Cell and Tissue Research

, Volume 372, Issue 2, pp 171–193 | Cite as

From proliferation to target innervation: signaling molecules that direct sympathetic nervous system development

  • W. H. Chan
  • C. R. Anderson
  • David G. Gonsalvez


The sympathetic division of the autonomic nervous system includes a variety of cells including neurons, endocrine cells and glial cells. A recent study (Furlan et al. 2017) has revised thinking about the developmental origin of these cells. It now appears that sympathetic neurons and chromaffin cells of the adrenal medulla do not have an immediate common ancestor in the form a “sympathoadrenal cell”, as has been long believed. Instead, chromaffin cells arise from Schwann cell precursors. This review integrates the new findings with the expanding body of knowledge on the signalling pathways and transcription factors that regulate the origin of cells of the sympathetic division of the autonomic nervous system.


Sympathetic Sympathoadrenal Proliferation Differentiation Target innervation 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adameyko I, Lallemend F, Aquino JB, Pereira JA, Topilko P, Muller T, Fritz N, Beljajeva A, Mochii M, Liste I, Usoskin D, Suter U, Birchmeier C, Ernfors P (2009) Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell 139:366–379PubMedCrossRefGoogle Scholar
  2. Ahmed AM (2017) Immunohistochemical study of sustentacular cells in adrenal medulla of neonatal and adult rats using an antibody against S-100 protein. Folia Morphol (Warsz) 76:246–251CrossRefGoogle Scholar
  3. Ahonen M, Soinila S, Joh TH (1987) Pre- and postnatal development of rat retroperitoneal paraganglia. J Auton Nerv Syst 18:111–120PubMedCrossRefGoogle Scholar
  4. Ajioka I, Martins RA, Bayazitov IT, Donovan S, Johnson DA, Frase S, Cicero SA, Boyd K, Zakharenko SS, Dyer MA (2007) Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice. Cell 131:378–390PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alam G, Cui H, Shi H, Yang L, Ding J, Mao L, Maltese WA, Ding HF (2009) MYCN promotes the expansion of Phox2B-positive neuronal progenitors to drive neuroblastoma development. Am J Pathol 175:856–866PubMedPubMedCentralCrossRefGoogle Scholar
  6. Allmendinger A, Stoeckel E, Saarma M, Unsicker K, Huber K (2003) Development of adrenal chromaffin cells is largely normal in mice lacking the receptor tyrosine kinase c-ret. Mech Dev 120:299–304PubMedCrossRefGoogle Scholar
  7. Anderson DJ, Axel R (1985) Molecular probes for the development and plasticity of neural crest derivatives. Cell 42:649–662PubMedCrossRefGoogle Scholar
  8. Anderson DJ, Axel R (1986) A bipotential neuroendocrine precursor whose choice of cell fate is determined by NGF and glucocorticoids. Cell 47:1079–1090PubMedCrossRefGoogle Scholar
  9. Anderson DJ, Carnahan JF, Michelsohn A, Patterson PH (1991) Antibody markers identify a common progenitor to sympathetic neurons and chromaffin cells in vivo and reveal the timing of commitment to neuronal differentiation in the sympathoadrenal lineage. J Neurosci 11:3507–3519PubMedCrossRefGoogle Scholar
  10. Andres R, Forgie A, Wyatt S, Chen Q, de Sauvage FJ, Davies AM (2001) Multiple effects of artemin on sympathetic neurone generation, survival and growth. Development 128:3685–3695PubMedGoogle Scholar
  11. Apostolova G, Dechant G (2009) Development of neurotransmitter phenotypes in sympathetic neurons. Auton Neurosci 151:30–38PubMedCrossRefGoogle Scholar
  12. Arai Y, Pulvers JN, Haffner C, Schilling B, Nusslein I, Calegari F, Huttner WB (2011) Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nat Commun 2:154PubMedPubMedCentralCrossRefGoogle Scholar
  13. Armstrong A, Ryu YK, Chieco D, Kuruvilla R (2011) Frizzled3 Is required for neurogenesis and target innervation during sympathetic nervous system development. J Neurosci 31:2371–2381PubMedPubMedCentralCrossRefGoogle Scholar
  14. Baggiolini A, Varum S, Mateos JM, Bettosini D, John N, Bonalli M, Ziegler U, Dimou L, Clevers H, Furrer R, Sommer L (2015) Premigratory and migratory neural crest cells are multipotent in vivo. Cell Stem Cell 16:314–322PubMedCrossRefGoogle Scholar
  15. Baloh RH, Enomoto H, Johnson EM Jr, Milbrandt J (2000) The GDNF family ligands and receptors - implications for neural development. Curr Opin Neurobiol 10:103–110PubMedCrossRefGoogle Scholar
  16. Baroffio A, Dupin E, Le Douarin NM (1988) Clone-forming ability and differentiation potential of migratory neural crest cells. Proc Natl Acad Sci U S A 85:5325–5329PubMedPubMedCentralCrossRefGoogle Scholar
  17. Birchmeier C, Nave KA (2008) Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 56:1491–1497PubMedCrossRefGoogle Scholar
  18. Blomen VA, Boonstra J (2007) Cell fate determination during G1 phase progression. Cell Mol Life Sci 64:3084–3104PubMedCrossRefGoogle Scholar
  19. Bocian-Sobkowska J, Wozniak W, Malendowicz LK, Ginda W (1996) Stereology of human fetal adrenal medulla. Histol Histopathol 11:389–393PubMedGoogle Scholar
  20. Bodmer D, Levine-Wilkinson S, Richmond A, Hirsh S, Kuruvilla R (2009) Wnt5a Mediates nerve growth factor-dependent axonal branching and growth in developing sympathetic neurons. J Neurosci 29:7569–7581PubMedPubMedCentralCrossRefGoogle Scholar
  21. Britsch S, Li L, Kirchhoff S, Theuring F, Brinkmann V, Birchmeier C, Riethmacher D (1998) The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev 12:1825–1836PubMedPubMedCentralCrossRefGoogle Scholar
  22. Britsch S, Goerich DE, Riethmacher D, Peirano RI, Rossner M, Nave KA, Birchmeier C, Wegner M (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15:66–78PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bronner-Fraser M (1986) Analysis of the early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1. Dev Biol 115:44–55PubMedCrossRefGoogle Scholar
  24. Bronner-Fraser M, Fraser SE (1988) Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 335:161–164PubMedCrossRefGoogle Scholar
  25. Bronner-Fraser M, Fraser S (1989) Developmental potential of avian trunk neural crest cells in situ. Neuron 3:755–766PubMedCrossRefGoogle Scholar
  26. Brunet I, Gordon E, Han J, Cristofaro B, Broqueres-You D, Liu C, Bouvree K, Zhang J, del Toro R, Mathivet T, Larrivee B, Jagu J, Pibouin-Fragner L, Pardanaud L, Machado MJ, Kennedy TE, Zhuang Z, Simons M, Levy BI, Tessier-Lavigne M, Grenz A, Eltzschig H, Eichmann A (2014) Netrin-1 controls sympathetic arterial innervation. J Clin Invest 124:3230–3240PubMedPubMedCentralCrossRefGoogle Scholar
  27. Buchmann-Moller S, Miescher I, John N, Krishnan J, Deng CX, Sommer L (2009) Multiple lineage-specific roles of Smad4 during neural crest development. Dev Biol 330:329–338PubMedCrossRefGoogle Scholar
  28. Burstyn-Cohen T, Kalcheim C (2002) Association between the cell cycle and neural crest delamination through specific regulation of G1/S transition. Dev Cell 3:383–395PubMedCrossRefGoogle Scholar
  29. Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A (1998) GFRalpha1 Is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21:53–62PubMedPubMedCentralCrossRefGoogle Scholar
  30. Calder A, Roth-Albin I, Bhatia S, Pilquil C, Lee JH, Bhatia M, Levadoux-Martin M, McNicol J, Russell J, Collins T, Draper JS (2013) Lengthened G1 phase indicates differentiation status in human embryonic stem cells. Stem Cells Dev 22:279–295PubMedCrossRefGoogle Scholar
  31. Callahan T, Young HM, Anderson RB, Enomoto H, Anderson CR (2008) Development of satellite glia in mouse sympathetic ganglia: GDNF and GFR alpha 1 are not essential. Glia 56:1428–1437PubMedCrossRefGoogle Scholar
  32. Cameron-Curry P, Dulac C, Le Douarin NM (1993) Negative regulation of Schwann cell myelin protein gene expression by the dorsal root ganglionic microenvironment. Eur J Neurosci 5:594–604PubMedCrossRefGoogle Scholar
  33. Cane KN, Anderson CR (2009) Generating diversity: mechanisms regulating the differentiation of autonomic neuron phenotypes. Auton Neurosci 151:17–29PubMedCrossRefGoogle Scholar
  34. Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E, Johnston C, Drechsel D, Lebel-Potter M, Garcia LG, Hunt C, Dolle D, Bithell A, Ettwiller L, Buckley N, Guillemot F (2011) A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 25:930–945PubMedPubMedCentralCrossRefGoogle Scholar
  35. Chan WH, Gonsalvez DG, Young HM, Southard-Smith EM, Cane KN, Anderson CR (2016a) Differences in CART expression and cell cycle behavior discriminate sympathetic neuroblast from chromaffin cell lineages in mouse sympathoadrenal cells. Dev Neurobiol 76:137–149PubMedCrossRefGoogle Scholar
  36. Chan WH, Stamp LA, Hirst CS, McKeown SJ, Anderson CR, Young HM (2016b) Development of the autonomic nervous system. Rev Cell Biol Mol Med.
