Skip to main content

Advertisement

Log in

Neutrophils in viral infection

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Neutrophils are the first wave of recruited immune cells to sites of injury or infection and are crucial players in controlling bacterial and fungal infections. Although the role of neutrophils during bacterial or fungal infections is well understood, their impact on antiviral immunity is much less studied. Furthermore, neutrophil function in tumor pathogenesis and cancer treatment has recently received much attention, particularly within the context of oncolytic virus infection where neutrophils produce antitumor cytokines and enhance oncolysis. In this review, multiple functions of neutrophils in viral infections and immunity are discussed. Understanding the role of neutrophils during viral infection may provide insight into the pathogenesis of virus infections and the outcome of virus-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CMV:

Cytomegalovirus

DC:

Dendritic cell

EBV:

Epstein–Barr virus

EHEC:

Enterohemorrhagic Escherichia. coli

G-CSF:

Granulocyte colony-stimulating factor

HCMV:

Human cytomegalovirus

HIV:

Human immunodeficiency virus

HSV:

Herpes simplex virus

IAV:

Influenza A virus

IFN:

Interferon

IL:

Interleukin

IVM:

Intravital microscopy

LCMV:

Lymphocytic choriomeningitis virus

MPO:

Myeloperoxidase

NET:

Neutrophil extracellular trap

OPN:

Osteopontin

OVT:

Oncolytic virus therapy

PRR:

Pattern recognition receptor

ROS:

Reactive oxygen species

RSV:

Respiratory syncytial virus

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TREM-1:

Triggering receptors expressed on myeloid cells-1

VSV:

Vesicular stomatitis virus

WNV:

West Nile virus

References

  • Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489

    Article  CAS  PubMed  Google Scholar 

  • Arruda MA, Barja-Fidalgo C (2009) NADPH oxidase activity: In the crossroad of neutrophil life and death. Front Biosci 14:4546–4556

    Article  CAS  Google Scholar 

  • Assinger A (2014) Platelets and infection - an emerging role of platelets in viral infection. Front Immunol 5:649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai F, Kong K-F, Dai J, Qian F, Zhang L, Brown CR, Fikrig E, Montgomery RR (2010) A paradoxical role for neutrophils in the pathogenesis of west nile virus. J Infect Dis 202:1804–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bainton DF, Ullyot JL, Farquhar MG (1971) The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med 134:907–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaulieu AD, Paquin R, Gosselin J (1995) Epstein-Barr virus modulates de novo protein synthesis in human neutrophils. Blood 86:2789–2798

    CAS  PubMed  Google Scholar 

  • Beauvillain C, Cunin P, Doni A, Scotet M, Jaillon S, Loiry M-L, Magistrelli G, Masternak K, Chevailler A, Delneste Y, Jeannin P (2011) CCR7 is involved in the migration of neutrophils to lymph nodes. Blood 117:1196–1204

    Article  CAS  PubMed  Google Scholar 

  • Bielefeldt-Ohmann H, Smirnova NP, Tolnay A-E, Webb BT, Antoniazzi AQ, van Campen H, Hansen TR (2012) Neuro-invasion by a “Trojan Horse” strategy and vasculopathy during intrauterine flavivirus infection. Int J Exp Pathol 93:24–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradley LM, Douglass MF, Chatterjee D, Akira S, Baaten BJG (2012) Matrix metalloprotease 9 mediates neutrophil migration into the airways in response to influenza virus-induced toll-like receptor signaling. PLoS Pathog 8:e1002641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitbach CJ, Paterson JM, Lemay CG, Falls TJ, McGuire A, Parato KA, Stojdl DF, Daneshmand M, Speth K, Kirn D, McCart JA, Atkins H, Bell JC (2007) Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther 15:1686–1693

    Article  CAS  PubMed  Google Scholar 

  • Cassatella MA (1999) Neutrophil-derived proteins: selling cytokines by the pound. Adv Immunol 73:369–509

  • Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A (1992) Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80:2012–2020

