Amniotic membrane extract differentially regulates human peripheral blood T cell subsets, monocyte subpopulations and myeloid dendritic cells

  • Paula Laranjeira
  • Marta Duque
  • Martin Vojtek
  • Maria J. Inácio
  • Isabel Silva
  • Ana C. Mamede
  • Mafalda Laranjo
  • Susana Pedreiro
  • Maria J. Carvalho
  • Paulo Moura
  • Ana M. Abrantes
  • Cláudio J. Maia
  • Pedro Domingues
  • Rosário Domingues
  • António Martinho
  • Maria F. Botelho
  • Hélder Trindade
  • Artur Paiva
Regular Article

Abstract

The discovery of the immunoregulatory potential of human amniotic membrane (hAM) propelled several studies focusing on its application for the treatment of immunological disorders. However, there is little information regarding the effects of hAM on distinct activation and differentiation stages of immune cells. Here, we aim to investigate the effect of human amniotic membrane extract (hAME) on the pattern of cytokine production by T cells, monocytes and myeloid dendritic cells (mDCs). For this purpose, peripheral blood mononuclear cells (PBMCs) from eight healthy individuals were stimulated in vitro in the presence or absence of hAME. Mitogen-induced proliferation of PBMCs and cytokine production among the distinct T cell functional compartments, monocyte subpopulations and mDCs were evaluated. hAME displayed an anti-proliferative effect and decreased the frequency of T cells producing tumor necrosis factor (TNF)α, interferon (IFN)γ and interleukin (IL)-2, for all T cell functional compartments. The frequency of IL-17 and IL-9-producing T cells was also reduced. The inhibition of mRNA expression of granzyme B, perforin and NKG2D by CD8+ T cells and γδ T cells and the augment of FoxP3 and IL-10 in CD4+ T cells and IL-10 in regulatory T cells were also observed. Furthermore, hAME inhibited IFNγ-induced protein (IP)-10 expression by classical and non-classical monocytes, without hampering the production of TNFα and IL-6 by monocytes and mDCs. These results suggest that hAME exerts an anti-inflammatory effect on T cells, still at a different extent for distinct T cell functional compartments.

Keywords

Human amniotic membrane Immunosuppression T cell Monocyte Dendritic cell 

Notes

Acknowledgments

Ana Catarina Mamede (SFRH/BD/73649/2010) and Maria João Carvalho (SFRH/SINTD/60068/2009) wish to thank the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for the PhD grants. The authors would also like to thank the Obstetrics Service of the Centro Hospitalar e Universitário de Coimbra for the collection of human tissues used in this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Ethical Committee of the Centro Hospitalar e Universitário de Coimbra (CHUC-70-12, Coimbra, Portugal). All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

441_2018_2822_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 11 kb)

References

  1. Anam K, Lazdun Y, Davis PM, Banas RA, Elster EA, Davis TA (2013) Amnion-derived multipotent progenitor cells support allograft tolerance induction. Am J Transplant 13:1416–1428CrossRefPubMedGoogle Scholar
  2. Anthony DD, Milkovich KA, Zhang W, Rodriguez B, Yonkers NL, Tary-Lehmann M, Lehmann PV (2012) Dissecting the T cell response: proliferation assays vs. cytokine signatures by elispot. Cell 1:127–140CrossRefGoogle Scholar
  3. Bauer D, Wasmuth S, Hennig M, Baehler H, Steuhl KP, Heiligenhaus A (2009) Amniotic membrane transplantation induces apoptosis in t lymphocytes in murine corneas with experimental herpetic stromal keratitis. Invest Ophthalmol Vis Sci 50:3188–3198CrossRefPubMedGoogle Scholar
  4. Bonci P, Lia A (2005) Suspension made with amniotic membrane: clinical trial. Eur J Ophthalmol 15:441–445CrossRefGoogle Scholar
  5. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621CrossRefPubMedGoogle Scholar
  6. Dua HS, Azuara-Blanco A (1999) Amniotic membrane transplantation. Br J Ophthalmol 83:748–752CrossRefPubMedPubMedCentralGoogle Scholar
  7. Guggino G, Lo Pizzo M, Di Liberto D, Rizzo A, Cipriani P, Ruscitti P, Candore G, Gambino CM, Sireci G, Dieli F, Giacomelli R, Triolo G, Ciccia F (2017) Interleukin-9 over-expression and t helper 9 polarization in systemic sclerosis patients. Clin Exp ImmunolGoogle Scholar
  8. Guo Q, Hao J, Yang Q, Guan L, Ouyang S, Wang J (2011) A comparison of the effectiveness between amniotic membrane homogenate and transplanted amniotic membrane in healing corneal damage in a rabbit model. Acta Ophthalmol 89:e315–e319CrossRefPubMedGoogle Scholar
  9. Hao Y, Ma DH, Hwang DG, Kim WS, Zhang F (2000) Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 19:348–352CrossRefPubMedGoogle Scholar
  10. He H, Li W, Chen SY, Zhang S, Chen YT, Hayashida Y, Zhu YT, Tseng SC (2008) Suppression of activation and induction of apoptosis in raw264.7 cells by amniotic membrane extract. Invest Ophthalmol Vis Sci 49:4468–4475CrossRefPubMedPubMedCentralGoogle Scholar
  11. He H, Li W, Tseng DY, Zhang S, Chen SY, Day AJ, Tseng SC (2009) Biochemical characterization and function of complexes formed by hyaluronan and the heavy chains of inter-alpha-inhibitor (hc*ha) purified from extracts of human amniotic membrane. J Biol Chem 284:20136–20146CrossRefPubMedPubMedCentralGoogle Scholar
  12. He H, Tan Y, Duffort S, Perez VL, Tseng SC (2014) In vivo downregulation of innate and adaptive immune responses in corneal allograft rejection by hc-ha/ptx3 complex purified from amniotic membrane. Invest Ophthalmol Vis Sci 55:1647–1656CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hopkinson A, McIntosh RS, Shanmuganathan V, Tighe PJ, Dua HS (2006) Proteomic analysis of amniotic membrane prepared for human transplantation: characterization of proteins and clinical implications. J Proteome Res 5:2226–2235CrossRefPubMedGoogle Scholar
  14. Kubo M, Sonoda Y, Muramatsu R, Usui M (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 42:1539–1546PubMedGoogle Scholar
  15. Li H, Niederkorn JY, Neelam S, Mayhew E, Word RA, McCulley JP, Alizadeh H (2005) Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci 46:900–907CrossRefPubMedGoogle Scholar
  16. Li J, Chen S, Xiao X, Zhao Y, Ding W, Li XC (2017) IL-9 and Th9 cells in health and diseases—from tolerance to immunopathology. Cytokine Growth Factor RevGoogle Scholar
  17. Liang L, Li W, Ling S, Sheha H, Qiu W, Li C, Liu Z (2009) Amniotic membrane extraction solution for ocular chemical burns. Clin Exp Ophthalmol 37:855–863CrossRefPubMedGoogle Scholar
  18. Liu YH, Vaghjiani V, Tee JY, To K, Cui P, Oh DY, Manuelpillai U, Toh BH, Chan J (2012) Amniotic epithelial cells from the human placenta potently suppress a mouse model of multiple sclerosis. PLoS One 7:e35758CrossRefPubMedPubMedCentralGoogle Scholar
  19. Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, Parolini O (2008) Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells 26:182–192CrossRefPubMedGoogle Scholar
  20. Magatti M, De Munari S, Vertua E, Nassauto C, Albertini A, Wengler GS, Parolini O (2009) Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes. Cell Transplant 18:899–914CrossRefPubMedGoogle Scholar
  21. Magatti M, Caruso M, De Munari S, Vertua E, De D, Manuelpillai U, Parolini O (2015) Human amniotic membrane-derived mesenchymal and epithelial cells exert different effects on monocyte-derived dendritic cell differentiation and function. Cell Transplant 24:1733–1752CrossRefPubMedGoogle Scholar
  22. Magatti M, Vertua E, De Munari S, Caro M, Caruso M, Silini A, Delgado M, Parolini O (2016) Human amnion favours tissue repair by inducing the m1-to-m2 switch and enhancing m2 macrophage features. J Tissue Eng Regen MedGoogle Scholar