  37. Cheung M, Chaboissier MC, Mynett A, Hirst E, Schedl A, Briscoe J (2005) The transcriptional control of trunk neural crest induction, survival, and delamination. Dev Cell 8:179–192PubMedCrossRefGoogle Scholar
  38. Chubb DP, Anderson CR (2010) The relationship of the birth date of rat sympathetic neurons to the target they innervate. Dev Dyn 239:897–904PubMedCrossRefGoogle Scholar
  39. Coppola E, Pattyn A, Guthrie SC, Goridis C, Studer M (2005) Reciprocal gene replacements reveal unique functions for Phox2 genes during neural differentiation. EMBO J 24:4392–4403PubMedPubMedCentralCrossRefGoogle Scholar
  40. Coppola E, d’Autreaux F, Rijli FM, Brunet JF (2010) Ongoing roles of Phox2 homeodomain transcription factors during neuronal differentiation. Development 137:4211–4220PubMedCrossRefGoogle Scholar
  41. Corpening JC, Cantrell VA, Deal KK, Southard-Smith EM (2008) A Histone 2BCerulean BAC transgene identifies differential expression of Phox2b in migrating enteric neural crest derivatives and enteric glia. Dev Dyn 237:1119–1132PubMedPubMedCentralCrossRefGoogle Scholar
  42. Coupland RE (1954) Post-natal fate of the abdominal para-aortic bodies in man. J Anat 88:455–464PubMedPubMedCentralGoogle Scholar
  43. Coupland R, Weakley B (1970) Electron microscopic observations on the adrenal medulla and extra adrenal chromaffin tissue of the postnatal rabbit. J Anat 106:213–231PubMedPubMedCentralGoogle Scholar
  44. Coupland RE, Kent C, Kent SE (1982) Normal function of extra-adrenal chromaffin tissues in the young rabbit and guinea-pig. J Endocrinol 92:433–442PubMedCrossRefGoogle Scholar
  45. Dong Z, Brennan A, Liu N, Yarden Y, Lefkowitz G, Mirsky R, Jessen KR (1995) Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors. Neuron 15:585–596PubMedCrossRefGoogle Scholar
  46. Doupe AJ, Landis SC, Patterson PH (1985) Environmental influences in the development of neural crest derivatives: glucocorticoids, growth factors, and chromaffin cell plasticity. J Neurosci 5:2119–2142PubMedCrossRefGoogle Scholar
  47. Dulac C, Cameron-Curry P, Ziller C, Le Douarin NM (1988) A surface protein expressed by avian myelinating and nonmyelinating Schwann cells but not by satellite or enteric glial cells. Neuron 1:211–220PubMedCrossRefGoogle Scholar
  48. Dupin E, Le Douarin NM (2014) The neural crest, a multifaceted structure of the vertebrates. Birth Defects Res C 102:187–209CrossRefGoogle Scholar
  49. Dupin E, Calloni GW, Le Douarin NM (2010) The cephalic neural crest of amniote vertebrates is composed of a large majority of precursors endowed with neural, melanocytic, chondrogenic and osteogenic potentialities. Cell Cycle 9:238–249PubMedCrossRefGoogle Scholar
  50. Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P, Smith D, Ponder B, Costantini F, Saarma M et al (1996) GDNF signalling through the ret receptor tyrosine kinase. Nature 381:789–793PubMedCrossRefGoogle Scholar
  51. Dyachuk V, Furlan A, Shahidi MK, Giovenco M, Kaukua N, Konstantinidou C, Pachnis V, Memic F, Marklund U, Muller T, Birchmeier C, Fried K, Ernfors P, Adameyko I (2014) Neurodevelopment. Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science 345:82–87PubMedCrossRefGoogle Scholar
  52. El-Maghraby M, Lever JD (1980) Typification and differentiation of medullary cells in the developing rat adrenal. A histochemical and electron microscopic study. J Anat 131:103–120PubMedPubMedCentralGoogle Scholar
  53. Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM Jr, Milbrandt J (1998) GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21:317–324PubMedCrossRefGoogle Scholar
  54. Enomoto H, Crawford PA, Gorodinsky A, Heuckeroth RO, Johnson EM Jr, Milbrandt J (2001) RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons. Development 128:3963–3974PubMedGoogle Scholar
  55. Eränkö O (1955) Distribution of adrenaline and noradrenaline in the adrenal medulla. Nature 175:88–89CrossRefGoogle Scholar
  56. Erickson CA, Goins TL (1995) Avian neural crest cells can migrate in the dorsolateral path only if they are specified as melanocytes. Development 121:915–924PubMedGoogle Scholar
  57. Ernsberger U, Rohrer H (2009) Development of the autonomic nervous system: new perspectives and open questions. Auton Neurosci 151:1–2PubMedCrossRefGoogle Scholar
  58. Ernsberger U, Patzke H, Tissier-Seta JP, Reh T, Goridis C, Rohrer H (1995) The expression of tyrosine hydroxylase and the transcription factors cPhox-2 and Cash-1: evidence for distinct inductive steps in the differentiation of chick sympathetic precursor cells. Mech Dev 52:125–136PubMedCrossRefGoogle Scholar
  59. Ernsberger U, Esposito L, Partimo S, Huber K, Franke A, Bixby JL, Kalcheim C, Unsicker K (2005) Expression of neuronal markers suggests heterogeneity of chick sympathoadrenal cells prior to invasion of the adrenal anlagen. Cell Tissue Res 319:1–13PubMedCrossRefGoogle Scholar
  60. Espinosa-Medina I, Outin E, Picard CA, Chettouh Z, Dymecki S, Consalez GG, Coppola E, Brunet JF (2014) Neurodevelopment. Parasympathetic ganglia derive from Schwann cell precursors. Science 345:87–90PubMedCrossRefGoogle Scholar
  61. Finotto S, Krieglstein K, Schober A, Deimling F, Lindner K, Bruhl B, Beier K, Metz J, Garcia-Arraras JE, Roig-Lopez JL, Monaghan P, Schmid W, Cole TJ, Kellendonk C, Tronche F, Schutz G, Unsicker K (1999) Analysis of mice carrying targeted mutations of the glucocorticoid receptor gene argues against an essential role of glucocorticoid signalling for generating adrenal chromaffin cells. Development 126:2935–2944PubMedGoogle Scholar
  62. Fortuna V, Pardanaud L, Brunet I, Ola R, Ristori E, Santoro MM, Nicoli S, Eichmann A (2015) Vascular mural cells promote noradrenergic differentiation of embryonic sympathetic neurons. Cell Rep 11:1786–1796PubMedCrossRefGoogle Scholar
  63. Frank E, Sanes JR (1991) Lineage of neurons and glia in chick dorsal root ganglia: analysis in vivo with a recombinant retrovirus. Development 111:895–908PubMedGoogle Scholar
  64. Furlan A, Dyachuk V, Kastriti ME, Calvo-Enrique L, Abdo H, Hadjab S, Chontorotzea T, Akkuratova N, Usoskin D, Kamenev D, Petersen J, Sunadome K, Memic F, Marklund U, Fried K, Topilko P, Lallemend F, Kharchenko PV, Ernfors P, Adameyko I (2017) Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science 357.
