozental R, Kojima T, Dermietzel R, Mehler M, Condorelli DF, Kessler JA, Spray DC (1999) Functional properties of channels formed by the neuronal gap junction protein connexin36. J Neurosci 19:9848–9855

    Article  PubMed  CAS  Google Scholar 

  • Takaku Y, Hwang JS, Wolf A, Böttger A, Shimizu H, David CN, Gojobori T (2014) Innexin gap junctions in nerve cells coordinate spontaneous contractile behaviour in Hydra polyps. Sci Rep 4:3573. https://doi.org/10.1038/srep03573

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamás G, Buhl EH, Lörincz A, Somogyi P (2000) Proximally targeted GABAergic synapses and gap junctions precisely synchronize cortical interneurons. Nat Neurosci 3:366–371

    Article  PubMed  Google Scholar 

  • Taylor CP, Dudek FE (1982) Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses. Science 218:810–812

    Article  PubMed  CAS  Google Scholar 

  • Taylor CP, Dudek FE (1984a) Excitation of hippocampal pyramidal cells by an electrical field effect. J Neurophysiol 52:126–142

    Article  PubMed  CAS  Google Scholar 

  • Taylor CP, Dudek FE (1984b) Synchronization without active chemical synapses during hippocampal afterdischarges. J Neurophysiol 52:143–155

    Article  PubMed  CAS  Google Scholar 

  • Teubner B, Degen J, Söhl G, Güldenagel M, Bukauskas FE, Trexler EB, Verselis VK, De Zeeuw CI, Lee CG, Kozak CA, Petrasch-Parwez E, Dermietzel R, Willecke K (2000) Functional expression of the murine connexin 36 gene coding for a neuron-specific gap junctional protein. J Membr Biol 176:249–262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tort AB, Scheffer-Teixeira R, Souza BC, Draguhn A, Brankačk J (2013) Theta-associated high-frequency oscillations (110-160 Hz) in the hippocampus and neocortex. Prog Neurobiol 100:1–14

    Article  PubMed  Google Scholar 

  • Traub RD, Bibbig A (2000) A model of high-frequency ripples in the hippocampus, based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons. J Neurosci 20:2086–2093

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Whittington MA (2010) Cortical oscillations in health and disease. Oxford University Press, New York

    Book  Google Scholar 

  • Traub RD, Wong RKS (1982) Cellular mechanism of neuronal synchronization in epilepsy. Science 216:745–747

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Whittington MA, Colling SB, Buzsáki G, Jefferys JGR (1996) Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J Physiol 493:471–484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Traub RD, Schmitz D, Jefferys JGR, Draguhn A (1999) High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions. Neuroscience 92:407–426

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Bibbig A, Fisahn A, LeBeau FEN, Whittington MA, Buhl EH (2000) A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur J Neurosci 12:4093–4106

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Bibbig A, Piechotta A, Draguhn A, Schmitz D (2001a) Synaptic and nonsynaptic contributions to giant IPSPs and ectopic spikes induced by 4-aminopyridine in the hippocampus in vitro. J Neurophysiol 85:1246–1256

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Kopell N, Bibbig A, Buhl EH, LeBeau FEN, Whittington MA (2001b) Gap junctions between interneuron dendrites can enhance long-range synchrony of gamma oscillations. J Neurosci 21:9478–9486

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Whittington MA, Buhl EH, LeBeau FEN, Bibbig A, Boyd S, Cross H, Baldeweg T (2001c) A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures. Epilepsia 42:153–170

    PubMed  CAS  Google Scholar 

  • Traub RD, Cunningham MO, Gloveli T, LeBeau FEN, Bibbig A, Buhl EH, Whittington MA (2003) GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations. Proc Natl Acad Sci U S A 100:11047–11052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Traub RD, Pais I, Bibbig A, LeBeau FEN, Buhl EH, Monyer H, Whittington MA (2005) Transient depression of excitatory synapses on interneurons contributes to epileptiform bursts intermixed with gamma oscillations in the mouse hippocampal slice. J Neurophysiol 94:1225–1235

    Article  PubMed  Google Scholar 

  • Traub RD, Duncan R, Russell AJC, Baldeweg T, Tu Y, Cunningham MO, Whittington MA (2010) Spatiotemporal patterns of electrocorticographic very fast oscillations (>80 Hz) consistent with a network model based on electrical coupling between principal neurons. Epilepsia 51:1587–1597

    Article  PubMed  Google Scholar 

  • Traub RD, Schmitz D, Maier N, Whittington MA, Draguhn A (2012) Axonal properties determine somatic firing in a model of in vitro CA1 hippocampal sharp wave-ripples and persistent gamma oscillations. Eur J Neurosci 36:2650–2660

