Skip to main content

Advertisement

Log in

Amniotic membrane extract differentially regulates human peripheral blood T cell subsets, monocyte subpopulations and myeloid dendritic cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The discovery of the immunoregulatory potential of human amniotic membrane (hAM) propelled several studies focusing on its application for the treatment of immunological disorders. However, there is little information regarding the effects of hAM on distinct activation and differentiation stages of immune cells. Here, we aim to investigate the effect of human amniotic membrane extract (hAME) on the pattern of cytokine production by T cells, monocytes and myeloid dendritic cells (mDCs). For this purpose, peripheral blood mononuclear cells (PBMCs) from eight healthy individuals were stimulated in vitro in the presence or absence of hAME. Mitogen-induced proliferation of PBMCs and cytokine production among the distinct T cell functional compartments, monocyte subpopulations and mDCs were evaluated. hAME displayed an anti-proliferative effect and decreased the frequency of T cells producing tumor necrosis factor (TNF)α, interferon (IFN)γ and interleukin (IL)-2, for all T cell functional compartments. The frequency of IL-17 and IL-9-producing T cells was also reduced. The inhibition of mRNA expression of granzyme B, perforin and NKG2D by CD8+ T cells and γδ T cells and the augment of FoxP3 and IL-10 in CD4+ T cells and IL-10 in regulatory T cells were also observed. Furthermore, hAME inhibited IFNγ-induced protein (IP)-10 expression by classical and non-classical monocytes, without hampering the production of TNFα and IL-6 by monocytes and mDCs. These results suggest that hAME exerts an anti-inflammatory effect on T cells, still at a different extent for distinct T cell functional compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anam K, Lazdun Y, Davis PM, Banas RA, Elster EA, Davis TA (2013) Amnion-derived multipotent progenitor cells support allograft tolerance induction. Am J Transplant 13:1416–1428

    Article  PubMed  CAS  Google Scholar 

  • Anthony DD, Milkovich KA, Zhang W, Rodriguez B, Yonkers NL, Tary-Lehmann M, Lehmann PV (2012) Dissecting the T cell response: proliferation assays vs. cytokine signatures by elispot. Cell 1:127–140

    Article  CAS  Google Scholar 

  • Bauer D, Wasmuth S, Hennig M, Baehler H, Steuhl KP, Heiligenhaus A (2009) Amniotic membrane transplantation induces apoptosis in t lymphocytes in murine corneas with experimental herpetic stromal keratitis. Invest Ophthalmol Vis Sci 50:3188–3198

    Article  PubMed  Google Scholar 

  • Bonci P, Lia A (2005) Suspension made with amniotic membrane: clinical trial. Eur J Ophthalmol 15:441–445

    Article  PubMed  Google Scholar 

  • Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621

    Article  PubMed  CAS  Google Scholar 

  • Dua HS, Azuara-Blanco A (1999) Amniotic membrane transplantation. Br J Ophthalmol 83:748–752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guggino G, Lo Pizzo M, Di Liberto D, Rizzo A, Cipriani P, Ruscitti P, Candore G, Gambino CM, Sireci G, Dieli F, Giacomelli R, Triolo G, Ciccia F (2017) Interleukin-9 over-expression and t helper 9 polarization in systemic sclerosis patients. Clin Exp Immunol

  • Guo Q, Hao J, Yang Q, Guan L, Ouyang S, Wang J (2011) A comparison of the effectiveness between amniotic membrane homogenate and transplanted amniotic membrane in healing corneal damage in a rabbit model. Acta Ophthalmol 89:e315–e319

    Article  PubMed  Google Scholar 

  • Hao Y, Ma DH, Hwang DG, Kim WS, Zhang F (2000) Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 19:348–352

    Article  PubMed  CAS  Google Scholar 

  • He H, Li W, Chen SY, Zhang S, Chen YT, Hayashida Y, Zhu YT, Tseng SC (2008) Suppression of activation and induction of apoptosis in raw264.7 cells by amniotic membrane extract. Invest Ophthalmol Vis Sci 49:4468–4475

    Article  PubMed  PubMed Central  Google Scholar 

  • He H, Li W, Tseng DY, Zhang S, Chen SY, Day AJ, Tseng SC (2009) Biochemical characterization and function of complexes formed by hyaluronan and the heavy chains of inter-alpha-inhibitor (hc*ha) purified from extracts of human amniotic membrane. J Biol Chem 284:20136–20146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He H, Tan Y, Duffort S, Perez VL, Tseng SC (2014) In vivo downregulation of innate and adaptive immune responses in corneal allograft rejection by hc-ha/ptx3 complex purified from amniotic membrane. Invest Ophthalmol Vis Sci 55:1647–1656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hopkinson A, McIntosh RS, Shanmuganathan V, Tighe PJ, Dua HS (2006) Proteomic analysis of amniotic membrane prepared for human transplantation: characterization of proteins and clinical implications. J Proteome Res 5:2226–2235

    Article  PubMed  CAS  Google Scholar 

  • Kubo M, Sonoda Y, Muramatsu R, Usui M (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 42:1539–1546

    PubMed  CAS  Google Scholar 

  • Li H, Niederkorn JY, Neelam S, Mayhew E, Word RA, McCulley JP, Alizadeh H (2005) Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci 46:900–907

    Article  PubMed  Google Scholar 

  • Li J, Chen S, Xiao X, Zhao Y, Ding W, Li XC (2017) IL-9 and Th9 cells in health and diseases—from tolerance to immunopathology. Cytokine Growth Factor Rev

  • Liang L, Li W, Ling S, Sheha H, Qiu W, Li C, Liu Z (2009) Amniotic membrane extraction solution for ocular chemical burns. Clin Exp Ophthalmol 37:855–863