  65. Glebova NO, Ginty DD (2004) Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J Neurosci 24:743–751PubMedCrossRefGoogle Scholar
  66. Gonsalvez DG, Cane KN, Landman KA, Enomoto H, Young HM, Anderson CR (2013) Proliferation and cell cycle dynamics in the developing stellate ganglion. J Neurosci 33:5969–5979PubMedCrossRefGoogle Scholar
  67. Gonsalvez DG, Li-Yuen-Fong M, Cane KN, Stamp LA, Young HM, Anderson CR (2015) Different neural crest populations exhibit diverse proliferative behaviors. Dev Neurobiol 75:287–301PubMedCrossRefGoogle Scholar
  68. Granholm AC, Srivastava N, Mott JL, Henry S, Henry M, Westphal H, Pichel JG, Shen L, Hoffer BJ (1997) Morphological alterations in the peripheral and central nervous systems of mice lacking glial cell line-derived neurotrophic factor (GDNF): immunohistochemical studies. J Neurosci 17:1168–1178PubMedCrossRefGoogle Scholar
  69. Groves AK, George KM, Tissier-Seta JP, Engel JD, Brunet JF, Anderson DJ (1995) Differential regulation of transcription factor gene expression and phenotypic markers in developing sympathetic neurons. Development 121:887–901PubMedGoogle Scholar
  70. Guillemot F, Joyner AL (1993) Dynamic expression of the murine Achaete-Scute homologue Mash-1 in the developing nervous system. Mech Dev 42:171–185PubMedCrossRefGoogle Scholar
  71. Guin GH, Gilbert EF, Jones B (1969) Incidental neuroblastoma in infants. Am J Clin Pathol 51:126–136PubMedCrossRefGoogle Scholar
  72. Gut P, Huber K, Lohr J, Bruhl B, Oberle S, Treier M, Ernsberger U, Kalcheim C, Unsicker K (2005) Lack of an adrenal cortex in Sf1 mutant mice is compatible with the generation and differentiation of chromaffin cells. Development 132:4611–4619PubMedCrossRefGoogle Scholar
  73. Hagedorn L, Suter U, Sommer L (1999) P0 And PMP22 mark a multipotent neural crest-derived cell type that displays community effects in response to TGF-beta family factors. Development 126:3781–3794PubMedGoogle Scholar
  74. Hagedorn L, Paratore C, Brugnoli G, Baert JL, Mercader N, Suter U, Sommer L (2000) The Ets domain transcription factor Erm distinguishes rat satellite glia from Schwann cells and is regulated in satellite cells by neuregulin signaling. Dev Biol 219:44–58PubMedCrossRefGoogle Scholar
  75. Hanani M (2010) Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function. Brain Res Rev 64:304–327PubMedCrossRefGoogle Scholar
  76. Hansford LM, Thomas WD, Keating JM, Burkhart CA, Peaston AE, Norris MD, Haber M, Armati PJ, Weiss WA, Marshall GM (2004) Mechanisms of embryonal tumor initiation: distinct roles for MycN expression and MYCN amplification. Proc Natl Acad Sci U S A 101:12664–12669PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hendershot TJ, Liu H, Clouthier DE, Shepherd IT, Coppola E, Studer M, Firulli AB, Pittman DL, Howard MJ (2008) Conditional deletion of Hand2 reveals critical functions in neurogenesis and cell type-specific gene expression for development of neural crest-derived noradrenergic sympathetic ganglion neurons. Dev Biol 319:179–191PubMedPubMedCentralCrossRefGoogle Scholar
  78. Henion PD, Weston JA (1997) Timing and pattern of cell fate restrictions in the neural crest lineage. Development 124:4351–4359PubMedGoogle Scholar
  79. Hervonen A, Korkala O (1972) The effect of hypoxia on the catecholamine content of human fetal abdominal paraganglia and adrenal medulla. Acta Obstet Gynecol Scand 51:17–24PubMedCrossRefGoogle Scholar
  80. Hervonen A, Korkala O (1973) Effect of hypoxia on the fine structure of the catecholamine-storing cells of the human fetal paraganglia. Virchows Arch B 13:341–349Google Scholar
  81. Hirsch MR, Tiveron MC, Guillemot F, Brunet JF, Goridis C (1998) Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 125:599–608PubMedGoogle Scholar
  82. Hjerling-Leffler J, Marmigere F, Heglind M, Cederberg A, Koltzenburg M, Enerback S, Ernfors P (2005) The boundary cap: a source of neural crest stem cells that generate multiple sensory neuron subtypes. Development 132:2623–2632PubMedCrossRefGoogle Scholar
  83. Holzmann J, Hennchen M, Rohrer H (2015) Prox1 Identifies proliferating neuroblasts and nascent neurons during neurogenesis in sympathetic ganglia. Dev Neurobiol 75:1352–1367PubMedCrossRefGoogle Scholar
  84. Hong CS, Saint-Jeannet JP (2005) Sox proteins and neural crest development. Semin Cell Dev Biol 16:694–703PubMedCrossRefGoogle Scholar
  85. Hong SJ, Huh YH, Leung A, Choi HJ, Ding Y, Kang UJ, Yoo SH, Buettner R, Kim K-S (2011) Transcription factor AP-2β regulates the neurotransmitter phenotype and maturation of chromaffin cells. Mol Cell Neurosci 46:245–251PubMedCrossRefGoogle Scholar
  86. Honma Y, Araki T, Gianino S, Bruce A, Heuckeroth R, Johnson E, Milbrandt J (2002) Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron 35:267–282PubMedCrossRefGoogle Scholar
  87. Howard MJ (2005) Mechanisms and perspectives on differentiation of autonomic neurons. Dev Biol 277:271–286PubMedCrossRefGoogle Scholar
  88. Howard MJ, Stanke M, Schneider C, Wu X, Rohrer H (2000) The transcription factor dHAND is a downstream effector of BMPs in sympathetic neuron specification. Development 127:4073–4081PubMedGoogle Scholar
  89. Huber K (2006) The sympathoadrenal cell lineage: specification, diversification, and new perspectives. Dev Biol 298:335–343PubMedCrossRefGoogle Scholar
  90. Huber K, Brühl B, Guillemot F, Olson EN, Ernsberger U, Unsicker K (2002a) Development of chromaffin cells depends on MASH1 function. Development 129:4729–4738PubMedGoogle Scholar
  91. Huber K, Combs S, Ernsberger U, Kalcheim C, Unsicker K (2002b) Generation of neuroendocrine chromaffin cells from sympathoadrenal progenitors: beyond the glucocorticoid hypothesis. Ann N Y Acad Sci 971:554–559PubMedCrossRefGoogle Scholar
  92. Huber K, Karch N, Ernsberger U, Goridis C, Unsicker K (2005) The role of Phox2B in chromaffin cell development. Dev Biol 279:501–508PubMedCrossRefGoogle Scholar
  93. Huber K, Kalcheim C, Unsicker K (2009) The development of the chromaffin cell lineage from the neural crest. Auton Neurosci 151:10–16PubMedCrossRefGoogle Scholar
  94. Huber K, Narasimhan P, Shtukmaster S, Pfeifer D, Evans SM, Sun Y (2013) The LIM-Homeodomain transcription factor Islet-1 is required for the development of sympathetic neurons and adrenal chromaffin cells. Dev Biol 380:286–298PubMedPubMedCentralCrossRefGoogle Scholar
