Skip to main content

Advertisement

Log in

Distinct hormonal regulation of two types of sexual dimorphism in submandibular gland of mice

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The submandibular gland (SMG) of mice exhibits prominent sexual dimorphism in two aspects: the preferential development of granular convoluted tubule (GCT) cells and the earlier disappearance of granular intercalated duct (GID) cells in males after puberty. The former is dependent on androgens and thyroid hormones, whereas the hormonal dependence of the latter remains obscure. In the present study, we examined the effects of the postnatal administration of androgens and thyroid hormones to wild-type (WT) and androgen-receptor-knockout (ARKO) mice on these two types of sexual dimorphism by counting the numbers of GCT and GID cells labeled with nerve growth factor and submandibular gland protein C, respectively, as immunohistochemical markers. WT females and ARKO males and females exhibited a lower number of GCT cells and higher number of GID cells at 5 and 11 weeks postpartum than WT males. The administration of dihydrotestosterone for 1–2 weeks prior to these ages caused an increase in GCT cells and decrease in GID cells in WT females to similar levels as those in WT males, whereas it had no effects in ARKO, indicating that both types of sexual dimorphism are androgen-dependent. In contrast, the administration of thyroxine caused an increase in GCT cells but did not cause a decrease in GID cells in WT females or ARKO, indicating that the former is dependent on thyroid hormones, whereas the latter is not. The present results suggest that the two types of sexual dimorphism in the mouse SMG undergo distinct forms of hormonal regulation and, therefore, have different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adthapanyawanich K, Kumchantuek T, Nakata H, Yamamoto M, Wakayama T, Nishiuchi T, Iseki S (2015) Morphology and gene expression profile of the submandibular gland of androgen-receptor-deficient mice. Arch Oral Biol 60:320–332

  • Aloe L, Levi-Montalcini R (1980) Comparative studies on testosterone and L-thyroxine effects on the synthesis of nerve growth factor in mouse submaxillary salivary glands. Exp Cell Res 125:15–22

    Article  CAS  PubMed  Google Scholar 

  • Aure MH, Konieczny SF, Ovitt CE (2015) Salivary gland homeostasis is maintained through acinar cell self-duplication. Dev Cell 33:231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball WD, Hand AR, Moreira JE, Johnson AO (1988) A secretory protein restricted to type I cells in neonatal rat submandibular glands. Dev Biol 129:464–475

    Article  CAS  PubMed  Google Scholar 

  • Barka T (1980) Biologically active polypeptides in submandibular glands. J Histochem Cytochem 28:836–859

    Article  CAS  PubMed  Google Scholar 

  • Beato M (1989) Gene regulation by steroid hormones. Cell 56:335–344

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann AO, Blok LJ, Ruiter PE de, Doesburg P, Steketee K, Berrevoets CA, Trapman J (1999) Mechanisms of androgen receptor activation and function. J Steroid Biochem Mol Biol 69:307–313

  • Caramia F (1966a) Ultrastructure of mouse submaxillary gland. I. Sexual differences. J Ultrastruct Res 16:505–523

    Article  CAS  PubMed  Google Scholar 

  • Caramia F (1966b) Ultrastructure of mouse submaxillary gland. II. Effect of castration in the male. J Ultrastruct Res 16:524–536

    Article  CAS  PubMed  Google Scholar 

  • Chai Y, Klauser DK, Denny PA, Denny PC (1993) Proliferative and structural differences between male and female mouse submandibular glands. Anat Rec 235:303–311

    Article  CAS  PubMed  Google Scholar 

  • Chang WW, Barka T (1974) Stimulation of acinar cell proliferation by isoproterenol in the postnatal rat submandibular gland. Anat Rec 178:203–209

    Article  CAS  PubMed  Google Scholar 

  • Cheng S-Y, Leonard JL, Davis PJ (2010) Molecular aspects of thyroid hormone actions. Endocr Rev 31:139–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chretien M (1977) Action of testosterone on the differentiation and secretory activity of a target organ: the submaxillary gland of the mouse. Int Rev Cytol 50:333–396

    Article  CAS  PubMed  Google Scholar 

  • Coppes R, Stokman M (2011) Stem cells and the repair of radiation-induced salivary gland damage. Oral Dis 17:143–153

    Article  CAS  PubMed  Google Scholar 

  • Denny PC, Chai Y, Klauser DK, Denny PA (1993) Parenchymal cell proliferation and mechanisms for maintenance of granular duct and acinar cell populations in adult male mouse submandibular gland. Anat Rec 235:475–485

    Article  CAS  PubMed  Google Scholar 

  • Dvorak M (1969) The secretory cells in the submaxillary gland in the perinatal period of development in the rat. Z Zellforsch 99:346–356

    Article  CAS  PubMed  Google Scholar 

  • Foradori CD, Weiser MJ, Handa RJ (2008) Non-genomic actions of androgens. Front Neuroendocrinol 29:169–181

    Article  CAS  PubMed  Google Scholar 

  • Gresik EW (1980) Postnatal developmental changes in submandibular glands of rats and mice. J Histochem Cytochem 28:860–870

    Article  CAS  PubMed  Google Scholar 

  • Gresik EW (1994) The granular convoluted tubule (GCT) cell of rodent submandibular gland. Microsc Res Tech 27:1–24

    Article  CAS  PubMed  Google Scholar 

  • Gresik EW, MacRae EK (1975) The postnatal development of the sexually dimorphic duct system and of amylase activity in the submandibular glands of mice. Cell Tissue Res 157:411–422