    CAS  PubMed  Google Scholar 

  • Cortjens B, de Boer OJ, de Jong R, Antonis AF, Sabogal Piñeros YS, Lutter R, van Woensel JB, Bem RA (2016) Neutrophil extracellular traps cause airway obstruction during respiratory syncytial virus disease. J Pathol 238:401–411

    Article  CAS  PubMed  Google Scholar 

  • Currie SM, Gwyer Findlay E, McFarlane AJ, Fitch PM, Böttcher B, Colegrave N, Paras A, Jozwik A, Chiu C, Schwarze J, Davidson DJ (2016) Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. J Immunol 196:2699–2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daher KA, Selsted ME, Lehrer RI (1986) Direct inactivation of viruses by human granulocyte defensins. J Virol 60:1068–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dale DC, Boxer L, Liles WC (2008) The phagocytes: neutrophils and monocytes. Blood 112:935–945

    Article  CAS  PubMed  Google Scholar 

  • Dejucq N, Jégou B (2001) Viruses in the mammalian male genital tract and their effects on the reproductive system. Microbiol Mol Biol Rev 65:208–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy D, Perrin H, Abadie V, Benhabiles N, Boissonnas A, Liard C, Descours B, Reboulleau D, Bonduelle O, Verrier B, Van Rooijen N, Combadière C, Combadière B (2012) Neutrophils transport antigen from the dermis to the bone marrow, initiating a source of memory CD8+ T cells. Immunity 37:917–929

    Article  CAS  PubMed  Google Scholar 

  • Faden H, Hong JJ, Ogra PL (1984) Interaction of polymorphonuclear leukocytes and viruses in humans: adherence of polymorphonuclear leukocytes to respiratory syncytial virus-infected cells. J Virol 52:16–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feigin RD, Shackelford PG (1973) Value of repeat lumbar puncture in the differential diagnosis of meningitis. N Engl J Med 289:571–574

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Tao L, Rivera A, Xu H, Zhang X (2011) Virotherapy induces massive infiltration of neutrophils in a subset of tumors defined by a strong endogenous interferon response activity. Cancer Gene Ther 18:785–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galani IE, Andreakos E (2015) Neutrophils in viral infections: Current concepts and caveats. J Leukoc Biol 98:557–564

    Article  CAS  PubMed  Google Scholar 

  • Giraldo DM, Hernandez JC, Urcuqui-Inchima S (2016) HIV-1-derived single-stranded RNA acts as activator of human neutrophils. Immunol Res 64:1185–1194

    Article  CAS  PubMed  Google Scholar 

  • Grundy JE, Lawson KM, MacCormac LP, Fletcher JM, Yong KL (1998) Cytomegalovirus-infected endothelial cells recruit neutrophils by the secretion of C-X-C chemokines and transmit virus by direct neutrophil-endothelial cell contact and during neutrophil transendothelial migration. J Infect Dis 177:1465–1474

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Xie Z, Gao Z, Liu J, Korteweg C, Ye J, Lau LT, Lu J, Gao Z, Zhang B, McNutt MA, Lu M, Anderson VM, Gong E, Yu ACH, Lipkin WI (2007) H5N1 infection of the respiratory tract and beyond: a molecular pathology study. Lancet 370:1137–1145

    Article  CAS  PubMed  Google Scholar 

  • Hartshorn KL, Liou LS, White MR, Kazhdan MM, Tauber JL, Tauber AI (1995) Neutrophil deactivation by influenza A virus. Role of hemagglutinin binding to specific sialic acid-bearing cellular proteins. J Immunol 154:3952–3960

    CAS  PubMed  Google Scholar 

  • Hashimoto Y, Moki T, Takizawa T, Shiratsuchi A, Nakanishi Y (2007) Evidence for phagocytosis of influenza virus-infected, apoptotic cells by neutrophils and macrophages in mice. J Immunol 178:2448–2457