  95. Ikeda Y, Lister J, Bouton JM, Buyukpamukcu M (1981) Congenital neuroblastoma, neuroblastoma in situ, and the normal fetal development of the adrenal. J Pediatr Surg 16:636–644PubMedCrossRefGoogle Scholar
  96. Jacob C (2015) Transcriptional control of neural crest specification into peripheral glia. Glia 63:1883–1896Google Scholar
  97. Jänig W (1989) Autonomic nervous system. In: Schmidt RF, Thews G (eds) Human physiology. Springer, Berlin, pp 333–370Google Scholar
  98. Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V, Raynal V, Puisieux A, Schleiermacher G, Pierron G, Valteau-Couanet D, Frebourg T, Michon J, Lyonnet S, Amiel J, Delattre O (2008) Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455:967–970PubMedCrossRefGoogle Scholar
  99. Jessen KR, Mirsky R, Lloyd AC (2015) Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol 7:a020487PubMedPubMedCentralCrossRefGoogle Scholar
  100. Joseph NM, Mukouyama YS, Mosher JT, Jaegle M, Crone SA, Dormand EL, Lee KF, Meijer D, Anderson DJ, Morrison SJ (2004) Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. Development 131:5599–5612PubMedPubMedCentralCrossRefGoogle Scholar
  101. Kahane N, Kalcheim C (1998) Identification of early postmitotic cells in distinct embryonic sites and their possible roles in morphogenesis. Cell Tissue Res 294:297–307PubMedCrossRefGoogle Scholar
  102. Kameda Y (2007) Expression of glial progenitor markers p75NTR and S100 protein in the developing mouse parathyroid gland. Cell Tissue Res 327:15–23PubMedCrossRefGoogle Scholar
  103. Kameda Y (2014) Signaling molecules and transcription factors involved in the development of the sympathetic nervous system, with special emphasis on the superior cervical ganglion. Cell Tissue Res 357:527–548Google Scholar
  104. Kannan CR (1986) Anatomy of the adrenal glands. In: Kannan CR (ed) Essential endocrinology: a primer for nonspecialists. Springer, New York, pp 233–234Google Scholar
  105. Kasemeier-Kulesa JC, McLennan R, Romine MH, Kulesa PM, Lefcort F (2010) CXCR4 Controls ventral migration of sympathetic precursor cells. J Neurosci 30:13078–13088PubMedCrossRefGoogle Scholar
  106. Kaukua N, Shahidi MK, Konstantinidou C, Dyachuk V, Kaucka M, Furlan A, An Z, Wang L, Hultman I, Ahrlund-Richter L, Blom H, Brismar H, Lopes NA, Pachnis V, Suter U, Clevers H, Thesleff I, Sharpe P, Ernfors P, Fried K, Adameyko I (2014) Glial origin of mesenchymal stem cells in a tooth model system. Nature 513:551–554PubMedCrossRefGoogle Scholar
  107. Kawasaki T, Bekku Y, Suto F, Kitsukawa T, Taniguchi M, Nagatsu I, Nagatsu T, Itoh K, Yagi T, Fujisawa H (2002) Requirement of neuropilin 1-mediated Sema3A signals in patterning of the sympathetic nervous system. Development 129:671–680PubMedGoogle Scholar
  108. Kelsh RN (2006) Sorting out Sox10 functions in neural crest development. BioEssays 28:788–798PubMedCrossRefGoogle Scholar
  109. Kerosuo L, Bronner-Fraser M (2012) What is bad in cancer is good in the embryo: importance of EMT in neural crest development. Semin Cell Dev Biol 23:320–332PubMedPubMedCentralCrossRefGoogle Scholar
  110. Kim J, Lo L, Dormand E, Anderson DJ (2003) SOX10 Maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38:17–31PubMedCrossRefGoogle Scholar
  111. Kim CH, Pennisi P, Zhao H, Yakar S, Kaufman JB, Iganaki K, Shiloach J, Scherer PE, Quon MJ, LeRoith D (2006) MKR mice are resistant to the metabolic actions of both insulin and adiponectin: discordance between insulin resistance and adiponectin responsiveness. Am J Physiol Endocrinol Metab 291:E298–E305PubMedCrossRefGoogle Scholar
  112. Kos R, Reedy MV, Johnson RL, Erickson CA (2001) The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128:1467–1479PubMedGoogle Scholar
  113. Krispin S, Nitzan E, Kalcheim C (2010a) The dorsal neural tube: a dynamic setting for cell fate decisions. Dev Neurobiol 70:796–812PubMedCrossRefGoogle Scholar
  114. Krispin S, Nitzan E, Kassem Y, Kalcheim C (2010b) Evidence for a dynamic spatiotemporal fate map and early fate restrictions of premigratory avian neural crest. Development 137:585–595PubMedCrossRefGoogle Scholar
  115. Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M (1998) Sox10, A novel transcriptional modulator in glial cells. J Neurosci 18:237–250PubMedCrossRefGoogle Scholar
  116. Kurtz A, Zimmer A, Schnutgen F, Bruning G, Spener F, Muller T (1994) The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development 120:2637–2649PubMedGoogle Scholar
  117. Landis SC, Patterson PH (1981) Neural crest cell lineages. Trends Neurosci 4:172–175CrossRefGoogle Scholar
  118. Langman J, Guerrant RL, Freeman BG (1966) Behavior of neuro-epithelial cells during closure of the neural tube. J Comp Neurol 127:399–411PubMedCrossRefGoogle Scholar
  119. Lawson SN, Biscoe TJ (1979) Development of mouse dorsal root ganglia: an autoradiographic and quantitative study. J Neurocytol 8:265–274PubMedCrossRefGoogle Scholar
  120. Le Douarin NM, Kalcheim C (1999) The neural crest. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  121. Le Douarin N, Teillet MA (1971) Localization, by the method of interspecific grafts of the neural area from which adrenal cells arise in the bird embryo. C R Acad Sci Hebd Seances Acad Sci D 272:481–484PubMedGoogle Scholar
  122. Le Douarin NM, Teillet MA (1973) The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morpholog 30:31–48Google Scholar
  123. Le Douarin N, Dulac C, Dupin E, Cameron-Curry P (1991) Glial cell lineages in the neural crest. Glia 4:175–184PubMedCrossRefGoogle Scholar
  124. Le Douarin NM, Calloni GW, Dupin E (2008) The stem cells of the neural crest. Cell Cycle 7:1013–1019PubMedCrossRefGoogle Scholar
  125. Levi-Montalcini R (1976) The nerve growth factor: its role in growth, differentiation and function of the sympathetic adrenergic neuron. Prog Brain Res 45:235–258PubMedCrossRefGoogle Scholar
  126. Lim J, Thiery JP (2012) Epithelial-mesenchymal transitions: insights from development. Development 139:3471–3486PubMedCrossRefGoogle Scholar
  127. Lim KC, Lakshmanan G, Crawford SE, Gu Y, Grosveld F, Engel JD (2000) Gata3 Loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat Genet 25:209–212PubMedCrossRefGoogle Scholar
