Skip to main content

Advertisement

Log in

Procollagen C-proteinase enhancer 1 (PCPE-1) functions as an anti-angiogenic factor and enhances epithelial recovery in injured cornea

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Procollagen C-proteinase enhancer 1 (PCPE-1) has been characterized as a protein capable of enhancing the activity of bone morphogenetic protein 1/tolloid-like proteinases in the biosynthetic processing of C-propeptides from procollagens I–III. This processing step is thought necessary to the formation of collagen I–III monomers capable of forming fibrils. Thus, PCPE-1 is predicted to play an important role in scarring, as scar tissue is predominantly composed of fibrillar collagen. Corneal scarring is of great clinical importance, as it leads to loss of visual acuity and, in severe cases, blindness. Here, we investigate a possible role for PCPE-1 in corneal scarring. Although differences in corneal opacity associated with scarring following injury of Pcolce −/− and wild-type (WT) mice using full-thickness excision or alkali burn models of corneal injury were not grossly apparent, differences in procollagen I processing levels between Pcolce −/− and WT primary corneal keratocytes were consistent with a role for PCPE-1 in corneal collagen deposition. An unexpected finding was that neoangiogenesis, which follows alkali burn cornea injury, was strikingly increased in Pcolce −/− cornea, compared to WT. A series of aortic ring assays confirmed the anti-angiogenic effects of PCPE-1. Another unexpected finding was of abnormalities of epithelial basement membrane and of re-epithelialization following Pcolce −/− corneal injury. Thus, PCPE-1 appears to be of importance as an anti-angiogenic factor and in re-epithelialization following injury in cornea and perhaps in other tissues as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adar R, Kessler E, Goldberg B (1986) Evidence for a protein that enhances the activity of type I procollagen C-proteinase. Coll Relat Res 6:267–277

    Article  CAS  PubMed  Google Scholar 

  • Baicu CF, Zhang Y, Van Laer AO, Renaud L, Zile MR, Bradshaw AD (2012) Effects of the absence of procollagen C-endopeptidase enhancer-2 on myocardial collagen accumulation in chronic pressure overload. Am J Physiol Heart Circ Physiol 303:H234–H240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker M, Robinson SD, Lechertier T, Barber PR, Tavora B, D'Amico G, Jones DT, Vojnovic B, Hodivala-Dilke K (2012) Use of the mouse aortic ring assay to study angiogenesis. Nat Protoc 7:89–104

    Article  CAS  Google Scholar 

  • Brodovsky SC, McCarty CA, Snibson G, Loughnan M, Sullivan L, Daniell M, Taylor HR (2000) Management of alkali burns : an 11-year retrospective review. Ophthalmology 107:1829–1835

    Article  CAS  PubMed  Google Scholar 

  • Chen YT, Huang CW, Huang FC, Tseng SY, Tseng SH (2006) The cleavage plane of corneal epithelial adhesion complex in traumatic recurrent corneal erosion. Mol Vis 12:196–204

    CAS  PubMed  Google Scholar 

  • Comaish IF, Lawless MA (2002) Progressive post-LASIK keratectasia: biomechanical instability or chronic disease process? J Cataract Refract Surg 28:2206–2213

    Article  PubMed  Google Scholar 

  • Fisher LW, Stubbs JT 3rd, Young MF (1995) Antisera and cDNA probes to human and certain animal model bone matrix noncollagenous proteins. Acta Orthop Scand Suppl 266:61–65

    CAS  PubMed  Google Scholar 

  • Francone OL, Ishida BY, de la Llera-Moya M, Royer L, Happe C, Zhu J, Chalkey RJ, Schaefer P, Cox C, Burlingame A, Kane JP, Rothblat GH (2011) Disruption of the murine procollagen C-proteinase enhancer 2 gene causes accumulation of pro-apoA-I and increased HDL levels. J Lipid Res 52:1974–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galiacy SD, Froment C, Mouton-Barbosa E, Erraud A, Chaoui K, Desjardins L, Monsarrat B, Malecaze F, Burlet-Schiltz O (2011) Deeper in the human cornea proteome using nanoLC-Orbitrap MS/MS: an improvement for future studies on cornea homeostasis and pathophysiology. J Proteome 75:81–92

    Article  CAS  Google Scholar 

  • Ge G, Fernandez CA, Moses MA, Greenspan DS (2007) Bone morphogenetic protein 1 processes prolactin to a 17-kDa antiangiogenic factor. Proc Natl Acad Sci U S A 104:10010–10015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez EM, Reed CC, Bix G, Fu J, Zhang Y, Gopalakrishnan B, Greenspan DS, Iozzo RV (2005) BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan. J Biol Chem 280:7080–7087

