Advertisement

Cell and Tissue Research

, Volume 372, Issue 2, pp 339–346 | Cite as

Chromaffin cell biology: inferences from The Cancer Genome Atlas

  • Lauren Fishbein
  • Matthew D. Wilkerson
Review

Abstract

Pheochromocytomas and paragangliomas (PCC/PGLs) are rare neuroendocrine tumors that are unusually diverse in metabolic profiles, in classes of molecular alterations and across a large number of altered genes. The Cancer Genome Atlas (TCGA) comprehensively profiled the molecular landscape of PCC/PGLs and identified novel genomic alterations and a new molecular classification of PCC/PGLs. In this review, we discuss the significant clinico-molecular findings of this integrated profiling study. We then review the molecular data of the TCGA cohort centering around known markers of sympathoadrenal cell lineage to better understand chromaffin cell biology. This analysis adds a new layer, that of chromaffin cell type, onto the published molecular classifications and in doing so provides inferences about underlying chromaffin cell biology and diversity.

Keywords

Pheochromocytoma Paraganglioma Chromaffin cell PNMT Genomics 

Notes

Funding

LF is supported by the American Cancer Society Mentored Research Scholar Grant MRSG-15-063-01-TBG.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Disclaimer

The views expressed in this article are those of the authors and do not reflect the official policy of the Department of Defense or U.S. Government.