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Hooper LC, Okuno T, Takada Y, Hooks JJ (2012) Inhibition of HSV-1 by chemoattracted neutrophils: supernatants of corneal epithelial cells (HCE) and macrophages (THP-1) treated with virus components chemoattract neutrophils (PMN), and supernatants of PMN treated with these conditioned media inhibit viral growth. Arch Virol 157:1377–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haynes LM, Moore DD, Kurt-Jones EA, Finberg RW, Anderson LJ, Tripp RA (2001) Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J Virol 75:10730–10737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazrati E, Galen B, Lu W, Wang W, Ouyang Y, Keller MJ, Lehrer RI, Herold BC (2006) Human α- and β-defensins block multiple steps in herpes simplex virus infection. J Immunol 177:8658–8666

    Article  CAS  PubMed  Google Scholar 

  • Heo J, Dogra P, Masi TJ, Pitt EA, de Kruijf P, Smit MJ, Sparer TE (2015) Novel human cytomegalovirus viral chemokines, vCXCL-1s, display functional selectivity for neutrophil signaling and function. J Immunol 195:227–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holl EK, Brown MC, Boczkowski D, McNamara MA, George DJ, Bigner DD, Gromeier M, Nair SK (2016) Recombinant oncolytic poliovirus, PVSRIPO, has potent cytotoxic and innate inflammatory effects, mediating therapy in human breast and prostate cancer xenograft models. Oncotarget 7:79828–79841

    Article  PubMed  PubMed Central  Google Scholar 

  • Honke N, Shaabani N, Cadeddu G, Sorg UR, Zhang D-E, Trilling M, Klingel K, Sauter M, Kandolf R, Gailus N, van Rooijen N, Burkart C, Baldus SE, Grusdat M, Löhning M, Hengel H, Pfeffer K, Tanaka M, Häussinger D, Recher M, Lang PA, Lang KS (2011) Enforced viral replication activates adaptive immunity and is essential for the control of a cytopathic virus. Nat Immunol 13:51–57

    Article  PubMed  CAS  Google Scholar 

  • Hou W, Gibbs JS, Lu X, Brooke CB, Roy D, Modlin RL, Bennink JR, Yewdell JW (2012) Viral infection triggers rapid differentiation of human blood monocytes into dendritic cells. Blood 119:3128–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell MD, Jones JF, Kisich KO, Streib JE, Gallo RL, Leung DYM (2004) Selective killing of vaccinia virus by LL-37: Implications for eczema vaccinatum. J Immunol 172:1763–1767

    Article  CAS  PubMed  Google Scholar 

  • Hufford MM, Richardson G, Zhou H, Manicassamy B, García-Sastre A, Enelow RI, Braciale TJ (2012) Influenza-infected neutrophils within the infected lungs act as antigen presenting cells for anti-viral CD8+ T cells. PLoS ONE 7:e46581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, Ermolaeva M, Veldhuizen R, Leung YHC, Wang H, Liu H, Sun Y, Pasparakis M, Kopf M, Mech C, Bavari S, Peiris JSM, Slutsky AS, Akira S, Hultqvist M, Holmdahl R, Nicholls J, Jiang C, Binder CJ, Penninger JM (2008) Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133:235–249

    Article  CAS  PubMed  Google Scholar 

  • Jenne CN, Wong CHY, Zemp FJ, McDonald B, Rahman MM, Forsyth PA, McFadden G, Kubes P (2013) Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe 13:169–180

    Article  CAS  PubMed  Google Scholar 

  • Klebanoff SJ, Coombs RW (1992) Viricidal effect of polymorphonuclear leukocytes on human immunodeficiency virus-1. Role of the myeloperoxidase system. J Clin Invest 89:2014–2017

    Article  CAS  PubMed  Google Scholar 

  • Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175

    Article  CAS  PubMed  Google Scholar 

  • Koupenova M, Vitseva O, MacKay CR, Beaulieu LM, Benjamin EJ, Mick E, Kurt-Jones EA, Ravid K, Freedman JE (2014) Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 124:791–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, Walsh EE, Freeman MW, Golenbock DT, Anderson LJ, Finberg RW (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1:398–401