    Article  PubMed  PubMed Central  Google Scholar 

  • Unger VM, Kumar NK, Gilula NB, Yeager M (1999) Three-dimensional structure of a recombinant gap junction membrane channel. Science 283:1176–1180

    Article  PubMed  CAS  Google Scholar 

  • Valiunas V (2002) Biophysical properties of connexin-45 gap junction hemichannels studied in vertebrate cells. J Gen Physiol 119:147–164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veenstra RD, Wang HZ, Beyer EC, Brink PR (1994) Selective dye and ionic permeability of gap junction channels formed by connexin45. Circ Res 75:483–490

    Article  PubMed  CAS  Google Scholar 

  • Venance L, Rozov A, Blatow M, Burnashev N, Feldmeyer D, Monyer H (2000) Connexin expression in electrically coupled postnatal rat brain neurons. Proc Natl Acad Sci U S A 97:10260–10265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Viney TJ, Lasztocsi B, Katona L, Crump MG, Tukker JJ, Klausberger T, Somogyi P (2013) Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo. Nat Neurosci 16:1802–1811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vivar C, Traub RD, Gutiérrez R (2012) Mixed electrical-chemical transmission between hippocampal mossy fibers and pyramidal cells. Eur J Neurosci 35:76–82

    Article  PubMed  Google Scholar 

  • Vladimirov N, Tu Y, Traub RD (2013) Synaptic gating at axonal branches, and sharp-wave ripples with replay: a simulation study. Eur J Neurosci 38:3435–3447

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X‑J, Buzsáki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16:6402–6413

  • Wang Y, Barakat A, Zhou H (2010) Electrotonic coupling between pyramidal neurons in the neocortex. PLoS One 5:e10253. https://doi.org/10.1371/journal.pone.0010253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White JA, Chow CC, Ritt J, Soto-Treviño C, Kopell N (1998) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J Comput Neurosci 5:5–16

    Article  PubMed  CAS  Google Scholar 

  • Whittington MA, Traub RD, Jefferys JGR (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373:612–615

  • Yang XF, Shi XY, Ju J, Zhang WN, Liu YJ, Li XY, Zou LP (2014) 5% CO2 inhalation suppresses hyperventilation-induced absence seizures in children. Epilepsy Res 108:345–348

    Article  PubMed  CAS  Google Scholar 

  • Ylinen A, Bragin A, Nádasdy Z, Jandó G, Szabó I, Sik A, Buzsáki G (1995) Sharp wave-associated high frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 15:30–46

    Article  PubMed  CAS  Google Scholar 

  • Zarnadze S, Bäuerle P, Santos-Torres J, Böhm C, Schmitz D, Geiger JRP, Dugladze T, Gloveli T (2016) Cell-specific synaptic plasticity induced by network oscillations. eLife 5:e14912. https://doi.org/10.7554/eLife.14912

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Xiao C, McArdle JJ, Ye JH (2006) Mefloquine enhances nigral γ-aminobutyric acid release via inhibition of cholinesterase. J Pharmacol Exp Ther 317:1155–1160

    Article  PubMed  CAS  Google Scholar 

  • Zlomuzica A, Reichinnek S, Maxeiner S, Both M, May E, Wörsdörfer P, Draguhn A, Willecke K, Dere E (2010) Deletion of connexin45 in mouse neurons disrupts one-trial object recognition and alters kainate-induced gamma-oscillations in the hippocampus. Physiol Behav 101:245–253

    Article  PubMed  CAS  Google Scholar 

  • Zsiros V, Maccaferri G (2008) Noradrenergic modulation of electrical coupling in GABAergic networks of the hippocampus. J Neurosci 28:1804–1815

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

R.D.T. acknowledges support from IBM, NIH/NINDS (RO1NS044133) and NeuroCure; M.A.W., the Wellcome Trust; R.G., CONACYT (CB254339; Fronteras 1600) and DFG (SFB 1134); and A.D., the DFG (SFB 1134). We thank our many collaborators, including Nancy Kopell, Dietmar Schmitz, James I. Nagy, John E. Rash, Hannah Monyer and Nikolaus Maier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger D. Traub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traub, R.D., Whittington, M.A., Gutiérrez, R. et al. Electrical coupling between hippocampal neurons: contrasting roles of principal cell gap junctions and interneuron gap junctions. Cell Tissue Res 373, 671–691 (2018). https://doi.org/10.1007/s00441-018-2881-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2881-3

Keywords

Navigation