  128. Lo L, Tiveron MC, Anderson DJ (1998) MASH1 Activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity. Development 125:609–620PubMedGoogle Scholar
  129. Lohr J, Gut P, Karch N, Unsicker K, Huber K (2006) Development of adrenal chromaffin cells in Sf1 heterozygous mice. Cell Tissue Res 325:437–444PubMedCrossRefGoogle Scholar
  130. Lucas ME, Muller F, Rudiger R, Henion PD, Rohrer H (2006) The bHLH transcription factor hand2 is essential for noradrenergic differentiation of sympathetic neurons. Development 133:4015–4024PubMedCrossRefGoogle Scholar
  131. Lumb R, Wiszniak S, Kabbara S, Scherer M, Harvey N, Schwarz Q (2014) Neuropilins define distinct populations of neural crest cells. Neural Dev 9:24PubMedPubMedCentralCrossRefGoogle Scholar
  132. Luo XR, Ikeda YY, Parker KL (1994) A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual-differentiation. Cell 77:481–490PubMedCrossRefGoogle Scholar
  133. Luo R, Gao J, Wehrle-Haller B, Henion PD (2003) Molecular identification of distinct neurogenic and melanogenic neural crest sublineages. Development 130:321–330PubMedCrossRefGoogle Scholar
  134. Ma Q, Kintner C, Anderson DJ (1996) Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87:43–52PubMedCrossRefGoogle Scholar
  135. Mac Auley A, Werb Z, Mirkes PE (1993) Characterization of the unusually rapid cell cycles during rat gastrulation. Development 117:873–883PubMedGoogle Scholar
  136. Maden CH, Gomes J, Schwarz Q, Davidson K, Tinker A, Ruhrberg C (2012) NRP1 And NRP2 cooperate to regulate gangliogenesis, axon guidance and target innervation in the sympathetic nervous system. Dev Biol 369:277–285PubMedPubMedCentralCrossRefGoogle Scholar
  137. Makita T, Sucov HM, Gariepy CE, Yanagisawa M, Ginty DD (2008) Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature 452:759–763PubMedPubMedCentralCrossRefGoogle Scholar
  138. Manousiouthakis E, Mendez M, Garner MC, Exertier P, Makita T (2014) Venous endothelin guides sympathetic innervation of the developing mouse heart. Nat Commun 5:3918PubMedPubMedCentralCrossRefGoogle Scholar
  139. Maro GS, Vermeren M, Voiculescu O, Melton L, Cohen J, Charnay P, Topilko P (2004) Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat Neurosci 7:930–938PubMedCrossRefGoogle Scholar
  140. Mascorro JA, Yates RD (1971) Ultrastructural studies of the effects of reserpine on mouse abdominal sympathetic paraganglia. Anat Rec 170:269–279PubMedCrossRefGoogle Scholar
  141. Mascorro JA, Yates RD (1974) Innervation of abdominal paraganglia: an ultrastructural study. J Morphol 142:153–163PubMedCrossRefGoogle Scholar
  142. Mascorro JA, Yates RD (1977) The anatomical distribution and morphology of extraadrenal chromaffin tissue (abdominal paraganglia) in the dog. Tissue Cell 9:447–460PubMedCrossRefGoogle Scholar
  143. Mascorro JA, Breaux TF, Yates RD (1994) Morphological observations of small granule-containing (chromaffin) cells in the celiac ganglion of the guinea pig, with emphasis on cell contacts. Microsc Res Tech 29:169–176PubMedCrossRefGoogle Scholar
  144. Mayanil CS (2013) Transcriptional and epigenetic regulation of neural crest induction during neurulation. Dev Neurosci 35:361–372PubMedCrossRefGoogle Scholar
  145. McKinney MC, Fukatsu K, Morrison J, McLennan R, Bronner ME, Kulesa PM (2013) Evidence for dynamic rearrangements but lack of fate or position restrictions in premigratory avian trunk neural crest. Development 140:820–830PubMedPubMedCentralCrossRefGoogle Scholar
  146. McNicol AM (2004) Adrenal Medulla and Paraganglia. Humana, New York, pp 227–243Google Scholar
  147. McPherson CE, Varley JE, Maxwell GD (2000) Expression and regulation of type I BMP receptors during early avian sympathetic ganglion development. Dev Biol 221:220–232PubMedCrossRefGoogle Scholar
  148. Mitchell PJ, Timmons PM, Hebert JM, Rigby PW, Tjian R (1991) Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev 5:105–119PubMedCrossRefGoogle Scholar
  149. Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79PubMedCrossRefGoogle Scholar
  150. Moriguchi T, Takako N, Hamada M, Maeda A, Fujioka Y, Kuroha T, Huber RE, Hasegawa SL, Rao A, Yamamoto M, Takahashi S, Lim KC, Engel JD (2006) Gata3 Participates in a complex transcriptional feedback network to regulate sympathoadrenal differentiation. Development 133:3871–3881PubMedCrossRefGoogle Scholar
  151. Morikawa Y, D’Autreaux F, Gershon MD, Cserjesi P (2007) Hand2 Determines the noradrenergic phenotype in the mouse sympathetic nervous system. Dev Biol 307:114–126PubMedPubMedCentralCrossRefGoogle Scholar
  152. Morikawa Y, Zehir A, Maska E, Deng C, Schneider MD, Mishina Y, Cserjesi P (2009) BMP signaling regulates sympathetic nervous system development through Smad4-dependent and -independent pathways. Development 136:3575–3584Google Scholar
  153. Moser M, Ruschoff J, Buettner R (1997) Comparative analysis of AP-2 alpha and AP-2 beta gene expression during murine embryogenesis. Dev Dyn 208:115–124PubMedCrossRefGoogle Scholar
  154. Muñoz WA, Trainor PA (2015) Neural crest cell evolution: how and when did a neural crest cell become a neural crest cell. In: Paul AT (ed) Current topics in developmental biology, vol 111. Academic, Cambridge, pp 3–26Google Scholar
  155. Murphy P, Topilko P, Schneider-Maunoury S, Seitanidou T, Baron-Van Evercooren A, Charnay P (1996) The regulation of Krox-20 expression reveals important steps in the control of peripheral glial cell development. Development 122:2847–2857PubMedGoogle Scholar
  156. Newbern JM (2015) Molecular control of the neural crest and peripheral nervous system development. In: Paul AT (ed) Current topics in developmental biology, vol 111. Academic, Cambridge, pp 201–231Google Scholar
  157. Nishino J, Saunders TL, Sagane K, Morrison SJ (2010) Lgi4 Promotes the proliferation and differentiation of glial lineage cells throughout the developing peripheral nervous system. J Neurosci 30:15228–15240PubMedPubMedCentralCrossRefGoogle Scholar
  158. Nitzan E, Pfaltzgraff ER, Labosky PA, Kalcheim C (2013) Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3. Proc Natl Acad Sci U S A 110:12709–12714PubMedPubMedCentralCrossRefGoogle Scholar
  159. Noisa P, Raivio T (2014) Neural crest cells: from developmental biology to clinical interventions. Birth Defects Res C 102:263–274CrossRefGoogle Scholar