    Article  CAS  PubMed  Google Scholar 

  • Lang PA, Xu HC, Grusdat M, McIlwain DR, Pandyra AA, Harris IS, Shaabani N, Honke N, Kumar Maney S, Lang E, Pozdeev VI, Recher M, Odermatt B, Brenner D, Häussinger D, Ohashi PS, Hengartner H, Zinkernagel RM, Mak TW, Lang KS (2013) Reactive oxygen species delay control of lymphocytic choriomeningitis virus. Cell Death Differ 20:649–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larochelle B, Flamand L, Gourde P, Beauchamp D, Gosselin J (1998) Epstein-Barr virus infects and induces apoptosis in human neutrophils. Blood 92:291–299

    CAS  PubMed  Google Scholar 

  • Laskay T, van Zandbergen G, Solbach W (2008) Neutrophil granulocytes as host cells and transport vehicles for intracellular pathogens: Apoptosis as infection-promoting factor. Immunobiology 213:183–191

    Article  CAS  PubMed  Google Scholar 

  • Lim K, Hyun Y-M, Lambert-Emo K, Capece T, Bae S, Miller R, Topham DJ, Kim M (2015) Neutrophil trails guide influenza-specific CD8+ T cells in the airways. Science 349(80):aaa4352–aaa4352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindemans CA, Coffer PJ, IMM S, de Graaff PM, Kimpen JL, Koenderman L (2006) Respiratory Syncytial Virus Inhibits Granulocyte Apoptosis through a Phosphatidylinositol 3-Kinase and NF-κB-Dependent Mechanism. J Immunol 176:5529–5537

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531

    Article  CAS  PubMed  Google Scholar 

  • Mohamadzadeh M, Coberley SS, Olinger GG, Kalina WV, Ruthel G, Fuller CL, Swenson DL, Pratt WD, Kuhns DB, Schmaljohn AL (2006) Activation of triggering receptor expressed on myeloid cells-1 on human neutrophils by Marburg and Ebola viruses. J Virol 80:7235–7244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narasaraju T, Yang E, Samy RP, Ng HH, Poh WP, Liew A-A, Phoon MC, van Rooijen N, Chow VT (2011) Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol 179:199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayana Moorthy A, Narasaraju T, Rai P, Perumalsamy R, Tan KB, Wang S, Engelward B, Chow VTK (2013) In vivo and in vitro studies on the roles of neutrophil extracellular traps during secondary pneumococcal pneumonia after primary pulmonary influenza infection. Front Immunol 4:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen A, Ho L, Wan Y (2014) Chemotherapy and Oncolytic Virotherapy: Advanced Tactics in the War against Cancer. Front Oncol 4:1–10

    Google Scholar 

  • O’Donnell JA, Kennedy CL, Pellegrini M, Nowell CJ, Zhang J-G, O’Reilly LA, Cengia L, Dias S, Masters SL, Hartland EL, Roberts AW, Gerlic M, Croker BA (2015) Fas regulates neutrophil lifespan during viral and bacterial infection. J Leukoc Biol 97:321–326

    Article  PubMed  CAS  Google Scholar 

  • Ocana A, Nieto-Jiménez C, Pandiella A, Templeton AJ (2017) Neutrophils in cancer: prognostic role and therapeutic strategies. Mol Cancer 16:137

    Article  PubMed  PubMed Central  Google Scholar 

  • Okrent DG, Lichtenstein AK, Ganz T (1990) Direct cytotoxicity of polymorphonuclear leukocyte granule proteins to human lung-derived cells and endothelial cells. Am Rev Respir Dis 141:179–185

    Article  CAS  PubMed  Google Scholar 

  • Paiva CN, Bozza MT (2014) Are reactive oxygen species always detrimental to pathogens? Antioxid Redox Signal 20:1000–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul AM, Acharya D, Duty L, Thompson EA, Le L, Stokic DS, Leis AA, Bai F (2017) Osteopontin facilitates West Nile virus neuroinvasion via neutrophil “Trojan horse” transport. Sci Rep 7:4722