  23. Mamede AC, Carvalho MJ, Abrantes AM, Laranjo M, Maia CJ, Botelho MF (2012) Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res 349:447–458CrossRefPubMedGoogle Scholar
  24. Mamede AC, Laranjo M, Carvalho MJ, Abrantes AM, Pires AS, Brito AF, Moura P, Maia CJ, Botelho MF (2014) Effect of amniotic membrane proteins in human cancer cell lines: an exploratory study. J Membr Biol 247:357–360CrossRefPubMedGoogle Scholar
  25. McDonald CA, Payne NL, Sun G, Moussa L, Siatskas C, Lim R, Wallace EM, Jenkin G, Bernard CC (2015) Immunosuppressive potential of human amnion epithelial cells in the treatment of experimental autoimmune encephalomyelitis. J Neuroinflammation 12:112CrossRefPubMedPubMedCentralGoogle Scholar
  26. Parolini O, Souza-Moreira L, O'Valle F, Magatti M, Hernandez-Cortes P, Gonzalez-Rey E, Delgado M (2014) Therapeutic effect of human amniotic membrane-derived cells on experimental arthritis and other inflammatory disorders. Arthritis Rheumatol 66:327–339CrossRefPubMedGoogle Scholar
  27. Pianta S, Magatti M, Vertua E, Bonassi Signoroni P, Muradore I, Nuzzo AM, Rolfo A, Silini A, Quaglia F, Todros T, Parolini O (2016) Amniotic mesenchymal cells from pre-eclamptic placentae maintain immunomodulatory features as healthy controls. J Cell Mol Med 20:157–169CrossRefPubMedGoogle Scholar
  28. Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V (2011) Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 29:163–183CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rossi D, Pianta S, Magatti M, Sedlmayr P, Parolini O (2012) Characterization of the conditioned medium from amniotic membrane cells: prostaglandins as key effectors of its immunomodulatory activity. PLoS One 7:e46956CrossRefPubMedPubMedCentralGoogle Scholar
  30. Shu J, He X, Zhang L, Li H, Wang P, Huang X (2015a) Human amnion mesenchymal cells inhibit lipopolysaccharide-induced TNF-alpha and IL-1beta production in THP-1 cells. Biol Res 48:69CrossRefPubMedPubMedCentralGoogle Scholar
  31. Shu J, Pan L, Huang X, Wang P, Li H, He X, Cai Z (2015b) Transplantation of human amnion mesenchymal cells attenuates the disease development in rats with collagen-induced arthritis. Clin Exp Rheumatol 33:484–490PubMedGoogle Scholar
  32. Stansfield BK, Ingram DA (2015) Clinical significance of monocyte heterogeneity. Clin Transl Med 4:5CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ueta M, Kweon MN, Sano Y, Sotozono C, Yamada J, Koizumi N, Kiyono H, Kinoshita S (2002) Immunosuppressive properties of human amniotic membrane for mixed lymphocyte reaction. Clin Exp Immunol 129:464–470CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM, Wong SC (2012) The three human monocyte subsets: implications for health and disease. Immunol Res 53:41–57CrossRefPubMedGoogle Scholar
  35. Yin JJ, Hu XQ, Mao ZF, Bao J, Qiu W, Lu ZQ, Wu HT, Zhong XN (2017) Neutralization of interleukin-9 decreasing mast cells infiltration in experimental autoimmune encephalomyelitis. Chin Med J 130:964–971CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ziegler-Heitbrock L, Hofer TP (2013) Toward a refined definition of monocyte subsets. Front Immunol 4:23CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Scherberich J, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116:e74–e80CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Paula Laranjeira
    • 1
    • 2
  • Marta Duque
    • 1
    • 3
  • Martin Vojtek
    • 4
    • 5
  • Maria J. Inácio
    • 1
  • Isabel Silva
    • 1
    • 2
  • Ana C. Mamede
    • 6
    • 7
    • 8
    • 9
  • Mafalda Laranjo
    • 6
    • 7
    • 8
  • Susana Pedreiro
    • 1
    • 2
  • Maria J. Carvalho
    • 6
    • 7
    • 8
    • 10
  • Paulo Moura
    • 10
  • Ana M. Abrantes
    • 6
    • 7
    • 8
  • Cláudio J. Maia
    • 9
  • Pedro Domingues
    • 3
  • Rosário Domingues
    • 3
  • António Martinho
    • 1
  • Maria F. Botelho
    • 6
    • 7
    • 8
  • Hélder Trindade
    • 1
  • Artur Paiva
    • 1
    • 2
  1. 1.Blood and Transplantation Center of CoimbraPortuguese Institute of the Blood and TransplantationCoimbraPortugal
  2. 2.Flow Cytometry Unit, Hospitais da Universidade de CoimbraCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
  3. 3.Department of ChemistryUniversity of AveiroAveiroPortugal
  4. 4.University of Veterinary Medicine and Pharmacy in KošiceKošiceSlovakia
  5. 5.Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
  6. 6.Biophysics Institute, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  7. 7.Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO), Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  8. 8.CNC-IBILI, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  9. 9.CICS-UBI, Health Sciences Research CenterUniversity of Beira InteriorCovilhãPortugal
  10. 10.Obstetrics Unit, Hospitais da Universidade de CoimbraCentro Hospitalar e Universitário de CoimbraCoimbraPortugal

Personalised recommendations