Cell and Tissue Research

, Volume 372, Issue 1, pp 99–114 | Cite as

MiR-375 inhibits the hepatocyte growth factor-elicited migration of mesenchymal stem cells by downregulating Akt signaling

  • Lihong He
  • Xianyao Wang
  • Naixin Kang
  • Jianwei Xu
  • Nan Dai
  • Xiaojing Xu
  • Huanxiang Zhang
Regular Article


The migration of mesenchymal stem cells (MSCs) is critical for their use in cell-based therapies. Accumulating evidence suggests that microRNAs are important regulators of MSC migration. Here, we report that the expression of miR-375 was downregulated in MSCs treated with hepatocyte growth factor (HGF), which strongly stimulates the migration of these cells. Overexpression of miR-375 decreased the transfilter migration and the migration velocity of MSCs triggered by HGF. In our efforts to determine the mechanism by which miR-375 affects MSC migration, we found that miR-375 significantly inhibited the activation of Akt by downregulating its phosphorylation at T308 and S473, but had no effect on the activity of mitogen-activated protein kinases. Further, we showed that 3’phosphoinositide-dependent protein kinase-1 (PDK1), an upstream kinase necessary for full activation of Akt, was negatively regulated by miR-375 at the protein level. Moreover, miR-375 suppressed the phosphorylation of focal adhesion kinase (FAK) and paxillin, two important regulators of focal adhesion (FA) assembly and turnover, and decreased the number of FAs at cell periphery. Taken together, our results demonstrate that miR-375 inhibits HGF-elicited migration of MSCs through downregulating the expression of PDK1 and suppressing the activation of Akt, as well as influencing the tyrosine phosphorylation of FAK and paxillin and FA periphery distribution.


Mesenchymal stem cells (MSCs) miR-375 Hepatocyte growth factor (HGF) Akt signaling PDK1 Focal adhesions (FAs) Cell migration 



This work was supported by the National Natural Science Foundation of China (Grant no. 31371407, 30870642) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author contributions

LH and HZ designed the study, conducted all searches, appraised all potential studies and wrote and revised the draft manuscript and subsequent manuscripts. XW conceived and designed the study, assisted with searches, appraised relevant studies and assisted with drafting and revising the manuscript. NK assisted with searches and appraised relevant studies. JX, ND and XX assisted with drafting and revising the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. Abdallah BM, Kassem M (2008) Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther 15:109–116CrossRefPubMedGoogle Scholar
  2. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–269CrossRefPubMedGoogle Scholar
  3. Baranwal S, Alahari SK (2010) miRNA control of tumor cell invasion and metastasis. Int J Cancer 126:1283–1290PubMedPubMedCentralGoogle Scholar
  4. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192CrossRefPubMedGoogle Scholar
  5. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749CrossRefPubMedGoogle Scholar
  6. Chen S, Zheng YF, Zhang S, Jia LF, Zhou YS (2017) Promotion effects of miR-375 on the Osteogenic differentiation of human adipose-derived Mesenchymal stem cells. Stem Cell Rep 8:773–786CrossRefGoogle Scholar
  7. Cho KJ, Trzaska KA, Greco SJ, Mcardle J, Wang FS, Ye JH, Rameshwar P (2005) Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1 alpha. Stem Cells 23:383–391CrossRefPubMedGoogle Scholar
  8. Deramaudt TB, Dujardin D, Hamadi A, Noulet F, Kolli K, De Mey J, Takeda K, Ronde P (2011) FAK phosphorylation at Tyr-925 regulates cross-talk between focal adhesion turnover and cell protrusion. Mol Biol Cell 22:964–975CrossRefPubMedPubMedCentralGoogle Scholar
  9. Deramaudt TB, Dujardin D, Noulet F, Martin S, Vauchelles R, Takeda K, Ronde P (2014) Altering FAK-paxillin interactions reduces adhesion, migration and invasion processes. PLoS ONE 9:e92059CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H, Mimura T, Kitada M, Suzuki Y, Ide C (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113:1701–1710CrossRefPubMedPubMedCentralGoogle Scholar
  11. El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, Van Obberghen E (2008) miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57:2708–2717CrossRefPubMedPubMedCentralGoogle Scholar
  12. El-Hossary N, Hassanein H, El-Ghareeb AW, Issa H (2016) Intravenous vs intraperitoneal transplantation of umbilical cord mesenchymal stem cells from Wharton's jelly in the treatment of streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 121:102–111CrossRefPubMedGoogle Scholar
  13. English K, French A, Wood KJ (2010) Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell 7:431–442CrossRefPubMedGoogle Scholar
  14. Fogh BS, Multhaupt HA, Couchman JR (2014) Protein kinase C, focal adhesions and the regulation of cell migration. J Histochem Cytochem 62:172–184CrossRefPubMedPubMedCentralGoogle Scholar
  15. Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V, Fiaccavento R, Carotenuto F, De Vito P, Baldini PM, Prat M, Di Nardo P (2006) Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells 24:23–33CrossRefPubMedGoogle Scholar
  16. Gagliardi PA, Di Blasio L, Primo L (2015) PDK1: A signaling hub for cell migration and tumor invasion. Biochim Biophys Acta 1856:178–188PubMedGoogle Scholar
  17. Gao T, Furnari F, Newton AC (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 18:13–24CrossRefPubMedGoogle Scholar
  18. Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A, Taccioli C, Pichiorri F, Alder H, Secchiero P, Gasparini P, Gonelli A, Costinean S, Acunzo M, Condorelli G, Croce CM (2009) miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16:498–509CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hamadi A, Bouali M, Dontenwill M, Stoeckel H, Takeda K, Ronde P (2005) Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. J Cell Sci 118:4415–4425CrossRefPubMedGoogle Scholar
  20. Hart M, Nolte E, Wach S, Szczyrba J, Taubert H, Rau TT, Hartmann A, Grasser FA, Wullich B (2014) Comparative microRNA profiling of prostate carcinomas with increasing tumor stage by deep sequencing. Mol Cancer Res 12:250–263CrossRefPubMedGoogle Scholar
  21. Higuchi M, Kihara R, Okazaki T, Aoki I, Suetsugu S, Gotoh Y (2013) Akt1 Promotes focal adhesion disassembly and cell motility through phosphorylation of FAK in growth factor-stimulated cells. J Cell Sci 126:745–755CrossRefPubMedGoogle Scholar
  22. Huang S, He X (2010) microRNAs: tiny RNA molecules, huge driving forces to move the cell. Protein Cell 1:916–926CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377:539–544CrossRefPubMedGoogle Scholar
  24. Im HI, Kenny PJ (2012) MicroRNAs in neuronal function and dysfunction. Trends Neurosci 35:325–334CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kinoshita T, Hanazawa T, Nohata N, Okamoto Y, Seki N (2012) The functional significance of microRNA-375 in human squamous cell carcinoma: aberrant expression and effects on cancer pathways. J Hum Genet 57:556–563CrossRefPubMedGoogle Scholar
  26. Kong KL, Kwong DL, Chan TH, Law SY, Chen L, Li Y, Qin YR, Guan XY (2012) MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor. Gut 61:33–42CrossRefPubMedGoogle Scholar
  27. Kwon JS, Kim SW, Kwon DY, Park SH, Son AR, Kim JH, Kim MS (2014) In vivo osteogenic differentiation of human turbinate mesenchymal stem cells in an injectable in situ-forming hydrogel. Biomaterials 35:5337–5346CrossRefPubMedGoogle Scholar
  28. Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, Zheng X (2009) miR-34a inhibits migration and invasion by down-regulation of c-met expression in human hepatocellular carcinoma cells. Cancer Lett 275:44–53CrossRefPubMedGoogle Scholar
  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  30. Luk JM, Wang PP, Lee CK, Wang JH, Fan ST (2005) Hepatic potential of bone marrow stromal cells: development of in vitro co-culture and intra-portal transplantation models. J Immunol Methods 305:39–47CrossRefPubMedGoogle Scholar
  31. Marconi S, Castiglione G, Turano E, Bissolotti G, Angiari S, Farinazzo A, Constantin G, Bedogni G, Bedogni A, Bonetti B (2012) Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Eng Part A 18:1264–1272CrossRefPubMedGoogle Scholar
  32. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658CrossRefPubMedPubMedCentralGoogle Scholar
  33. Millward TA, Zolnierowicz S, Hemmings BA (1999) Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci 24:186–191CrossRefPubMedGoogle Scholar
  34. Mora A, Davies AM, Bertrand L, Sharif I, Budas GR, Jovanovic S, Mouton V, Kahn CR, Lucocq JM, Gray GA, Jovanovic A, Alessi DR (2003) Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO J 22:4666–4676CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mora A, Lipina C, Tronche F, Sutherland C, Alessi DR (2005) Deficiency of PDK1 in liver results in glucose intolerance, impairment of insulin-regulated gene expression and liver failure. Biochem J 385:639–648CrossRefPubMedPubMedCentralGoogle Scholar
  36. Murphy MB, Moncivais K, Caplan AI (2013) Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 45:e54CrossRefPubMedPubMedCentralGoogle Scholar
  37. Parr AM, Tator CH, Keating A (2007) Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 40:609–619CrossRefPubMedGoogle Scholar
  38. Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11:633–643CrossRefPubMedPubMedCentralGoogle Scholar
  39. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, Gray NS, Sabatini DM (2009) DEPTOR is an mTOR inhibitor frequently Overexpressed in multiple myeloma cells and required for their survival. Cell 137:873–886CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMedGoogle Scholar
  41. Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, Herault O, Charbord P, Domenech J (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25:1737–1745CrossRefPubMedGoogle Scholar
  42. Ryu CH, Park SA, Kim SM, Lim JY, Jeong CH, Jun JA, Oh JH, Park SH, Oh WI, Jeun SS (2010) Migration of human umbilical cord blood mesenchymal stem cells mediated by stromal cell-derived factor-1/CXCR4 axis via Akt, ERK, and p38 signal transduction pathways. Biochem Biophys Res Commun 398:105–110CrossRefPubMedGoogle Scholar
  43. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101CrossRefPubMedGoogle Scholar
  44. Schenk S, Mal N, Finan A, Zhang M, Kiedrowski M, Popovic Z, Mccarthy PM, Penn MS (2007) Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem Cells 25:245–251CrossRefPubMedGoogle Scholar
  45. Song J, Kim D, Chun CH, Jin EJ (2013) MicroRNA-375, a new regulator of cadherin-7, suppresses the migration of chondrogenic progenitors. Cell Signal 25:698–706CrossRefPubMedGoogle Scholar
  46. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106:419–427CrossRefPubMedGoogle Scholar
  47. Stock P, Bruckner S, Ebensing S, Hempel M, Dollinger MM, Christ B (2010) The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver. Nat Protoc 5:617–627CrossRefPubMedGoogle Scholar
  48. Tamura M, Gu J, Danen EH, Takino T, Miyamoto S, Yamada KM (1999) PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 274:20693–20703CrossRefPubMedGoogle Scholar
  49. Tome M, Lopez-Romero P, Albo C, Sepulveda JC, Fernandez-Gutierrez B, Dopazo A, Bernad A, Gonzalez MA (2011) miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ 18:985–995CrossRefPubMedGoogle Scholar
  50. Tureckova J, Vojtechova M, Krausova M, Sloncova E, Korinek V (2009) Focal adhesion kinase functions as an akt downstream target in migration of colorectal cancer cells. Transl Oncol 2:281–290CrossRefPubMedPubMedCentralGoogle Scholar
  51. Volberg T, Romer L, Zamir E, Geiger B (2001) pp60(C-src) and related tyrosine kinases: a role in the assembly and reorganization of matrix adhesions. J Cell Sci 114:2279–2289PubMedGoogle Scholar
  52. Wang H, Wang X, Qu J, Yue Q, Hu Y, Zhang H (2015) VEGF enhances the migration of MSCs in neural differentiation by regulating focal adhesion turnover. J Cell Physiol 230:2728–2742CrossRefPubMedGoogle Scholar
  53. Wang M, Liang C, Hu H, Zhou L, Xu B, Wang X, Han Y, Nie Y, Jia S, Liang J, Wu K (2016) Intraperitoneal injection (IP), intravenous injection (IV) or anal injection (AI)? Best way for mesenchymal stem cells transplantation for colitis. Sci Rep 6:30696CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wang S, Basson MD (2011) Akt directly regulates focal adhesion kinase through association and serine phosphorylation: implication for pressure-induced colon cancer metastasis. Am J Physiol Cell Physiol 300:C657–C670CrossRefPubMedPubMedCentralGoogle Scholar
  55. Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, Horwitz AF (2004) FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6:154–161CrossRefPubMedGoogle Scholar
  56. Williams MR, Arthur JS, Balendran A, Van Der Kaay J, Poli V, Cohen P, Alessi DR (2000) The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Curr Biol 10:439–448CrossRefPubMedGoogle Scholar
  57. Xia H, Nho RS, Kahm J, Kleidon J, Henke CA (2004) Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway. J Biol Chem 279:33024–33034CrossRefPubMedGoogle Scholar
  58. Xu X, Xie G, Hu Y, Li X, Huang P, Zhang H (2014) Neural differentiation of mesenchymal stem cells influences their chemotactic responses to stromal cell-derived factor-1alpha. Cell Mol Neurobiol 34:1047–1058CrossRefPubMedGoogle Scholar
  59. Yan D, Dong Xda E, Chen X, Wang L, Lu C, Wang J, Qu J, Tu L (2009) MicroRNA-1/206 targets c-met and inhibits rhabdomyosarcoma development. J Biol Chem 284:29596–29604CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zaidel-Bar R, Ballestrem C, Kam Z, Geiger B (2003) Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J Cell Sci 116:4605–4613CrossRefPubMedGoogle Scholar
  61. Zaidel-Bar R, Milo R, Kam Z, Geiger B (2007) A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J Cell Sci 120:137–148CrossRefPubMedGoogle Scholar
  62. Zhang F, Jing S, Ren T, Lin J (2013) MicroRNA-10b promotes the migration of mouse bone marrow-derived mesenchymal stem cells and downregulates the expression of E-cadherin. Mol Med Rep 8:1084–1088CrossRefPubMedGoogle Scholar
  63. Zheng B, Wang C, He L, Xu X, Qu J, Hu J, Zhang H (2013) Neural differentiation of mesenchymal stem cells influences chemotactic responses to HGF. J Cell Physiol 228:149–162CrossRefPubMedGoogle Scholar
  64. Zhou J, Song S, He S, Zhu X, Zhang Y, Yi B, Zhang B, Qin G, Li D (2014) MicroRNA-375 targets PDK1 in pancreatic carcinoma and suppresses cell growth through the Akt signaling pathway. Int J Mol Med 33:950–956CrossRefPubMedGoogle Scholar
  65. Zhu A, Kang N, He L, Li X, Xu X, Zhang H (2016) MiR-221 and miR-26b regulate Chemotactic migration of MSCs toward HGF through activation of Akt and FAK. J Cell Biochem 117:1370–1383CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lihong He
    • 1
  • Xianyao Wang
    • 1
  • Naixin Kang
    • 1
  • Jianwei Xu
    • 1
    • 2
  • Nan Dai
    • 1
  • Xiaojing Xu
    • 1
  • Huanxiang Zhang
    • 1
  1. 1.Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell ResearchMedical College of Soochow UniversitySuzhouChina
  2. 2.Tissue Engineering and Stem Cell Research CenterGuizhou Medical UniversityGuiyangChina

Personalised recommendations