References

  1. Ayala-Ramirez M, Feng L, Johnson MM, Ejaz S, Habra MA, Rich T, Busaidy N, Cote GJ, Perrier N, Phan A, Patel S, Waguespack S, Jimenez C (2011) Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J Clin Endocrinol Metab 96:717–725CrossRefPubMedGoogle Scholar
  2. Bilek R, Safarik L, Ciprova V, Vlcek P, Lisa L (2008) Chromogranin A, a member of neuroendocrine secretory proteins as a selective marker for laboratory diagnosis of pheochromocytoma. Physiol Res 57(Suppl 1):S171–S179PubMedGoogle Scholar
  3. Burnichon N, Vescovo L, Amar L, Libe R, de Reynies A, Venisse A, Jouanno E, Laurendeau I, Parfait B, Bertherat J, Plouin PF, Jeunemaitre X, Favier J, Gimenez-Roqueplo AP (2011) Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum Mol Genet 20:3974–3985CrossRefPubMedGoogle Scholar
  4. Burnichon N, Cascon A, Schiavi F, Morales NP, Comino-Mendez I, Abermil N, Inglada-Perez L, de Cubas AA, Amar L, Barontini M, de Quiros SB, Bertherat J, Bignon YJ, Blok MJ, Bobisse S, Borrego S, Castellano M, Chanson P, Chiara MD, Corssmit EP, Giacche M, de Krijger RR, Ercolino T, Girerd X, Gomez-Garcia EB, Gomez-Grana A, Guilhem I, Hes FJ, Honrado E, Korpershoek E, Lenders JW, Leton R, Mensenkamp AR, Merlo A, Mori L, Murat A, Pierre P, Plouin PF, Prodanov T, Quesada-Charneco M, Qin N, Rapizzi E, Raymond V, Reisch N, Roncador G, Ruiz-Ferrer M, Schillo F, Stegmann AP, Suarez C, Taschin E, Timmers HJ, Tops CM, Urioste M, Beuschlein F, Pacak K, Mannelli M, Dahia PL, Opocher G, Eisenhofer G, Gimenez-Roqueplo AP, Robledo M (2012) MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res 18:2828–2837CrossRefPubMedGoogle Scholar
  5. Castro-Vega LJ, Letouze E, Burnichon N, Buffet A, Disderot PH, Khalifa E, Loriot C, Elarouci N, Morin A, Menara M, Lepoutre-Lussey C, Badoual C, Sibony M, Dousset B, Libe R, Zinzindohoue F, Plouin PF, Bertherat J, Amar L, de Reynies A, Favier J, Gimenez-Roqueplo AP (2015) Multi-omics analysis defines core genomic alterations in pheochromocytomas and paragangliomas. Nat Commun 6:6044CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chan WH, Gonsalvez DG, Young HM, Southard-Smith EM, Cane KN, Anderson CR (2016) Differences in CART expression and cell cycle behavior discriminate sympathetic neuroblast from chromaffin cell lineages in mouse sympathoadrenal cells. Dev Neurobiol 76:137–149CrossRefPubMedGoogle Scholar
  7. Creutz CE, Pazoles CJ, Pollard HB (1978) Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of isolated chromaffin granules. J Biol Chem 253:2858–2866PubMedGoogle Scholar
  8. Dahia PL, Hao K, Rogus J, Colin C, Pujana MA, Ross K, Magoffin D, Aronin N, Cascon A, Hayashida CY, Li C, Toledo SP, Stiles CD (2005) Novel pheochromocytoma susceptibility loci identified by integrative genomics. Cancer Res 65:9651–9658CrossRefPubMedGoogle Scholar
  9. Eisenhofer G, Walther MM, Huynh TT, Li ST, Bornstein SR, Vortmeyer A, Mannelli M, Goldstein DS, Linehan WM, Lenders JW, Pacak K (2001) Pheochromocytomas in von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2 display distinct biochemical and clinical phenotypes. J Clin Endocrinol Metab 86:1999–2008CrossRefPubMedGoogle Scholar
  10. Eisenhofer G, Huynh TT, Pacak K, Brouwers FM, Walther MM, Linehan WM, Munson PJ, Mannelli M, Goldstein DS, Elkahloun AG (2004) Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. Endocr Relat Cancer 11:897–911CrossRefPubMedGoogle Scholar
  11. Fishbein L (2016) Pheochromocytoma and paraganglioma: genetics, diagnosis, and treatment. Hematol Oncol Clin North Am 30:135–150CrossRefPubMedGoogle Scholar
  12. Fishbein L, Merrill S, Fraker DL, Cohen DL, Nathanson KL (2013) Inherited mutations in pheochromocytoma and paraganglioma: why all patients should be offered genetic testing. Ann Surg Oncol 20:1444–1450CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fishbein L, Khare S, Wubbenhorst B, DeSloover D, D'Andrea K, Merrill S, Cho NW, Greenberg RA, Else T, Montone K, LiVolsi V, Fraker D, Daber R, Cohen DL, Nathanson KL (2015) Whole-exome sequencing identifies somatic ATRX mutations in pheochromocytomas and paragangliomas. Nat Commun 6:6140CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fishbein L, Leshchiner I, Walter V, Danilova L, Robertson AG, Johnson AR, Lichtenberg TM, Murray BA, Ghayee HK, Else T, Ling S, Jefferys SR, de Cubas AA, Wenz B, Korpershoek E, Amelio AL, Makowski L, Rathmell WK, Gimenez-Roqueplo AP, Giordano TJ, Asa SL, Tischler AS, Pacak K, Nathanson KL, Wilkerson MD (2017) Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell 31:181–193CrossRefPubMedPubMedCentralGoogle Scholar