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrone LA, Plowden JK, García-Sastre A, Katz JM, Tumpey TM (2008) H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog 4:e1000115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peterhans E (1997) Reactive oxygen species and nitric oxide in viral diseases. Biol Trace Elem Res 56:107–116

    Article  CAS  PubMed  Google Scholar 

  • Petri B, Phillipson M, Kubes P (2008) The physiology of leukocyte recruitment: An in vivo perspective. J Immunol 180:6439–6446

    Article  CAS  PubMed  Google Scholar 

  • Piguet V, Steinman RM (2007) The interaction of HIV with dendritic cells: outcomes and pathways. Trends Immunol 28:503–510

    Article  CAS  PubMed  Google Scholar 

  • Prince LR, Whyte MK, Sabroe I, Parker LC (2011) The role of TLRs in neutrophil activation. Curr Opin Pharmacol 11:397–403

    Article  CAS  PubMed  Google Scholar 

  • Raftery MJ, Lalwani P, Krautkrӓmer E, Peters T, Scharffetter-Kochanek K, Krüger R, Hofmann J, Seeger K, Krüger DH, Schönrich G (2014) Β2 integrin mediates hantavirus-induced release of neutrophil extracellular traps. J Exp Med 211:1485–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratcliffe DR, Nolin SL, Cramer EB (1988) Neutrophil interaction with influenza-infected epithelial cells. Blood 72:142–149

    CAS  PubMed  Google Scholar 

  • Ratcliffe D, Migliorisi G, Cramer E (1992) Translocation of influenza virus by migrating neutrophils. Cell Mol Biol 38:63–70

    CAS  PubMed  Google Scholar 

  • Reading PC, Bozza S, Gilbertson B, Tate M, Moretti S, Job ER, Crouch EC, Brooks AG, Brown LE, Bottazzi B, Romani L, Mantovani A (2008) Antiviral activity of the long chain pentraxin PTX3 against influenza viruses. J Immunol 180:3391–3398

    Article  CAS  PubMed  Google Scholar 

  • Ribbeck K (2009) Do viruses use vectors to penetrate mucus barriers? Biosci Hypotheses 2:359–362

    Article  Google Scholar 

  • Rothwell SW, Wright DG (1994) Characterization of influenza A virus binding sites on human neutrophils. J Immunol 152:2358–2367

    CAS  PubMed  Google Scholar 

  • Sabroe I, Dower SK, Whyte MKB (2005) The role of toll-like receptors in the regulation of neutrophil migration, activation, and apoptosis. Clin Infect Dis 41:S421–S426

    Article  CAS  PubMed  Google Scholar 

  • Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, Uehata T, Iwasaki H, Omori H, Yamaoka S, Yamamoto N, Akira S (2012) Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12:109–116

    Article  CAS  PubMed  Google Scholar 

  • Sandra Tjabringa G, Rabe KF, Hiemstra PS (2005) The human cathelicidin LL-37: a multifunctional peptide involved in infection and inflammation in the lung. Pulm Pharmacol Ther 18:321–327

    Article  CAS  PubMed  Google Scholar 

  • Savard M, Gosselin J (2006) Epstein-Barr virus immunossuppression of innate immunity mediated by phagocytes. Virus Res 119:134–145

    Article  CAS  PubMed  Google Scholar 

  • Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203

    Article  CAS  PubMed  Google Scholar 

  • Schönrich G, Raftery MJ (2015) Dendritic cells as Achilles’ heel and Trojan horse during varicella zoster virus infection. Front Microbiol 6:417

    PubMed  PubMed Central  Google Scholar 

  • Schönrich G, Raftery MJ (2016) Neutrophil extracellular traps go viral. Front Immunol 7:11–14

    Article  Google Scholar 

  • Shirey KA, Lai W, Scott AJ, Lipsky M, Mistry P, Pletneva LM, Karp CL, McAlees J, Gioannini TL, Weiss J, Chen WH, Ernst RK, Rossignol DP, Gusovsky F, Blanco JCG, Vogel SN (2013) The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 497:498–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skarman PJ, Rahbar A, Xie X, Söderberg-Nauclér C (2006) Induction of polymorphonuclear leukocyte response by human cytomegalovirus. Microbes Infect 8:1592–1601

    Article  CAS  PubMed  Google Scholar 

  • Skulachev VP (1998) Possible role of reactive oxygen species in antiviral defense. Biochemistry (Mosc) 63:1438–1440

    CAS  Google Scholar 

  • Smith P, Wang S-Z, Dowling K, Forsyth K (2001) Leucocyte populations in respiratory syncytial virus-induced bronchiolitis. J Paediatr Child Health 37:146–151

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Khanna N, Saxena SK, Singh A, Mathur A, Dhole TN (1999) Degradation of Japanese encephalitis virus by neutrophils. Int J Exp Pathol 80:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stacey MA, Marsden M, Pham NTA, Clare S, Dolton G, Stack G, Jones E, Klenerman P, Gallimore AM, Taylor PR, Snelgrove RJ, Lawley TD, Dougan G, Benedict CA, Jones SA, Wilkinson GWG, Humphreys IR (2014) Neutrophils recruited by IL-22 in peripheral tissues function as TRAIL-dependent antiviral effectors against MCMV. Cell Host Microbe 15:471–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens DA, Ferrington RA, Jordan GW, Merigan TC (1975) Cellular events in zoster vesicles: relation to clinical course and immune parameters. J Infect Dis 131:509–515

    Article  CAS  PubMed  Google Scholar 

  • Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N, Bell JC (2000) Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 6:821–825

    Article  CAS  PubMed  Google Scholar 

  • Taipale K, Liikanen I, Koski A, Heiskanen R, Kanerva A, Hemminki O, Oksanen M, Grönberg-Vähä-Koskela S, Hemminki K, Joensuu T, Hemminki A (2016) Predictive and prognostic clinical variables in cancer patients treated with adenoviral oncolytic immunotherapy. Mol Ther 24:1323–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tate MD, Brooks AG, Reading PC (2008) The role of neutrophils in the upper and lower respiratory tract during influenza virus infection of mice. Respir Res 9:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tate MD, Deng Y-M, Jones JE, Anderson GP, Brooks AG, Reading PC (2009) Neutrophils ameliorate lung injury and the development of severe disease during influenza infection. J Immunol 183:7441–7450

    Article  CAS  PubMed  Google Scholar 

  • Tate MD, Ioannidis LJ, Croker B, Brown LE, Brooks AG, Reading PC (2011a) The role of neutrophils during mild and severe influenza virus infections of mice. PLoS ONE 6:e17618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tate MD, Schilter HC, Brooks AG, Reading PC (2011b) Responses of Mouse Airway Epithelial Cells and Alveolar Macrophages to Virulent and Avirulent Strains of Influenza A Virus. Viral Immunol 24:77–88

    Article  CAS  PubMed  Google Scholar 

  • Tate MD, Brooks AG, Reading PC, Mintern JD (2012) Neutrophils sustain effective CD8+ T-cell responses in the respiratory tract following influenza infection. Immunol Cell Biol 90:197–205

    Article  CAS  PubMed  Google Scholar 

  • Tripathi S, Verma A, Kim E-J, White MR, Hartshorn KL (2014) LL-37 modulates human neutrophil responses to influenza A virus. J Leukoc Biol 96:931–938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsun A, Miao XN, Wang CM, Yu DC (2016) Oncolytic immunotherapy for treatment of cancer. In: Zhang S. (eds) Progress in cancer immunotherapy. Advances in Experimental Medicine and Biology, vol 909. Springer, Dordrecht, pp 241–283. https://doi.org/10.1007/978-94-017-7555-7_5