  160. Nowakowski RS, Lewin SB, Miller MW (1989) Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 18:311–318PubMedCrossRefGoogle Scholar
  161. Nowakowski RS, Caviness VS Jr, Takahashi T, Hayes NL (2002) Population dynamics during cell proliferation and neuronogenesis in the developing murine neocortex. Results Probl Cell Differ 39:1–25PubMedCrossRefGoogle Scholar
  162. Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9:115–128PubMedCrossRefGoogle Scholar
  163. Ozkaynak E, Abello G, Jaegle M, van Berge L, Hamer D, Kegel L, Driegen S, Sagane K, Bermingham JR Jr, Meijer D (2010) Adam22 Is a major neuronal receptor for Lgi4-mediated Schwann cell signaling. J Neurosci 30:3857–3864PubMedPubMedCentralCrossRefGoogle Scholar
  164. Pakkarato S, Chomphoo S, Kagawa Y, Owada Y, Mothong W, Iamsaard S, Sawatpanich T, Kondo H, Hipkaeo W (2015) Immunohistochemical analysis of sustentacular cells in the adrenal medulla, carotid body and sympathetic ganglion of mice using an antibody against brain-type fatty acid binding protein (B-FABP). J Anat 226:348–353PubMedPubMedCentralCrossRefGoogle Scholar
  165. Paratore C, Goerich DE, Suter U, Wegner M, Sommer L (2001) Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development 128:3949–3961PubMedGoogle Scholar
  166. Partanen M, Linnoila I, Hervonent A, Rapoport SI (1984a) The effect of aging on extra-adrenal catecholamine storing cells of the rat. Neurobiol Aging 5:105–110PubMedCrossRefGoogle Scholar
  167. Partanen M, Rapoport SI, Reis DJ, Joh TH, Stolk JM, Linnoila I, Teitelman G, Hervonen A (1984b) Catecholamine-synthesizing enzymes in paraganglia of aged Fischer-344 rats. Immunohistochemistry and fluorescence microscopy. Cell Tissue Res 238:217–220PubMedCrossRefGoogle Scholar
  168. Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399:366–370PubMedCrossRefGoogle Scholar
  169. Pattyn A, Guillemot F, Brunet JF (2006) Delays in neuronal differentiation in Mash1/Ascl1 mutants. Dev Biol 295:67–75PubMedCrossRefGoogle Scholar
  170. Perez SE, Rebelo S, Anderson DJ (1999) Early specification of sensory neuron fate revealed by expression and function of neurogenins in the chick embryo. Development 126:1715–1728PubMedGoogle Scholar
  171. Pfeuty B, David-Pfeuty T, Kaneko K (2008) Underlying principles of cell fate determination during G1 phase of the mammalian cell cycle. Cell Cycle 7:3246–3257PubMedCrossRefGoogle Scholar
  172. Potzner MR, Tsarovina K, Binder E, Penzo-Mendez A, Lefebvre V, Rohrer H, Wegner M, Sock E (2010) Sequential requirement of Sox4 and Sox11 during development of the sympathetic nervous system. Development 137:775–784PubMedPubMedCentralCrossRefGoogle Scholar
  173. Raible DW, Eisen JS (1994) Restriction of neural crest cell fate in the trunk of the embryonic zebrafish. Development 120:495–503PubMedGoogle Scholar
  174. Raposo AA, Vasconcelos FF, Drechsel D, Marie C, Johnston C, Dolle D, Bithell A, Gillotin S, van den Berg DL, Ettwiller L, Flicek P, Crawford GE, Parras CM, Berninger B, Buckley NJ, Guillemot F, Castro DS (2015) Ascl1 Coordinately regulates gene expression and the chromatin landscape during neurogenesis. Cell Rep 10:1544–1556PubMedCentralCrossRefGoogle Scholar
  175. Reid K, Nishikawa S, Bartlett PF, Murphy M (1995) Steel factor directs melanocyte development in vitro through selective regulation of the number of c-kit+ progenitors. Dev Biol 169:568–579PubMedCrossRefGoogle Scholar
  176. Reiff T, Tsarovina K, Majdazari A, Schmidt M, del Pino I, Rohrer H (2010) Neuroblastoma phox2b variants stimulate proliferation and dedifferentiation of immature sympathetic neurons. J Neurosci 30:905–915PubMedCrossRefGoogle Scholar
  177. Reiff T, Huber L, Kramer M, Delattre O, Janoueix-Lerosey I, Rohrer H (2011) Midkine and Alk signaling in sympathetic neuron proliferation and neuroblastoma predisposition. Development 138:4699–4708PubMedCrossRefGoogle Scholar
  178. Reissmann E, Ernsberger U, Francis-West PH, Rueger D, Brickell PM, Rohrer H (1996) Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 122:2079–2088PubMedGoogle Scholar
  179. Rickmann M, Fawcett JW, Keynes RJ (1985) The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. J Embryol Exp Morphol 90:437–455PubMedGoogle Scholar
  180. Ridenour DA, McLennan R, Teddy JM, Semerad CL, Haug JS, Kulesa PM (2014) The neural crest cell cycle is related to phases of migration in the head. Development 141:1095–1103PubMedPubMedCentralCrossRefGoogle Scholar
  181. Rodriguez H, Filippa V, Mohamed F, Dominguez S, Scardapane L (2007) Interaction between chromaffin and sustentacular cells in adrenal medulla of viscacha (Lagostomus Maximus Maximus). Anat Histol Embryol 36:182–185PubMedCrossRefGoogle Scholar
  182. Rohrer H (2011) Transcriptional control of differentiation and neurogenesis in autonomic ganglia. Eur J Neurosci 34:1563–1573PubMedCrossRefGoogle Scholar
  183. Rohrer H, Thoenen H (1987) Relationship between differentiation and terminal mitosis: chick sensory and ciliary neurons differentiate after terminal mitosis of precursor cells, whereas sympathetic neurons continue to divide after differentiation. J Neurosci 7:3739–3748PubMedCrossRefGoogle Scholar
  184. Rothman TP, Gershon MD, Holtzer H (1978) The relationship of cell division to the acquisition of adrenergic characteristics by developing sympathetic ganglion cell precursors. Dev Biol 65:322–341PubMedCrossRefGoogle Scholar
  185. Rubin de Celis MF, Garcia-Martin R, Wittig D, Valencia GD, Enikolopov G, Funk RH, Chavakis T, Bornstein SR, Androutsellis-Theotokis A, Ehrhart-Bornstein M (2015) Multipotent glia-like stem cells mediate stress adaptation. Stem Cells 33:2037–2051PubMedCrossRefGoogle Scholar
  186. Ruiz S, Panopoulos AD, Herrerias A, Bissig KD, Lutz M, Berggren WT, Verma IM, Izpisua Belmonte JC (2011) A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity. Curr Biol 21:45–52PubMedCrossRefGoogle Scholar
  187. Saito D, Takase Y, Murai H, Takahashi Y (2012) The dorsal aorta initiates a molecular cascade that instructs sympatho-adrenal specification. Science 336:1578–1581PubMedCrossRefGoogle Scholar
  188. Salomoni P, Calegari F (2010) Cell cycle control of mammalian neural stem cells: putting a speed limit on G1. Trends Cell Biol 20:233–243PubMedCrossRefGoogle Scholar
  189. Santana MM, Chung KF, Vukicevic V, Rosmaninho-Salgado J, Kanczkowski W, Cortez V, Hackmann K, Bastos CA, Mota A, Schrock E, Bornstein SR, Cavadas C, Ehrhart-Bornstein M (2012) Isolation, characterization, and differentiation of progenitor cells from human adult adrenal medulla. Stem Cells Transl Med 1:783–791PubMedPubMedCentralCrossRefGoogle Scholar
  190. Sauka-Spengler T, Bronner-Fraser M (2006) Development and evolution of the migratory neural crest: a gene regulatory perspective. Curr Opin Genet Dev 16:360–366PubMedCrossRefGoogle Scholar
  191. Saxena S, Wahl J, Huber-Lang MS, Stadel D, Braubach P, Debatin KM, Beltinger C (2013) Generation of murine sympathoadrenergic progenitor-like cells from embryonic stem cells and postnatal adrenal glands. PLoS ONE 8:e64454PubMedPubMedCentralCrossRefGoogle Scholar
  192. Schilling TF, Kimmel CB (1994) Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120:483–494PubMedGoogle Scholar
  193. Schmidt M, Lin S, Pape M, Ernsberger U, Stanke M, Kobayashi K, Howard MJ, Rohrer H (2009) The bHLH transcription factor Hand2 is essential for the maintenance of noradrenergic properties in differentiated sympathetic neurons. Dev Biol 329:191–200Google Scholar
  194. Schmidt M, Huber L, Majdazari A, Schutz G, Williams T, Rohrer H (2011) The transcription factors AP-2beta and AP-2alpha are required for survival of sympathetic progenitors and differentiated sympathetic neurons. Dev Biol 355:89–100PubMedCrossRefGoogle Scholar
  195. Schneider C, Wicht H, Enderich J, Wegner M, Rohrer H (1999) Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 24:861–870PubMedCrossRefGoogle Scholar
  196. Schober A, Parlato R, Huber K, Kinscherf R, Hartleben B, Huber TB, Schutz G, Unsicker K (2013) Cell loss and autophagy in the extra-adrenal chromaffin organ of Zuckerkandl are regulated by glucocorticoid signalling. J Neuroendocrinol 25:34–47PubMedCrossRefGoogle Scholar
  197. Schwarz Q, Ruhrberg C (2010) Neuropilin, you gotta let me know: should I stay or should I go? Cell Adhes Migr 4:61–66CrossRefGoogle Scholar
  198. Schwarz Q, Maden CH, Davidson K, Ruhrberg C (2009a) Neuropilin-mediated neural crest cell guidance is essential to organise sensory neurons into segmented dorsal root ganglia. Development 136:1785–1789PubMedPubMedCentralCrossRefGoogle Scholar
  199. Schwarz Q, Maden CH, Vieira JM, Ruhrberg C (2009b) Neuropilin 1 signaling guides neural crest cells to coordinate pathway choice with cell specification. Proc Natl Acad Sci U S A 106:6164–6169PubMedPubMedCentralCrossRefGoogle Scholar
  200. Serbedzija GN, Bronner-Fraser M, Fraser SE (1989) A vital dye analysis of the timing and pathways of avian trunk neural crest cell migration. Development 106:809–816PubMedGoogle Scholar
  201. Serbedzija GN, Fraser SE, Bronner-Fraser M (1990) Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling. Development 108:605–612PubMedGoogle Scholar
  202. Shah NM, Marchionni MA, Isaacs I, Stroobant P, Anderson DJ (1994) Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77:349–360PubMedCrossRefGoogle Scholar
  203. Shah NM, Groves AK, Anderson DJ (1996) Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 85:331–343PubMedCrossRefGoogle Scholar
  204. Shanklin DR, Soteloav C (1969) In situ tumors in fetuses, newborns and infants. Biol Neonat 14:286-&CrossRefGoogle Scholar
  205. Shi H, Cui H, Alam G, Gunning WT, Nestor A, Giovannucci D, Zhang M, Ding HF (2008) Nestin expression defines both glial and neuronal progenitors in postnatal sympathetic ganglia. J Comp Neurol 508:867–878PubMedPubMedCentralCrossRefGoogle Scholar
  206. Shtukmaster S, Schier MC, Huber K, Krispin S, Kalcheim C, Unsicker K (2013) Sympathetic neurons and chromaffin cells share a common progenitor in the neural crest in vivo. Neural Dev 8:12PubMedPubMedCentralCrossRefGoogle Scholar
  207. Shtukmaster S, Narasimhan P, El Faitwri T, Stubbusch J, Ernsberger U, Rohrer H, Unsicker K, Huber K (2016) MiR-124 is differentially expressed in derivatives of the sympathoadrenal cell lineage and promotes neurite elongation in chromaffin cells. Cell Tissue Res 365:225–232PubMedCrossRefGoogle Scholar
  208. Smith JL, Schoenwolf GC (1987) Cell cycle and neuroepithelial cell shape during bending of the chick neural plate. Anat Rec 218:196–206PubMedCrossRefGoogle Scholar
  209. Smith JL, Schoenwolf GC (1988) Role of cell-cycle in regulating neuroepithelial cell shape during bending of the chick neural plate. Cell Tissue Res 252:491–500PubMedCrossRefGoogle Scholar
  210. Sommer L, Ma Q, Anderson DJ (1996) Neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol Cell Neurosci 8:221–241PubMedCrossRefGoogle Scholar
  211. Stanke M, Junghans D, Geissen M, Goridis C, Ernsberger U, Rohrer H (1999) The Phox2 homeodomain proteins are sufficient to promote the development of sympathetic neurons. Development 126:4087–4094PubMedGoogle Scholar
  212. Stanke M, Stubbusch J, Rohrer H (2004) Interaction of Mash1 and Phox2b in sympathetic neuron development. Mol Cell Neurosci 25:374–382PubMedCrossRefGoogle Scholar
  213. Stemple DL, Anderson DJ (1992) Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71:973–985PubMedCrossRefGoogle Scholar
  214. Stewart HJ, Brennan A, Rahman M, Zoidl G, Mitchell PJ, Jessen KR, Mirsky R (2001) Developmental regulation and overexpression of the transcription factor AP-2, a potential regulator of the timing of Schwann cell generation. Eur J Neurosci 14:363–372PubMedCrossRefGoogle Scholar
  215. Stubbusch J, Narasimhan P, Huber K, Unsicker K, Rohrer H, Ernsberger U (2013) Synaptic protein and pan-neuronal gene expression and their regulation by Dicer-dependent mechanisms differ between neurons and neuroendocrine cells. Neural Dev 8:16PubMedPubMedCentralCrossRefGoogle Scholar
  216. Stubbusch J, Narasimhan P, Hennchen M, Huber K, Unsicker K, Ernsberger U, Rohrer H (2015) Lineage and stage specific requirement for Dicer1 in sympathetic ganglia and adrenal medulla formation and maintenance. Dev Biol 400:210–223PubMedCrossRefGoogle Scholar
  217. Subramanian A, Maker VK (2006) Organs of Zuckerkandl: their surgical significance and a review of a century of literature. Am J Surg 192:224–234PubMedCrossRefGoogle Scholar
  218. Suzuki T, Kachi T (1994) Differences between adrenaline and Noradrenaline cells in cellular-association with supporting cells in the adrenal-medulla of the pig - an Immunohistochemical study. Neurosci Lett 176:217–220PubMedCrossRefGoogle Scholar
  219. Takahashi T, Nowakowski RS, Caviness VS Jr (1996) The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J Neurosci 16:6183–6196PubMedCrossRefGoogle Scholar
  220. Takahashi T, Nowakowski RS, Caviness VS Jr (1997) The mathematics of neocortical neuronogenesis. Dev Neurosci 19:17–22PubMedCrossRefGoogle Scholar
  221. Theveneau E, Duband JL, Altabef M (2007) Ets-1 confers cranial features on neural crest delamination. PLoS ONE 2:e1142PubMedPubMedCentralCrossRefGoogle Scholar
  222. Thomas AJ, Erickson CA (2009) FOXD3 Regulates the lineage switch between neural crest-derived glial cells and pigment cells by repressing MITF through a non-canonical mechanism. Development 136:1849–1858PubMedPubMedCentralCrossRefGoogle Scholar
  223. Thomas SA, Matsumoto AM, Palmiter RD (1995) Noradrenaline is essential for mouse fetal development. Nature 374:643–646PubMedCrossRefGoogle Scholar
  224. Tischler AS, Ruzicka LA, Donahue SR, DeLellis RA (1989) Chromaffin cell proliferation in the adult rat adrenal medulla. Int J Dev Neurosci 7:439–448PubMedCrossRefGoogle Scholar
  225. Tsarovina K, Pattyn A, Stubbusch J, Muller F, Van Der Wees J, Schneider C, Brunet JF, Rohrer H (2004) Essential role of Gata transcription factors in sympathetic neuron development. Development 131:4775–4786PubMedCrossRefGoogle Scholar
  226. Tsarovina K, Schellenberger J, Schneider C, Rohrer H (2008) Progenitor cell maintenance and neurogenesis in sympathetic ganglia involves notch signaling. Mol Cell Neurosci 37:20–31PubMedCrossRefGoogle Scholar
  227. Tsarovina K, Reiff T, Stubbusch J, Kurek D, Grosveld FG, Parlato R, Schutz G, Rohrer H (2010) The Gata3 transcription factor is required for the survival of embryonic and adult sympathetic neurons. J Neurosci 30:10833–10843PubMedCrossRefGoogle Scholar
  228. Uesaka T, Nagashimada M, Enomoto H (2015) Neuronal differentiation in Schwann cell lineage underlies postnatal neurogenesis in the enteric nervous system. J Neurosci 35:9879–9888PubMedCrossRefGoogle Scholar
  229. Unsicker K, Krisch B, Otten U, Thoenen H (1978) Nerve growth factor-induced fiber outgrowth from isolated rat adrenal chromaffin cells: impairment by glucocorticoids. Proc Natl Acad Sci U S A 75:3498–3502PubMedPubMedCentralCrossRefGoogle Scholar
  230. Van Dusen NJ, Vincentz JW, Firulli BA, Howard MJ, Rubart M, Firulli AB (2014) Loss of Hand2 in a population of Periostin lineage cells results in pronounced bradycardia and neonatal death. Dev Biol 388:149–158CrossRefGoogle Scholar
  231. Varley JE, Maxwell GD (1996) BMP-2 and BMP-4, but not BMP-6, increase the number of adrenergic cells which develop in quail trunk neural crest cultures. Exp Neurol 140:84–94PubMedCrossRefGoogle Scholar
  232. Varley JE, Wehby RG, Rueger DC, Maxwell GD (1995) Number of adrenergic and islet-1 immunoreactive cells is increased in avian trunk neural crest cultures in the presence of human recombinant osteogenic protein-1. Dev Dyn 203:434–447PubMedCrossRefGoogle Scholar
  233. Varley JE, McPherson CE, Zou H, Niswander L, Maxwell GD (1998) Expression of a constitutively active type I BMP receptor using a retroviral vector promotes the development of adrenergic cells in neural crest cultures. Dev Biol 196:107–118PubMedCrossRefGoogle Scholar
  234. Vega-Lopez GA, Cerrizuela S, Aybar MJ (2017) Trunk neural crest cells: formation, migration and beyond. Int J Dev Biol 61:5–15PubMedCrossRefGoogle Scholar
  235. Wang L, Mongera A, Bonanomi D, Cyganek L, Pfaff SL, Nusslein-Volhard C, Marquardt T (2014) A conserved axon type hierarchy governing peripheral nerve assembly. Development 141:1875–1883PubMedCrossRefGoogle Scholar
  236. Waring H (1936) Development of the adrenal gland of the mouse. Q J Microsc Sci 78:329–336Google Scholar
  237. Wegner M, Stolt CC (2005) From stem cells to neurons and glia: a Soxist’s view of neural development. Trends Neurosci 28:583–588PubMedCrossRefGoogle Scholar
  238. White J, Dalton S (2005) Cell cycle control of embryonic stem cells. Stem Cell Rev 1:131–138PubMedCrossRefGoogle Scholar
  239. Wildner H, Gierl MS, Strehle M, Pla P, Birchmeier C (2008) Insm1 (IA-1) is a crucial component of the transcriptional network that controls differentiation of the sympatho-adrenal lineage. Development 135:473–481PubMedCrossRefGoogle Scholar
  240. Wilson YM, Richards KL, Ford-Perriss ML, Panthier JJ, Murphy M (2004) Neural crest cell lineage segregation in the mouse neural tube. Development 131:6153–6162PubMedCrossRefGoogle Scholar
  241. Woodhoo A, Alonso MB, Droggiti A, Turmaine M, D’Antonio M, Parkinson DB, Wilton DK, Al-Shawi R, Simons P, Shen J, Guillemot F, Radtke F, Meijer D, Feltri ML, Wrabetz L, Mirsky R, Jessen KR (2009) Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat Neurosci 12:839–847PubMedPubMedCentralCrossRefGoogle Scholar
  242. Wurtman RJ, Axelrod J (1966) Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids. J Biol Chem 241:2301–2305PubMedGoogle Scholar
  243. Young HM, Bergner AJ, Muller T (2003) Acquisition of neuronal and glial markers by neural crest-derived cells in the mouse intestine. J Comp Neurol 456:1–11PubMedCrossRefGoogle Scholar
  244. Young HM, Cane KN, Anderson CR (2011) Development of the autonomic nervous system: a comparative view. Auton Neurosci 165:10–27PubMedCrossRefGoogle Scholar
  245. Zackenfels K, Oppenheim RW, Rohrer H (1995) Evidence for an important role of IGF-I and IGF-II for the early development of chick sympathetic neurons. Neuron 14:731–741PubMedCrossRefGoogle Scholar
  246. Zhou QY, Quaife CJ, Palmiter RD (1995) Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature 374:640–643PubMedCrossRefGoogle Scholar
  247. Zirlinger M, Lo L, McMahon J, McMahon AP, Anderson DJ (2002) Transient expression of the bHLH factor neurogenin-2 marks a subpopulation of neural crest cells biased for a sensory but not a neuronal fate. Proc Natl Acad Sci U S A 99:8084–8089PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • W. H. Chan
    • 1
  • C. R. Anderson
    • 1
  • David G. Gonsalvez
    • 1
  1. 1.Department of Anatomy and Neuroscience, School of Biomedical SciencesThe University of MelbourneParkvilleAustralia

Personalised recommendations