Cell and Tissue Research

, Volume 372, Issue 1, pp 115–133 | Cite as

FSP1-specific SMAD2 knockout in renal tubular, endothelial, and interstitial cells reduces fibrosis and epithelial-to-mesenchymal transition in murine STZ-induced diabetic nephropathy

  • Ivonne Loeffler
  • Marita Liebisch
  • Stefanie Allert
  • Elke Kunisch
  • Raimund W. Kinne
  • Gunter Wolf
Regular Article
  • 369 Downloads

Abstract

Extracellular matrix deposition during tubulointerstitial fibrosis (TIF), a central pathological process in patients with diabetic nephropathy (DN), is driven by locally activated, disease-relevant myofibroblasts. Myofibroblasts can arise from various cellular sources, e.g., tubular epithelial cells via a process named epithelial-to-mesenchymal transition (EMT). Transforming growth factor beta 1 (TGF-β1) and its downstream Smad signaling play a critical role in both TIF and EMT. Whereas Smad3 is one central mediator, the role of the other prominently expressed variant, Smad2, is not completely understood. In this study, we sought to analyze the role of renal Smad2 in the development of TIF and EMT during streptozotocin-induced DN by using a fibroblast-specific protein 1 (FSP1)-promotor-driven SMAD2 knockout mouse model with decreased tubular, endothelial, and interstitial Smad2 expression. In contrast to wild-type diabetic mice, diabetic SMAD2 knockout mice showed the following features: (1) significantly reduced DN and TIF (shown by KIM1 expression; periodic acid Schiff staining; collagen I and III, fibronectin, and connective tissue growth factor deposition); (2) significantly reduced tubular EMT-like changes (e.g., altered Snail1, E-cadherin, matrix metalloproteinase 2, and vimentin deposition); and (3) significantly decreased expression of myofibroblast markers (α-smooth muscle actin, FSP1). As one mechanism for the protection against diabetes-induced TIF and EMT, decreased Smad3 protein levels and, as a possible consequence, reduced TGF-β1 levels were observed in diabetic SMAD2 knockout mice. Our findings thus support the important role of Smad2 for pro-fibrotic TGF-β/Smad3 signaling in experimental DN.

Keywords

Transforming growth factor beta 1 (TGF-β1) Smad2/3 Diabetic nephropathy (DN) Epithelial-to-mesenchymal transition (EMT) Fibroblast-specific protein 1 (FSP1) 

Notes

Acknowledgements

We thank Erwin P. Böttinger for providing the SMAD2 flox/flox mouse line and Eric G. Neilson for providing the FSP1-cre mouse line. We also express our gratitude to Drs. Joachim Clement and Ignacio Rubio for helpful discussions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