    Article  CAS  PubMed  Google Scholar 

  • Hassoun E, Safrin M, Ziv H, Pri-Chen S, Kessler E (2016) Procollagen C-proteinase enhancer 1 (PCPE-1) as a plasma marker of muscle and liver fibrosis in mice. PLoS ONE 11:e0159606

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang G, Zhang Y, Kim B, Ge G, Annis DS, Mosher DF, Greenspan DS (2009) Fibronectin binds and enhances the activity of bone morphogenetic protein 1. J Biol Chem 284:25879–25888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ippolito DL, AbdulHameed MD, Tawa GJ, Baer CE, Permenter MG, McDyre BC, Dennis WE, Boyle MH, Hobbs CA, Streicker MA, Snowden BS, Lewis JA, Wallqvist A, Stallings JD (2016) Gene expression patterns associated with histopathology in toxic liver fibrosis. Toxicol Sci 149:67–88

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki M, Zhu G, Haseba T, Shafer SS, Kao WW (1993) Expression of collagen I, smooth muscle alpha-actin, and vimentin during the healing of alkali-burned and lacerated corneas. Invest Ophthalmol Vis Sci 34:3320–3328

    CAS  PubMed  Google Scholar 

  • Kanaki T, Morisaki N, Bujo H, Takahashi K, Ishii I, Saito Y (2000) The regulatory expression of procollagen COOH-terminal proteinase enhancer in the proliferation of vascular smooth muscle cells. Biochem Biophys Res Commun 270:1049–1054

    Article  CAS  PubMed  Google Scholar 

  • Kanski JJ (1999) Clinical ophthalmology, 4th edn. Butterworth-Heinemann, Boston, pp 139–140

    Google Scholar 

  • Kessler E, Mould AP, Hulmes DJ (1990) Procollagen type I C-proteinase enhancer is a naturally occurring connective tissue glycoprotein. Biochem Biophys Res Commun 173:81–86

    Article  CAS  PubMed  Google Scholar 

  • Kessler-Icekson G, Schlesinger H, Freimann S, Kessler E (2006) Expression of procollagen C-proteinase enhancer-1 in the remodeling rat heart is stimulated by aldosterone. Int J Biochem Cell Biol 38:358–365

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Burns AR, Smith CW (2006a) Two waves of neutrophil emigration in response to corneal epithelial abrasion: distinct adhesion molecule requirements. Invest Ophthalmol Vis Sci 47:1947–1955

    Article  PubMed  Google Scholar 

  • Li Z, Rumbaut RE, Burns AR, Smith CW (2006b) Platelet response to corneal abrasion is necessary for acute inflammation and efficient re-epithelialization. Invest Ophthalmol Vis Sci 47:4794–4802

    Article  PubMed  Google Scholar 

  • Malecaze F, Massoudi D, Fournie P, Tricoire C, Cassagne M, Malbouyres M, Hulmes DJ, Moali C, Galiacy SD (2014) Upregulation of bone morphogenetic protein-1/mammalian tolloid and procollagen C-proteinase enhancer-1 in corneal scarring. Invest Ophthalmol Vis Sci 55:6712–6721

    Article  CAS  PubMed  Google Scholar 

  • Massoudi D, Malecaze F, Soler V, Butterworth J, Erraud A, Fournie P, Koch M, Galiacy SD (2012) NC1 Long and NC3 short splice variants of type XII collagen are overexpressed during corneal scarring. Invest Ophthalmol Vis Sci 53:7246–7256

    Article  CAS  PubMed  Google Scholar 

  • Masuda M, Igarashi H, Kano M, Yoshikura H (1998) Effects of procollagen C-proteinase enhancer protein on the growth of cultured rat fibroblasts revealed by an excisable retroviral vector. Cell Growth Differ 9:381–391

    CAS  PubMed  Google Scholar 

  • Moali C, Font B, Ruggiero F, Eichenberger D, Rousselle P, Francois V, Oldberg A, Bruckner-Tuderman L, Hulmes DJ (2005) Substrate-specific modulation of a multisubstrate proteinase. C-terminal processing of fibrillar procollagens is the only BMP-1-dependent activity to be enhanced by PCPE-1. J Biol Chem 280:24188–24194

    Article  CAS  PubMed  Google Scholar 

  • Muir AM, Ren Y, Butz DH, Davis NA, Blank RD, Birk DE, Lee SJ, Rowe D, Feng JQ, Greenspan DS (2014) Induced ablation of Bmp1 and Tll1 produces osteogenesis imperfecta in mice. Hum Mol Genet 23:3085–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muir AM, Massoudi D, Nguyen N, Keene DR, Lee SJ, Birk DE, Davidson JM, Marinkovich MP, Greenspan DS (2016) BMP1-Like proteinases are essential to the structure and wound healing of skin. Matrix Biol 56:114–131