    Article  PubMed  Google Scholar 

  • Liu YH, Vaghjiani V, Tee JY, To K, Cui P, Oh DY, Manuelpillai U, Toh BH, Chan J (2012) Amniotic epithelial cells from the human placenta potently suppress a mouse model of multiple sclerosis. PLoS One 7:e35758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, Parolini O (2008) Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells 26:182–192

    Article  PubMed  CAS  Google Scholar 

  • Magatti M, De Munari S, Vertua E, Nassauto C, Albertini A, Wengler GS, Parolini O (2009) Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes. Cell Transplant 18:899–914

    Article  PubMed  Google Scholar 

  • Magatti M, Caruso M, De Munari S, Vertua E, De D, Manuelpillai U, Parolini O (2015) Human amniotic membrane-derived mesenchymal and epithelial cells exert different effects on monocyte-derived dendritic cell differentiation and function. Cell Transplant 24:1733–1752

    Article  PubMed  Google Scholar 

  • Magatti M, Vertua E, De Munari S, Caro M, Caruso M, Silini A, Delgado M, Parolini O (2016) Human amnion favours tissue repair by inducing the m1-to-m2 switch and enhancing m2 macrophage features. J Tissue Eng Regen Med

  • Mamede AC, Carvalho MJ, Abrantes AM, Laranjo M, Maia CJ, Botelho MF (2012) Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res 349:447–458

    Article  PubMed  CAS  Google Scholar 

  • Mamede AC, Laranjo M, Carvalho MJ, Abrantes AM, Pires AS, Brito AF, Moura P, Maia CJ, Botelho MF (2014) Effect of amniotic membrane proteins in human cancer cell lines: an exploratory study. J Membr Biol 247:357–360

    Article  PubMed  CAS  Google Scholar 

  • McDonald CA, Payne NL, Sun G, Moussa L, Siatskas C, Lim R, Wallace EM, Jenkin G, Bernard CC (2015) Immunosuppressive potential of human amnion epithelial cells in the treatment of experimental autoimmune encephalomyelitis. J Neuroinflammation 12:112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parolini O, Souza-Moreira L, O'Valle F, Magatti M, Hernandez-Cortes P, Gonzalez-Rey E, Delgado M (2014) Therapeutic effect of human amniotic membrane-derived cells on experimental arthritis and other inflammatory disorders. Arthritis Rheumatol 66:327–339

    Article  PubMed  CAS  Google Scholar 

  • Pianta S, Magatti M, Vertua E, Bonassi Signoroni P, Muradore I, Nuzzo AM, Rolfo A, Silini A, Quaglia F, Todros T, Parolini O (2016) Amniotic mesenchymal cells from pre-eclamptic placentae maintain immunomodulatory features as healthy controls. J Cell Mol Med 20:157–169

    Article  PubMed  CAS  Google Scholar 

  • Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V (2011) Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 29:163–183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossi D, Pianta S, Magatti M, Sedlmayr P, Parolini O (2012) Characterization of the conditioned medium from amniotic membrane cells: prostaglandins as key effectors of its immunomodulatory activity. PLoS One 7:e46956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shu J, He X, Zhang L, Li H, Wang P, Huang X (2015a) Human amnion mesenchymal cells inhibit lipopolysaccharide-induced TNF-alpha and IL-1beta production in THP-1 cells. Biol Res 48:69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shu J, Pan L, Huang X, Wang P, Li H, He X, Cai Z (2015b) Transplantation of human amnion mesenchymal cells attenuates the disease development in rats with collagen-induced arthritis. Clin Exp Rheumatol 33:484–490

    PubMed  Google Scholar 

  • Stansfield BK, Ingram DA (2015) Clinical significance of monocyte heterogeneity. Clin Transl Med 4:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueta M, Kweon MN, Sano Y, Sotozono C, Yamada J, Koizumi N, Kiyono H, Kinoshita S (2002) Immunosuppressive properties of human amniotic membrane for mixed lymphocyte reaction. Clin Exp Immunol 129:464–470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM, Wong SC (2012) The three human monocyte subsets: implications for health and disease. Immunol Res 53:41–57

    Article  PubMed  CAS  Google Scholar 

  • Yin JJ, Hu XQ, Mao ZF, Bao J, Qiu W, Lu ZQ, Wu HT, Zhong XN (2017) Neutralization of interleukin-9 decreasing mast cells infiltration in experimental autoimmune encephalomyelitis. Chin Med J 130:964–971

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziegler-Heitbrock L, Hofer TP (2013) Toward a refined definition of monocyte subsets. Front Immunol 4:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Scherberich J, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116:e74–e80

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Ana Catarina Mamede (SFRH/BD/73649/2010) and Maria João Carvalho (SFRH/SINTD/60068/2009) wish to thank the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for the PhD grants. The authors would also like to thank the Obstetrics Service of the Centro Hospitalar e Universitário de Coimbra for the collection of human tissues used in this work.

Funding

Ana Catarina Mamede and Maria João Carvalho received PhD grants (SFRH/BD/73649/2010 and SFRH/SINTD/60068/2009, respectively) by Fundação para a Ciência e a Tecnologia (FCT), Portugal. This study was funded by Infarmed (Health Research Fund 2015, FIS-2015-01), Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Paiva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Ethical Committee of the Centro Hospitalar e Universitário de Coimbra (CHUC-70-12, Coimbra, Portugal). All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

(DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laranjeira, P., Duque, M., Vojtek, M. et al. Amniotic membrane extract differentially regulates human peripheral blood T cell subsets, monocyte subpopulations and myeloid dendritic cells. Cell Tissue Res 373, 459–476 (2018). https://doi.org/10.1007/s00441-018-2822-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2822-1

Keywords

Navigation