References

  1. Alpers CE, Hudkins KL, Floege J, Johnson RJ (1994) Human renal cortical interstitial cells with some features of smooth muscle cells participate in tubulointerstitial and crescentic glomerular injury. J Am Soc Nephrol 5:201–209PubMedGoogle Scholar
  2. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851CrossRefPubMedGoogle Scholar
  3. Boor P, Floege J (2012) The renal (myo-)fibroblast: a heterogeneous group of cells. Nephrol Dial Transplant 27:3027–3036CrossRefPubMedGoogle Scholar
  4. Borges FT, Melo SA, Ozdemir BC, Kato N, Revuelta I, Miller CA, Gattone VH 2nd, LeBleu VS, Kalluri R (2013) TGF-beta1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J Am Soc Nephrol 24:385–392CrossRefPubMedGoogle Scholar
  5. Bottinger EP, Bitzer M (2002) TGF-beta signaling in renal disease. J Am Soc Nephrol 13:2600–2610CrossRefPubMedGoogle Scholar
  6. Brosius FC 3rd, Alpers CE, Bottinger EP, Breyer MD, Coffman TM, Gurley SB, Harris RC, Kakoki M, Kretzler M, Leiter EH, Levi M, RA MI, Sharma K, Smithies O, Susztak K, Takahashi N, Takahashi T, Animal Models of Diabetic Complications C (2009) Mouse models of diabetic nephropathy. J Am Soc Nephrol 20:2503–2512CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cheng S, Pollock AS, Mahimkar R, Olson JL, Lovett DH (2006) Matrix metalloproteinase 2 and basement membrane integrity: a unifying mechanism for progressive renal injury. FASEB J 20:1898–1900CrossRefPubMedGoogle Scholar
  8. Fujimoto M, Maezawa Y, Yokote K, Joh K, Kobayashi K, Kawamura H, Nishimura M, Roberts AB, Saito Y, Mori S (2003) Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem Biophys Res Commun 305:1002–1007CrossRefPubMedGoogle Scholar
  9. Galichon P, Hertig A (2011) Epithelial to mesenchymal transition as a biomarker in renal fibrosis: are we ready for the bedside? Fibrogenesis Tissue Repair 4:11CrossRefPubMedPubMedCentralGoogle Scholar
  10. Grande MT, Perez-Barriocanal F, Lopez-Novoa JM (2010) Role of inflammation in tubulo-interstitial damage associated to obstructive nephropathy. J Inflamm 7:19CrossRefGoogle Scholar
  11. Grande MT, Sanchez-Laorden B, Lopez-Blau C, De Frutos CA, Boutet A, Arevalo M, Rowe RG, Weiss SJ, Lopez-Novoa JM, Nieto MA (2015) Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 21:989–997CrossRefPubMedGoogle Scholar
  12. Hammerschmidt E, Loeffler I, Wolf G (2009) Morg1 heterozygous mice are protected from acute renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 297:F1273–F1287CrossRefPubMedGoogle Scholar
  13. Hertig A, Anglicheau D, Verine J, Pallet N, Touzot M, Ancel PY, Mesnard L, Brousse N, Baugey E, Glotz D, Legendre C, Rondeau E, Xu-Dubois YC (2008) Early epithelial phenotypic changes predict graft fibrosis. J Am Soc Nephrol 19:1584–1591CrossRefPubMedPubMedCentralGoogle Scholar
  14. Herzlinger D (2002) Renal interstitial fibrosis: remembrance of things past? J Clin Invest 110:305–306CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hinz B (2010) The myofibroblast: paradigm for a mechanically active cell. J Biomech 43:146–155CrossRefPubMedGoogle Scholar
  16. Inoue T, Plieth D, Venkov CD, Xu C, Neilson EG (2005) Antibodies against macrophages that overlap in specificity with fibroblasts. Kidney Int 67:2488–2493CrossRefPubMedGoogle Scholar
  17. Isono M, Chen S, Hong SW, Iglesias-de la Cruz MC, Ziyadeh FN (2002) Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-beta-induced fibronectin in mesangial cells. Biochem Biophys Res Commun 296:1356–1365CrossRefPubMedGoogle Scholar
  18. Iwano M, Fischer A, Okada H, Plieth D, Xue C, Danoff TM, Neilson EG (2001) Conditional abatement of tissue fibrosis using nucleoside analogs to selectively corrupt DNA replication in transgenic fibroblasts. Mol Ther 3:149–159CrossRefPubMedGoogle Scholar
  19. Ju W, Ogawa A, Heyer J, Nierhof D, Yu L, Kucherlapati R, Shafritz DA, Bottinger EP (2006) Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Mol Cell Biol 26:654–667CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kashiwagi I, Morita R, Schichita T, Komai K, Saeki K, Matsumoto M, Takeda K, Nomura M, Hayashi A, Kanai T, Yoshimura A (2015) Smad2 and Smad3 inversely regulate TGF-beta autoinduction in Clostridium butyricum-activated dendritic cells. Immunity 43:65–79CrossRefPubMedGoogle Scholar
  21. Kunisch E, Jansen A, Kojima F, Loffler I, Kapoor M, Kawai S, Rubio I, Crofford LJ, Kinne RW (2009) Prostaglandin E2 differentially modulates proinflammatory/prodestructive effects of TNF-alpha on synovial fibroblasts via specific E prostanoid receptors/cAMP. J Immunol 183:1328–1336CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lan A, Qi Y, Du J (2014) Akt2 mediates TGF-beta1-induced epithelial to mesenchymal transition by deactivating GSK3beta/snail signaling pathway in renal tubular epithelial cells. Cell Physiol Biochem 34:368–382CrossRefPubMedGoogle Scholar
  23. Lan HY (2011) Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation. Int J Biol Sci 7:1056–1067CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lan HY (2012) Smads as therapeutic targets for chronic kidney disease. Kidney Res Clin Pract 31:4–11CrossRefPubMedPubMedCentralGoogle Scholar
  25. LeRoy EC, Trojanowska MI, Smith EA (1990) Cytokines and human fibrosis. Eur Cytokine Netw 1:215–219PubMedGoogle Scholar
  26. Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1–12CrossRefPubMedGoogle Scholar
  27. Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7:684–696CrossRefPubMedPubMedCentralGoogle Scholar
  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  29. Loeffler I, Wolf G (2015a) Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? Cell 4:631–652CrossRefGoogle Scholar
  30. Loeffler I, Wolf G (2015b) Morg1 heterozygous deficiency ameliorates hypoxia-induced acute renal injury. Am J Physiol Renal Physiol 308:F511–F521CrossRefPubMedGoogle Scholar
  31. Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL, Wu CC, Hagos Y, Burckhardt BC, Pentcheva-Hoang T, Nischal H, Allison JP, Zeisberg M, Kalluri R (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 21:998–1009CrossRefPubMedPubMedCentralGoogle Scholar
  32. Luo J, Liang M, Mitch WE, Danesh FR, Yu M, Cheng J (2015) FSP-1 impairs the function of endothelium leading to failure of arteriovenous grafts in diabetic mice. Endocrinology 156:2200–2210CrossRefPubMedPubMedCentralGoogle Scholar
  33. Meng XM, Huang XR, Chung AC, Qin W, Shao X, Igarashi P, Ju W, Bottinger EP, Lan HY (2010) Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis. J Am Soc Nephrol 21:1477–1487CrossRefPubMedPubMedCentralGoogle Scholar
  34. Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338CrossRefPubMedGoogle Scholar
  35. Menon MC, Ross MJ (2016) Epithelial-to-mesenchymal transition of tubular epithelial cells in renal fibrosis: a new twist on an old tale. Kidney Int 89:263–266CrossRefPubMedGoogle Scholar
  36. Meran S, Steadman R (2011) Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol 92:158–167CrossRefPubMedPubMedCentralGoogle Scholar
  37. Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH, Steffes MW, American Diabetes A (2004) Nephropathy in diabetes. Diabetes Care 27(Suppl 1):S79–S83PubMedGoogle Scholar
  38. Okada H, Danoff TM, Fischer A, Lopez-Guisa JM, Strutz F, Neilson EG (1998) Identification of a novel cis-acting element for fibroblast-specific transcription of the FSP1 gene. Am J Physiol 275:F306–F314PubMedGoogle Scholar
  39. Okada H, Ban S, Nagao S, Takahashi H, Suzuki H, Neilson EG (2000) Progressive renal fibrosis in murine polycystic kidney disease: an immunohistochemical observation. Kidney Int 58:587–597CrossRefPubMedGoogle Scholar
  40. Okada H, Kikuta T, Kobayashi T, Inoue T, Kanno Y, Takigawa M, Sugaya T, Kopp JB, Suzuki H (2005) Connective tissue growth factor expressed in tubular epithelium plays a pivotal role in renal fibrogenesis. J Am Soc Nephrol 16:133–143CrossRefPubMedGoogle Scholar
  41. Phanish MK, Wahab NA, Colville-Nash P, Hendry BM, Dockrell ME (2006) The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFbeta1 responses in human proximal-tubule epithelial cells. Biochem J 393:601–607CrossRefPubMedGoogle Scholar
  42. Phanish MK, Winn SK, Dockrell ME (2010) Connective tissue growth factor (CTGF, CCN2)—a marker, mediator and therapeutic target for renal fibrosis. Nephron Exp Nephrol 114:e83–e92CrossRefPubMedGoogle Scholar
  43. Qi W, Chen X, Poronnik P, Pollock CA (2006) The renal cortical fibroblast in renal tubulointerstitial fibrosis. Int J Biochem Cell Biol 38:1–5CrossRefPubMedGoogle Scholar
  44. Qiao B, Johnson NW, Gao J (2010) Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-beta1 is snail family-dependent and correlates with matrix metalloproteinase-2 and -9 expressions. Int J Oncol 37:663–668PubMedGoogle Scholar
  45. Schiller M, Javelaud D, Mauviel A (2004) TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci 35:83–92CrossRefPubMedGoogle Scholar
  46. Strutz F, Zeisberg M (2006) Renal fibroblasts and myofibroblasts in chronic kidney disease. J Am Soc Nephrol 17:2992–2998CrossRefPubMedGoogle Scholar
  47. Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, Neilson EG (1995) Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130:393–405CrossRefPubMedGoogle Scholar
  48. Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, Ferrario F, Fogo AB, Haas M, Heer E de, Joh K, Noel LH, Radhakrishnan J, Seshan SV, Bajema IM, Bruijn JA, Renal Pathology S (2010) Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 21:556–563Google Scholar
  49. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890CrossRefPubMedGoogle Scholar
  50. Tveitaras MK, Skogstrand T, Leh S, Helle F, Iversen BM, Chatziantoniou C, Reed RK, Hultstrom M (2015) Matrix metalloproteinase-2 knockout and heterozygote mice are protected from hydronephrosis and kidney fibrosis after unilateral ureteral obstruction. PLoS One 10:e0143390CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ucero AC, Benito-Martin A, Izquierdo MC, Sanchez-Nino MD, Sanz AB, Ramos AM, Berzal S, Ruiz-Ortega M, Egido J, Ortiz A (2014) Unilateral ureteral obstruction: beyond obstruction. Int Urol Nephrol 46:765–776CrossRefPubMedGoogle Scholar
  52. Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A (2005) TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 16:1987–2002CrossRefPubMedPubMedCentralGoogle Scholar
  53. Verrecchia F, Chu ML, Mauviel A (2001) Identification of novel TGF-beta /Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem 276:17058–17062CrossRefPubMedGoogle Scholar
  54. Yang J, Liu Y (2001) Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol 159:1465–1475CrossRefPubMedPubMedCentralGoogle Scholar
  55. Yokoyama K, Kamata N, Fujimoto R, Tsutsumi S, Tomonari M, Taki M, Hosokawa H, Nagayama M (2003) Increased invasion and matrix metalloproteinase-2 expression by snail-induced mesenchymal transition in squamous cell carcinomas. Int J Oncol 22:891–898PubMedGoogle Scholar
  56. Zeisberg M, Duffield JS (2010) Resolved: EMT produces fibroblasts in the kidney. J Am Soc Nephrol 21:1247–1253CrossRefPubMedGoogle Scholar
  57. Zeisberg M, Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119:1429–1437CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhang M, Fraser D, Phillips A (2006) ERK, p38, and Smad signaling pathways differentially regulate transforming growth factor-beta1 autoinduction in proximal tubular epithelial cells. Am J Pathol 169:1282–1293CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Ivonne Loeffler
    • 1
  • Marita Liebisch
    • 1
  • Stefanie Allert
    • 2
  • Elke Kunisch
    • 3
  • Raimund W. Kinne
    • 3
  • Gunter Wolf
    • 1
  1. 1.Department of Internal Medicine IIIJena University HospitalJenaGermany
  2. 2.Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection BiologyHans-Knoell-InstituteJenaGermany
  3. 3.Experimental Rheumatology Unit, Department of OrthopedicsJena University HospitalEisenbergGermany

Personalised recommendations