  • Tumpey TM, Garcia-Sastre A, Taubenberger JK, Palese P, Swayne DE, Pantin-Jackwood MJ, Schultz-Cherry S, Solorzano A, Van Rooijen N, Katz JM, Basler CF (2005) Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J Virol 79:14933–14944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzartos JS, Khan G, Vossenkamper A, Cruz-Sadaba M, Lonardi S, Sefia E, Meager A, Elia A, Middeldorp JM, Clemens M, Farrell PJ, Giovannoni G, Meier UC (2012) Association of innate immune activation with latent Epstein-Barr virus in active MS lesions. Neurology 78:15–23

    Article  CAS  PubMed  Google Scholar 

  • Van Strijp JA, Van Kessel KP, van der Tol ME, Fluit AC, Snippe H, Verhoef J (1989) Phagocytosis of herpes simplex virus by human granulocytes and monocytes. Arch Virol 104:287–298

    Article  PubMed  Google Scholar 

  • Vidy A, Maisonnasse P, Da Costa B, Delmas B, Chevalier C, Le Goffic R (2016) The influenza virus protein PB1-F2 increases viral pathogenesis through neutrophil recruitment and NK cells inhibition. PLoS ONE 11:e0165361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang W, Owen SM, Rudolph DL, Cole AM, Hong T, Waring AJ, Lal RB, Lehrer RI (2004) Activity of α- and θ-defensins against primary isolates of HIV-1. J Immunol 173:515–520

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu X, Zhang Y, Wang Z, Zhu G, Han G, Chen G, Hou C, Wang T, Ma N, Shen B, Li Y, Xiao H, Wang R (2016) Interleukin (IL)-39 [IL-23p19/Epstein-Barr virus-induced 3 (Ebi3)] induces differentiation/expansion of neutrophils in lupus-prone mice. Clin Exp Immunol 186:144–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe Y, Hashimoto Y, Shiratsuchi A, Takizawa T, Nakanishi Y (2005) Augmentation of fatality of influenza in mice by inhibition of phagocytosis. Biochem Biophys Res Commun 337:881–886

    Article  CAS  PubMed  Google Scholar 

  • Wojtasiak M, Pickett DL, Tate MD, Londrigan SL, Bedoui S, Brooks AG, Reading PC (2010) Depletion of Gr-1+, but not Ly6G+, immune cells exacerbates virus replication and disease in an intranasal model of herpes simplex virus type 1 infection. J Gen Virol 91:2158–2166

    Article  CAS  PubMed  Google Scholar 

  • Wongthida P, Diaz RM, Galivo F, Kottke T, Thompson J, Pulido J, Pavelko K, Pease L, Melcher A, Vile R (2010) Type III IFN interleukin-28 mediates the antitumor efficacy of oncolytic virus VSV in immune-competent mouse models of cancer. Cancer Res 70:4539–4549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi M, Yoshioka T, Yamakawa T, Maeda M, Shimizu H, Fujita Y, Maruyama S, Ito Y, Matsuo S (2014) Anti-neutrophil cytoplasmic antibody-associated vasculitis associated with infectious mononucleosis due to primary Epstein-Barr virus infection: report of three cases. Clin Kidney J 7:45–48

    Article  PubMed  Google Scholar 

  • Yang CW, Strong BSI, Miller MJ, Unanue ER (2010) Neutrophils influence the level of antigen presentation during the immune response to protein antigens in adjuvants. J Immunol 185:2927–2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Patel B, Dey A, Ghorani E, Rai L, Elham M, Castleton AZ, Fielding AK (2012) Attenuated, oncolytic, but not wild-type measles virus infection has pleiotropic effects on human neutrophil function. J Immunol 188:1002–1010

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Lu M, Lau LT, Lu J, Gao Z, Liu J, Yu ACH, Cao Q, Ye J, McNutt MA, Gu J (2008) Neutrophils may be a vehicle for viral replication and dissemination in human H5N1 avian influenza. Clin Infect Dis 47:1575–1578

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Craig N. Jenne or Seok-Joo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumenko, V., Turk, M., Jenne, C.N. et al. Neutrophils in viral infection. Cell Tissue Res 371, 505–516 (2018). https://doi.org/10.1007/s00441-017-2763-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2763-0

Keywords

Navigation