  15. Furlan, A, Dyachuk, V, Kastriti, ME, Calvo-Enrique, L, Abdo, H, Hadjab, S, Chontorotzea, T, Akkuratova, N, Usoskin, D, Kamenev, D, Petersen, J, Sunadome, K, Memic, F, Marklund, U, Fried, K, Topilko, P, Lallemend, F, Kharchenko, PV, Ernfors, P, Adameyko, I (2017) Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science 357:doi:  https://doi.org/10.1126/science.aal3753
  16. Huber K, Bruhl B, Guillemot F, Olson EN, Ernsberger U, Unsicker K (2002) Development of chromaffin cells depends on MASH1 function. Development 129:4729–4738PubMedGoogle Scholar
  17. Huber K, Kalcheim C, Unsicker K (2009) The development of the chromaffin cell lineage from the neural crest. Auton Neurosci 151:10–16CrossRefPubMedGoogle Scholar
  18. Kimura N, Takayanagi R, Takizawa N, Itagaki E, Katabami T, Kakoi N, Rakugi H, Ikeda Y, Tanabe A, Nigawara T, Ito S, Kimura I, Naruse M (2014) Pathological grading for predicting metastasis in phaeochromocytoma and paraganglioma. Endocr Relat Cancer 21:405–414CrossRefPubMedGoogle Scholar
  19. Kumakura K, Karoum F, Guidotti A, Costa E (1980) Modulation of nicotinic receptors by opiate receptor agonists in cultured adrenal chromaffin cells. Nature 283:489–492CrossRefPubMedGoogle Scholar
  20. Langley K, Grant NJ (1999) Molecular markers of sympathoadrenal cells. Cell Tissue Res 298:185–206CrossRefPubMedGoogle Scholar
  21. Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, Janin M, Menara M, Nguyen AT, Benit P, Buffet A, Marcaillou C, Bertherat J, Amar L, Rustin P, De Reynies A, Gimenez-Roqueplo AP, Favier J (2013) SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23:739–752CrossRefPubMedGoogle Scholar
  22. Mannelli M, Maggi M, DeFeo ML, Boscaro M, Opocher G, Mantero F, Baldi E, Giusti G (1986) Opioid modulation of normal and pathological human chromaffin tissue. J Clin Endocrinol Metab 62:577–582CrossRefPubMedGoogle Scholar
  23. Phillips JK, Goodchild AK, Dubey R, Sesiashvili E, Takeda M, Chalmers J, Pilowsky PM, Lipski J (2001) Differential expression of catecholamine biosynthetic enzymes in the rat ventrolateral medulla. J Comp Neurol 432:20–34CrossRefPubMedGoogle Scholar
  24. TCGA (2014) The cancer genome atlas: charting a new course for cancer prevention, diagnosis and treatment. National Cancer Institute and National Human Genome Research Institute NIH Publication No. 14-8009Google Scholar
  25. Thompson LD (2002) Pheochromocytoma of the Adrenal gland Scaled Score (PASS) to separate benign from malignant neoplasms: a clinicopathologic and immunophenotypic study of 100 cases. Am J Surg Pathol 26:551–566CrossRefPubMedGoogle Scholar
  26. Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL (1998) The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 12:3320–3324CrossRefPubMedPubMedCentralGoogle Scholar
  27. Tillinger A, Sollas A, Serova LI, Kvetnansky R, Sabban EL (2010) Vesicular monoamine transporters (VMATs) in adrenal chromaffin cells: stress-triggered induction of VMAT2 and expression in epinephrine synthesizing cells. Cell Mol Neurobiol 30:1459–1465CrossRefPubMedGoogle Scholar
  28. Unsicker K, Huber K, Schober A, Kalcheim C (2013) Resolved and open issues in chromaffin cell development. Mech Dev 130:324–329CrossRefPubMedGoogle Scholar
  29. Welander J, Andreasson A, Brauckhoff M, Backdahl M, Larsson C, Gimm O, Soderkvist P (2014) Frequent EPAS1/HIF2alpha exons 9 and 12 mutations in non-familial pheochromocytoma. Endocr Relat Cancer 21:495–504CrossRefPubMedGoogle Scholar
  30. Witchel SF (2017) Congenital adrenal hyperplasia. J Pediatr Adolesc Gynecol.  https://doi.org/10.1016/j.jpag.2017.04.001

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Division of Endocrinology, Metabolism and Diabetes, Division of Biomedical Informatics and Personalized Medicine, Department of MedicineUniversity of Colorado School of MedicineAuroraUSA
  2. 2.The American Genome Center, Collaborative Health Initiative Research Program, Department of Anatomy, Physiology and Genetics, School of MedicineUniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations