Targeted knock-in of CreER T2 in zebrafish using CRISPR/Cas9

  • Gokul Kesavan
  • Juliane Hammer
  • Stefan Hans
  • Michael Brand
Regular Article
  • 119 Downloads

Abstract

New genome-editing approaches, such as the CRISPR/Cas system, have opened up great opportunities to insert or delete genes at targeted loci and have revolutionized genetics in model organisms like the zebrafish. The Cre-loxp recombination system is widely used to activate or inactivate genes with high spatial and temporal specificity. Using a CRISPR/Cas9-mediated knock-in strategy, we inserted a zebrafish codon-optimized CreER T2 transgene at the otx2 gene locus to generate a conditional Cre-driver line. We chose otx2 as it is a patterning gene of the anterior neural plate that is expressed during early development. By knocking in CreER T2 upstream of the endogenous ATG of otx2, we utilized this gene’s native promoter and enhancer elements to perfectly match CreER T2 and endogenous otx2 expression patterns. Next, by combining this novel driver line with a Cre-dependent reporter line, we show that only in the presence of tamoxifen can efficient Cre-loxp-mediated recombination be achieved in the anterior neural plate-derived tissues like the telencephalon, the eye and the optic tectum. Our results imply that the otx2:CreER T2 transgenic fish will be a valuable tool for lineage tracing and conditional mutant studies in larval and adult zebrafish.

Keywords

CRISPR/Cas9 CreERT2 Knock-in Zebrafish Cre-loxp recombination 

Notes

Acknowledgments

We are thankful to the Chen and Wente labs for providing plasmids to generate Cas9 and sgRNA mRNA (via addgene), Daniela Zoeller for help with cloning the bait plasmid with CreERT2, Dilce Gozuyasli for heat shock experiments, past and present members of the Brand lab for discussions and Vasuprada Iyengar for language and content editing. We thank Marika Fischer, Jitka Michling, Claudia Meyer and Daniela Mögel for dedicated zebrafish care. The Light Microscopy Facility, a core facility of BIOTEC/CRTD at the Technische Universität Dresden, supported this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

441_2018_2798_MOESM1_ESM.docx (225 kb)
ESM 1 (DOCX 225 kb)

References

  1. Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24:142–153CrossRefPubMedPubMedCentralGoogle Scholar
  2. Brand M, Heisenberg CP, Jiang YJ, Beuchle D, Lun K, Furutani-Seiki M, Granato M, Haffter P, Hammerschmidt M, Kane DA et al (1996) Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain. Development 123:179–190PubMedGoogle Scholar
  3. Brand M, Granato M, Nüsslein-Volhard C (2002) Keeping and raising zebrafish. In: Nüsslein-Volhard C, Dahm R (eds) Zebrafish: a practical approach. Oxford University Press, Oxford, pp 7–37Google Scholar
  4. Chekuru A, Kuscha V, Hans S, Brand M (2017) Ligand-controlled site-specific recombination in zebrafish. In site-specific recombinases (Springer), pp. 87–97Google Scholar
  5. Dai J, Cui X, Zhu Z, Hu W (2010) Non-homologous end joining plays a key role in transgene concatemer formation in transgenic zebrafish embryos. Int J Biol Sci 6:756–768CrossRefPubMedPubMedCentralGoogle Scholar
  6. Felker A, Mosimann C (2016) Contemporary zebrafish transgenesis with Tol2 and application for Cre/lox recombination experiments. Methods Cell Biol 135:219–244CrossRefPubMedGoogle Scholar
  7. Fuchs E, Horsley V (2011) Ferreting out stem cells from their niches. Nat Cell Biol 13:513–518CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hagmann M, Bruggmann R, Xue L, Georgiev O, Schaffner W, Rungger D, Spaniol P, Gerster T (1998) Homologous recombination and DNA-end joining reactions in zygotes and early embryos of zebrafish (Danio rerio) and Drosophila melanogaster. Biol Chem 379:673–681CrossRefPubMedGoogle Scholar
  9. Hans S, Kaslin J, Freudenreich D, Brand M (2009) Temporally-controlled site-specific recombination in zebrafish. PLoS One 4:e4640CrossRefPubMedPubMedCentralGoogle Scholar
  10. Henninger J, Santoso B, Hans S, Durand E, Moore J, Mosimann C, Brand M, Traver D, Zon L (2017) Clonal fate mapping quantifies the number of haematopoietic stem cells that arise during development. Nat Cell Biol 19:17–27CrossRefPubMedGoogle Scholar
  11. Hoshijima K, Jurynec MJ, Grunwald DJ (2016) Precise editing of the zebrafish genome made simple and efficient. Dev Cell 36:654–667CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kesavan G, Chekuru A, Machate A, Brand M (2017) CRISPR/Cas9 mediated zebrafish knock-in as a novel strategy to study midbrain-hindbrain boundary development. Front Neuroanat 11:52CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310CrossRefPubMedGoogle Scholar
  15. Kimura Y, Hisano Y, Kawahara A, Higashijima S (2014) Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci Rep 4:6545CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kimura Y, Oda M, Nakatani T, Sekita Y, Monfort A, Wutz A, Mochizuki H, Nakano T (2015) CRISPR/Cas9-mediated reporter knock-in in mouse haploid embryonic stem cells. Sci Rep 5:10710CrossRefPubMedPubMedCentralGoogle Scholar
  17. Knopf F, Hammond C, Chekuru A, Kurth T, Hans S, Weber CW, Mahatma G, Fisher S, Brand M, Schulte-Merker S (2011) Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell 20:713–724CrossRefPubMedGoogle Scholar
  18. Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M (2011) Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 138:4831–4841CrossRefPubMedGoogle Scholar
  19. Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255–258CrossRefPubMedPubMedCentralGoogle Scholar
  20. Li M, Zhao L, Page-McCaw PS, Chen W (2016) Zebrafish genome engineering using the CRISPR–Cas9 system. Trends Genet 32:815–827CrossRefPubMedPubMedCentralGoogle Scholar
  21. Martinez-Barbera JP, Signore M, Boyl PP, Puelles E, Acampora D, Gogoi R, Schubert F, Lumsden A, Simeone A (2001) Regionalisation of anterior neuroectoderm and its competence in responding to forebrain and midbrain inducing activities depend on mutual antagonism between OTX2 and GBX2. Development 128:4789–4800PubMedGoogle Scholar
  22. Ota S, Taimatsu K, Yanagi K, Namiki T, Ohga R, Higashijima SI, Kawahara A (2016) Functional visualization and disruption of targeted genes using CRISPR/Cas9-mediated eGFP reporter integration in zebrafish. Sci Rep 6:34991CrossRefPubMedPubMedCentralGoogle Scholar
  23. Pan YA, Freundlich T, Weissman TA, Schoppik D, Wang XC, Zimmerman S, Ciruna B, Sanes JR, Lichtman JW, Schier AF (2013) Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development 140:2835–2846CrossRefPubMedPubMedCentralGoogle Scholar
  24. Raible F, Brand M (2004) Divide et Impera—the midbrain-hindbrain boundary and its organizer. Trends Neurosci 27:727–734CrossRefPubMedGoogle Scholar
  25. Ramachandran, R., Reifler, A., Wan, J., and Goldman, D. (2012). Application of Cre-loxP recombination for lineage tracing of adult zebrafish retinal stem cells. Retinal Development: Methods and Protocols, 884 129–140Google Scholar
  26. Reifers F, Bohli H, Walsh EC, Crossley PH, Stainier DY, Brand M (1998) Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125:2381–2395PubMedGoogle Scholar
  27. Rhinn M, Lun K, Amores A, Yan YL, Postlethwait JH, Brand M (2003) Cloning, expression and relationship of zebrafish gbx1 and gbx2 genes to Fgf signaling. Mech Dev 120:919–936CrossRefPubMedGoogle Scholar
  28. Rhinn M, Picker A, Brand M (2006) Global and local mechanisms of forebrain and midbrain patterning. Curr Opin Neurobiol 16:5–12CrossRefPubMedGoogle Scholar
  29. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355CrossRefPubMedPubMedCentralGoogle Scholar
  30. Schier AF, Neuhauss SC, Harvey M, Malicki J, Solnica-Krezel L, Stainier DY, Zwartkruis F, Abdelilah S, Stemple DL, Rangini Z et al (1996) Mutations affecting the development of the embryonic zebrafish brain. Development 123:165–178PubMedGoogle Scholar
  31. Sinha DK, Neveu P, Gagey N, Aujard I, Le Saux T, Rampon C, Gauron C, Kawakami K, Leucht C, Bally-Cuif L (2010) Photoactivation of the CreERT2 recombinase for conditional site-specific recombination with high spatiotemporal resolution. Zebrafish 7:199–204CrossRefPubMedGoogle Scholar
  32. Sunmonu NA, Li K, Guo Q, Li JY (2011) Gbx2 and Fgf8 are sequentially required for formation of the midbrain-hindbrain compartment boundary. Development 138:725–734CrossRefPubMedPubMedCentralGoogle Scholar
  33. Westerfield, M. (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 4th edition. University of Oregon Press, EugeneGoogle Scholar
  34. Zagozewski JL, Zhang Q, Pinto VI, Wigle JT, Eisenstat DD (2014) The role of homeobox genes in retinal development and disease. Dev Biol 393:195–208CrossRefPubMedGoogle Scholar
  35. Zhou Z, Dang Y, Zhou M, Li L, Yu CH, Fu J, Chen S, Liu Y (2016) Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci U S A 113:E6117–E6125CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Molecular and Cellular Bioengeneering (CMCB), DFG-Center for Regenerative Therapies Dresden (CRTD)Technische Universität DresdenDresdenGermany

Personalised recommendations