Skip to main content

Advertisement

Log in

Disease modeling in genetic kidney diseases: mice

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The mouse still represents arguably the most important mammal organism in research for modeling human genetic kidney diseases in vivo. Compared with many other mammal species, the breeding and maintenance of mice in the laboratory is relatively simple and cheap and reproduction cycles are short. In addition to classic gene knockout mouse lines, new molecular biological technologies have led to the development of a plethora of other, more sophisticated, mouse models, allowing the targeting of genes or gene function in a cell-specific, tissue-specific and time-dependent fashion. With the refinement of more recently developed genome-editing technologies, including the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system and other engineered nucleases such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), our “tool set” of mouse models is expected to rapidly expand. These technological advances hold great promise and should enable us to study and hence understand the biology of inherited kidney diseases in greater detail. By analogy, we may be able to answer questions regarding the impact of individual proteins on the development of human kidney disorders, the underlying mechanisms governing the evolution of the disease and the predicted responsiveness to therapeutic interventions. Moreover, knockout and transgenic mouse models can be highly informative with respect to the effects of genetic variations on renal phenotypes. This review focuses on mouse models that have been devised primarily to study monogenic human kidney diseases, which are typically caused by a single abnormal gene and passed on in a Mendelian pattern. Despite the large number of human hereditary kidney disorders and the multitude of mouse models described in the literature, we attempt to give a balanced overview of several well-known renal pathologies, a few of which are addressed in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alport AC (1927) Hereditary familial congenital haemorrhagic nephritis. Br Med J 1:504–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartram MP, Habbig S, Pahmeyer C, Hohne M, Weber LT, Thiele H, Altmuller J, Kottoor N, Wenzel A, Krueger M, Schermer B, Benzing T, Rinschen MM, Beck BB (2016) Three-layered proteomic characterization of a novel ACTN4 mutation unravels its pathogenic potential in FSGS. Hum Mol Genet 25:1152–1164

    Article  CAS  PubMed  Google Scholar 

  • Boute N, Roselli S, Gribouval O, Niaudet P, Gubler MC, Antignac C (2002) Characterization of the NPH2 gene, coding for the glomerular protein podocin, implicated in a familial form of cortico-resistant nephrotic syndrome transmitted as an autosomal recessive. Nephrologie 23:35–36

    PubMed  Google Scholar 

  • Boyer O, Benoit G, Gribouval O, Nevo F, Tete MJ, Dantal J, Gilbert-Dussardier B, Touchard G, Karras A, Presne C, Grunfeld JP, Legendre C, Joly D, Rieu P, Mohsin N, Hannedouche T, Moal V, Gubler MC, Broutin I, Mollet G, Antignac C (2011) Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J Am Soc Nephrol 22:239–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown EJ, Schlondorff JS, Becker DJ, Tsukaguchi H, Tonna SJ, Uscinski AL, Higgs HN, Henderson JM, Pollak MR (2010) Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat Genet 42:72–76

    Article  CAS  PubMed  Google Scholar 

  • Buscher AK, Kranz B, Buscher R, Hildebrandt F, Dworniczak B, Pennekamp P, Kuwertz-Broking E, Wingen AM, John U, Kemper M, Monnens L, Hoyer PF, Weber S, Konrad M (2010) Immunosuppression and renal outcome in congenital and pediatric steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 5:2075–2084

    Article  PubMed  PubMed Central  Google Scholar 

  • Buscher AK, Beck BB, Melk A, Hoefele J, Kranz B, Bamborschke D, Baig S, Lange-Sperandio B, Jungraithmayr T, Weber LT, Kemper MJ, Tonshoff B, Hoyer PF, Konrad M, Weber S (2016) Rapid response to cyclosporin a and favorable renal outcome in nongenetic versus genetic steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 11:245–253

    Article  PubMed  Google Scholar 

  • Chen YM, Liapis H (2015) Focal segmental glomerulosclerosis: molecular genetics and targeted therapies. BMC Nephrol 16:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng HF, Wang JL, Zhang MZ, McKanna JA, Harris RC (2000) Role of p38 in the regulation of renal cortical cyclooxygenase-2 expression by extracellular chloride. J Clin Invest 106:681–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove D, Meehan DT, Grunkemeyer JA, Kornak JM, Sayers R, Hunter WJ, Samuelson GC (1996) Collagen COL4A3 knockout: a mouse model for autosomal Alport syndrome. Genes Dev 10:2981–2992

    Article  CAS  PubMed  Google Scholar 

  • D’Agati VD, Fogo AB, Bruijn JA, Jennette JC (2004) Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis 43:368–382