    Article  CAS  PubMed  Google Scholar 

  • Newman AC, Nakatsu MN, Chou W, Gershon PD, Hughes CC (2011) The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol Biol Cell 22:3791–3800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicosia RF, Zorzi P, Ligresti G, Morishita A, Aplin AC (2011) Paracrine regulation of angiogenesis by different cell types in the aorta ring model. Int J Dev Biol 55:447–453

    Article  CAS  PubMed  Google Scholar 

  • Ogata I, Auster AS, Matsui A, Greenwel P, Geerts A, D'Amico T, Fujiwara K, Kessler E, Rojkind M (1997) Up-regulation of type I procollagen C-proteinase enhancer protein messenger RNA in rats with CCl4-induced liver fibrosis. Hepatology 26:611–617

    Article  CAS  PubMed  Google Scholar 

  • Pappano WN, Steiglitz BM, Scott IC, Keene DR, Greenspan DS (2003) Use of Bmp1/Tll1 doubly homozygous null mice and proteomics to identify and validate in vivo substrates of bone morphogenetic protein 1/tolloid-like metalloproteinases. Mol Cell Biol 23:4428–4438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfister RR, Haddox JL, Sommers CI (1998) Injection of chemoattractants into normal cornea: a model of inflammation after alkali injury. Invest Ophthalmol Vis Sci 39:1744–1750

    CAS  PubMed  Google Scholar 

  • Rattenholl A, Pappano WN, Koch M, Keene DR, Kadler KE, Sasaki T, Timpl R, Burgeson RE, Greenspan DS, Bruckner-Tuderman L (2002) Proteinases of the bone morphogenetic protein-1 family convert procollagen VII to mature anchoring fibril collagen. J Biol Chem 277:26372–26378

    Article  CAS  PubMed  Google Scholar 

  • Salza R, Peysselon F, Chautard E, Faye C, Moschcovich L, Weiss T, Perrin-Cocon L, Lotteau V, Kessler E, Ricard-Blum S (2014) Extended interaction network of procollagen C-proteinase enhancer-1 in the extracellular matrix. Biochem J 457:137–149

    Article  CAS  PubMed  Google Scholar 

  • Sotozono C, He J, Tei M, Honma Y, Kinoshita S (1999) Effect of metalloproteinase inhibitor on corneal cytokine expression after alkali injury. Invest Ophthalmol Vis Sci 40:2430–2434

    CAS  PubMed  Google Scholar 

  • St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202

    Article  CAS  PubMed  Google Scholar 

  • Steiglitz BM, Keene DR, Greenspan DS (2002) PCOLCE2 Encodes a functional procollagen C-proteinase enhancer (PCPE2) that is a collagen-binding protein differing in distribution of expression and post-translational modification from the previously described PCPE1. J Biol Chem 277:49820–49830

    Article  CAS  PubMed  Google Scholar 

  • Steiglitz BM, Kreider JM, Frankenburg EP, Pappano WN, Hoffman GG, Meganck JA, Liang X, Hook M, Birk DE, Goldstein SA, Greenspan DS (2006) Procollagen C proteinase enhancer 1 genes are important determinants of the mechanical properties and geometry of bone and the ultrastructure of connective tissues. Mol Cell Biol 26:238–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong VW, You F, Januszyk M, Gurtner GC, Kuang AA (2014) Transcriptional profiling of rapamycin-treated fibroblasts from hypertrophic and keloid scars. Ann Plast Surg 72:711–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Acott TS, Wirtz MK (2000) Identification and expression of a novel type I procollagen C-proteinase enhancer protein gene from the glaucoma candidate region on 3q21-q24. Genomics 66:264–273

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Ruifrok WP, Meissner M, Bos EM, van Goor H, Sanjabi B, van der Harst P, Pitt B, Goldstein IJ, Koerts JA, van Veldhuisen DJ, Bank RA, van Gilst WH, Sillje HH, de Boer RA (2013) Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail 6:107–117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drew Roenneburg for advice and provision of antibodies for some of the immunohistochemical analyses. This work was supported by National Institute of Health grant R01AR047746 (to D. S. G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Greenspan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massoudi, D., Germer, C.J., Glisch, J.M. et al. Procollagen C-proteinase enhancer 1 (PCPE-1) functions as an anti-angiogenic factor and enhances epithelial recovery in injured cornea. Cell Tissue Res 370, 461–476 (2017). https://doi.org/10.1007/s00441-017-2689-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2689-6

Keywords

Navigation