    Article  CAS  PubMed  Google Scholar 

  • Gubits RM, Shaw PA, Gresik EW, Onetti-Muda A, Barka T (1986) Epidermal growth factor gene expression is regulated differently in mouse kidney and submandibular gland. Endocrinology 119:1382–1387

    Article  CAS  PubMed  Google Scholar 

  • Hammes SR, Davis PJ (2015) Overlapping nongenomic and genomic actions of thyroid hormone and steroids. Best Pract Res Clin Endocrinol Metab 29:581–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammes SR, Levin ER (2007) Extra-nuclear steroid receptors: nature and function. Endocr Rev 28:726–741

    Article  CAS  PubMed  Google Scholar 

  • Hayshi H, Ozono S, Watanabe K, Nagatsu I, Onozuka M (2000) Morphological aspects of the postnatal development of submandibularglands in male rats: involvement of apoptosis. J Histochem Cytochem 48:695–698

    Article  Google Scholar 

  • Hecht R, Connelly M, Marchetti L, Ball WD, Hand AR (2000) Cell death during development of intercalated ducts in the rat submandibular gland. Anat Rec 258:349–358

    Article  CAS  PubMed  Google Scholar 

  • Heinlein CA, Chang C (2002) The roles of AR and androgen binding proteins in nongenomic androgen actions. Mol Endocrinol 16:2181–2187

    Article  CAS  PubMed  Google Scholar 

  • Jacoby F, Leeson CR (1959) The postnatal development of the rat submaxillary gland. J Anat 93:201–216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasayama S, Yoshimura M, Oka T (1989) The regulation by thyroid hormones and androgen of epidermal growth factor synthesis in the submandibular gland and its plasma concentrations in mice. J Endocrinol 121:269–275

    Article  CAS  PubMed  Google Scholar 

  • Kurabuchi S (2003) Thyroid hormone regulation of granular intercalated duct cells in the submandibular glands of female mice. Odontology 91:7–12

    Article  PubMed  Google Scholar 

  • Laudet V (1997) Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J Mol Endocrinol 19:207–226

    Article  CAS  PubMed  Google Scholar 

  • Man YG, Ball WD, Marchetti L, Hand AR (2001) Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats. Anat Rec 263:202–214

    Article  CAS  PubMed  Google Scholar 

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evan RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Shiina H, Kawano H, Sato T, Kato S (2008) Androgen receptor functions in male and female physiology. J Steroid Biochem Mol Biol 109:236–241

    Article  CAS  PubMed  Google Scholar 

  • Matsuura S, Sahara N, Suzuki K (1984) Fine structure of submandibular glands of mice with testicular feminization (Tfm/Y). Cell Tissue Res 235:295–301

    Article  CAS  PubMed  Google Scholar 

  • Moreira JE, Tabak LA, Bedi GS, Culp DJ, Hand AR (1989) Light and electron microscopic immunolocalization of rat submandibular gland mucin-glycoprotein and glutamine/glutamic acid-rich proteins. J Histochem Cytochem 37:515–528

    Article  CAS  PubMed  Google Scholar 

  • Nakata H, Yamamoto M, Kumchantuek T, Adhapanyawanich K, Nishiuchi T, Iseki S (2017) Synthesis, localization, and possible function of the serine (or cysteine) peptidase inhibitor, clade B, member 6a (Serpinb6a) in the submandibular gland of mice. Cell Tissue Res. https://doi.org/10.1007/s00441-017-2620-1

  • Pinkstaff CA (1980) The cytology of salivary glands. Int Rev Cytol 63:141–161

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Miyazaki J (1997) A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission. Biochem Biophys Res Commun 237:318–324

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Matsumoto T, Yamada T, Watanabe T, Kawano H, Kato S (2003) Late onset of obesity in male androgen receptor-deficient (ARKO) mice. Biochem Biophys Res Commun 300:167–171

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Chang WW (1979) The postnatal development of the submandibular gland of the mouse. Cell Tissue Res 198:363–371

    Article  CAS  PubMed  Google Scholar 

  • Walker WH, Cheng J (2005) FSH and testosterone signaling in Sertoli cells. Reproduction 130:15–28

    Article  CAS  PubMed  Google Scholar 

  • Wehling M (1997) Specific, nongenomic actions of steroind hormones. Annu Rev Physiol 59:365–393

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Nakata H, Kumchantuek T, Sakulsak N, Iseki S (2016) Immunohistochemical localization of keratin 5 in the submandibular gland in adult and postnatal developing mice. Histochem Cell Biol 145:327–339

    Article  CAS  PubMed  Google Scholar 

  • Yamashina S, Barka T (1972) Localization of peroxidase activity in the developing submandibular gland of normal and isoproterenol-treated rats. J Histochem Cytochem 20:855–872

    Article  CAS  PubMed  Google Scholar 

  • Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 8:1097–1142

    Article  Google Scholar 

  • Zhou ZX, Wong CI, Sar M, Wilson EM (1994) The androgen receptor: an overview. Recent Prog Horm Res 49:249–274

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Shuichi Yamazaki for his technical work in preparing paraffin sections. This study was supported by a Grant-in-Aid for Scientific Research no. 26460270 from the Ministry of Education, Culture, Sports, Science and Technology of Japan to S.I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoichi Iseki.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, M., Nakata, H., Kumchantuek, T. et al. Distinct hormonal regulation of two types of sexual dimorphism in submandibular gland of mice. Cell Tissue Res 371, 261–272 (2018). https://doi.org/10.1007/s00441-017-2719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2719-4

Keywords

Navigation