    Article  PubMed  Google Scholar 

  • Ehrlicher AJ, Krishnan R, Guo M, Bidan CM, Weitz DA, Pollak MR (2015) Alpha-actinin binding kinetics modulate cellular dynamics and force generation. Proc Natl Acad Sci U S A 112:6619–6624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farman N, Boulkroun S, Courtois-Coutry N (2002) Sgk: an old enzyme revisited. J Clin Invest 110:1233–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firsov D, Gautschi I, Merillat AM, Rossier BC, Schild L (1998) The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J 17:344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchshuber A, Janssen F, Gribouval O, Niaudet P, Kamoun A, Antignac C (1996) Presymptomatic diagnosis of familial steroid-resistant nephrotic syndrome. Lancet 347:1050–1051

    Article  CAS  PubMed  Google Scholar 

  • Gattone VH 2nd, Wang X, Harris PC, Torres VE (2003) Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med 9:1323–1326

    Article  CAS  PubMed  Google Scholar 

  • Grgic I, Hofmeister AF, Genovese G, Bernhardy AJ, Sun H, Maarouf OH, Bijol V, Pollak MR, Humphreys BD (2014) Discovery of new glomerular disease-relevant genes by translational profiling of podocytes in vivo. Kidney Int 86:1116–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross O, Beirowski B, Koepke ML, Kuck J, Reiner M, Addicks K, Smyth N, Schulze-Lohoff E, Weber M (2003) Preemptive ramipril therapy delays renal failure and reduces renal fibrosis in COL4A3-knockout mice with Alport syndrome. Kidney Int 63:438–446

    Article  CAS  PubMed  Google Scholar 

  • Gross O, Licht C, Anders HJ, Hoppe B, Beck B, Tonshoff B, Hocker B, Wygoda S, Ehrich JH, Pape L, Konrad M, Rascher W, Dotsch J, Muller-Wiefel DE, Hoyer P, Knebelmann B, Pirson Y, Grunfeld JP, Niaudet P, Cochat P, Heidet L, Lebbah S, Torra R, Friede T, Lange K, Muller GA, Weber M (2012) Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int 81:494–501

    Article  CAS  PubMed  Google Scholar 

  • Guay-Woodford LM, Desmond RA (2003) Autosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics 111:1072–1080

    Article  PubMed  Google Scholar 

  • Gurel PS, Ge P, Grintsevich EE, Shu R, Blanchoin L, Zhou ZH, Reisler E, Higgs HN (2014) INF2-mediated severing through actin filament encirclement and disruption. Curr Biol 24:156–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamano Y, Grunkemeyer JA, Sudhakar A, Zeisberg M, Cosgrove D, Morello R, Lee B, Sugimoto H, Kalluri R (2002) Determinants of vascular permeability in the kidney glomerulus. J Biol Chem 277:31154–31162

    Article  CAS  PubMed  Google Scholar 

  • Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennings JC, Andrini O, Picard N, Paulais M, Huebner AK, Cayuqueo IK, Bignon Y, Keck M, Corniere N, Bohm D, Jentsch TJ, Chambrey R, Teulon J, Hubner CA, Eladari D (2017) The ClC-K2 chloride channel is critical for salt handling in the distal nephron. J Am Soc Nephrol 28:209–217

    Article  PubMed  Google Scholar 

  • Hildebrandt F (2010) Genetic kidney diseases. Lancet 375:1287–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber TB, Simons M, Hartleben B, Sernetz L, Schmidts M, Gundlach E, Saleem MA, Walz G, Benzing T (2003) Molecular basis of the functional podocin-nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum Mol Genet 12:3397–3405

    Article  CAS  PubMed  Google Scholar 

  • Hummler E, Vallon V (2005) Lessons from mouse mutants of epithelial sodium channel and its regulatory proteins. J Am Soc Nephrol 16:3160–3166

    Article  CAS  PubMed  Google Scholar 

  • Jeck N, Konrad M, Peters M, Weber S, Bonzel KE, Seyberth HW (2000) Mutations in the chloride channel gene, CLCNKB, leading to a mixed Bartter-Gitelman phenotype. Pediatr Res 48:754–758

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R, Shield CF, Todd P, Hudson BG, Neilson EG (1997) Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J Clin Invest 99:2470–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, Mathis BJ, Rodriguez-Perez JC, Allen PG, Beggs AH, Pollak MR (2000) Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet 24:251–256

    Article  CAS  PubMed  Google Scholar 

  • Kashtan CE (1999) Alport syndrome. An inherited disorder of renal, ocular, and cochlear basement membranes. Medicine (Baltimore) 78:338–360

    Article  CAS  Google Scholar 

  • Katayama K, Nomura S, Tryggvason K, Ito M (2014) Searching for a treatment for Alport syndrome using mouse models. World J Nephrol 3:230–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Kemter E, Rathkolb B, Bankir L, Schrewe A, Hans W, Landbrecht C, Klaften M, Ivandic B, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Wolf E, Wanke R, Aigner B (2010) Mutation of the Na(+)-K(+)-2Cl(−) cotransporter NKCC2 in mice is associated with severe polyuria and a urea-selective concentrating defect without hyperreninemia. Am J Physiol Renal Physiol 298:F1405–F1415

    Article  CAS  PubMed  Google Scholar 

  • Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, Kashtan CE, Peltonen L, Holmberg C, Olsen A, Tryggvason K (1998) Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell 1:575–582

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Fu Y, Hui K, Moeckel G, Mai W, Li C, Liang D, Zhao P, Ma J, Chen XZ, George AL Jr, Coffey RJ, Feng ZP, Wu G (2008) Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function. J Am Soc Nephrol 19:455–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoers NV, Levtchenko EN (2008) Gitelman syndrome. Orphanet J Rare Dis 3:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Komhoff M, Jeck ND, Seyberth HW, Grone HJ, Nusing RM, Breyer MD (2000) Cyclooxygenase-2 expression is associated with the renal macula densa of patients with Bartter-like syndrome. Kidney Int 58:2420–2424

    Article  CAS  PubMed  Google Scholar 

  • Komhoff M, Reinalter SC, Grone HJ, Seyberth HW (2004) Induction of microsomal prostaglandin E2 synthase in the macula densa in children with hypokalemic salt-losing tubulopathies. Pediatr Res 55:261–266

    Article  PubMed  Google Scholar 

  • Konrad M, Vollmer M, Lemmink HH, van den Heuvel LP, Jeck N, Vargas-Poussou R, Lakings A, Ruf R, Deschenes G, Antignac C, Guay-Woodford L, Knoers NV, Seyberth HW, Feldmann D, Hildebrandt F (2000) Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol 11:1449–1459

    CAS  PubMed  Google Scholar 

  • Kos CH, Le TC, Sinha S, Henderson JM, Kim SH, Sugimoto H, Kalluri R, Gerszten RE, Pollak MR (2003) Mice deficient in alpha-actinin-4 have severe glomerular disease. J Clin Invest 111:1683–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krall P, Canales CP, Kairath P, Carmona-Mora P, Molina J, Carpio JD, Ruiz P, Mezzano SA, Li J, Wei C, Reiser J, Young JI, Walz K (2010) Podocyte-specific overexpression of wild type or mutant trpc6 in mice is sufficient to cause glomerular disease. PLoS One 5:e12859

    Article  PubMed  PubMed Central  Google Scholar 

  • Laghmani K, Beck BB, Yang SS, Seaayfan E, Wenzel A, Reusch B, Vitzthum H, Priem D, Demaretz S, Bergmann K, Duin LK, Gobel H, Mache C, Thiele H, Bartram MP, Dombret C, Altmuller J, Nurnberg P, Benzing T, Levtchenko E, Seyberth HW, Klaus G, Yigit G, Lin SH, Timmer A, de Koning TJ, Scherjon SA, Schlingmann KP, Bertrand MJ, Rinschen MM, de Backer O, Konrad M, Komhoff M (2016) Polyhydramnios, transient antenatal Bartter’s syndrome, and MAGED2 mutations. N Engl J Med 374:1853–1863

    Article  CAS  PubMed  Google Scholar 

  • Lantinga-van Leeuwen IS, Dauwerse JG, Baelde HJ, Leonhard WN, van de Wal A, Ward CJ, Verbeek S, Deruiter MC, Breuning MH, de Heer E, Peters DJ (2004) Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum Mol Genet 13:3069–3077

    Article  CAS  PubMed  Google Scholar 

  • Levy M, Feingold J (2000) Estimating prevalence in single-gene kidney diseases progressing to renal failure. Kidney Int 58:925–943

    Article  CAS  PubMed  Google Scholar 

  • Liddle GW, Bledsoe T, Coppage WS (1963) A familial renal disorder simulating primary Aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Phys 76:199–213

    CAS  Google Scholar 

  • Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104:545–556

    Article  CAS  PubMed  Google Scholar 

  • Lorenz JN, Baird NR, Judd LM, Noonan WT, Andringa A, Doetschman T, Manning PA, Liu LH, Miller ML, Shull GE (2002) Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter’s syndrome. J Biol Chem 277:37871–37880

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Peissel B, Babakhanlou H, Pavlova A, Geng L, Fan X, Larson C, Brent G, Zhou J (1997) Perinatal lethality with kidney and pancreas defects in mice with a targetted Pkd1 mutation. Nat Genet 17:179–181

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Fan X, Basora N, Babakhanlou H, Law T, Rifai N, Harris PC, Perez-Atayde AR, Rennke HG, Zhou J (1999a) Late onset of renal and hepatic cysts in Pkd1-targeted heterozygotes. Nat Genet 21:160–161

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Phillips CL, Killen PD, Hlaing T, Harrison WR, Elder FF, Miner JH, Overbeek PA, Meisler MH (1999b) Insertional mutation of the collagen genes Col4a3 and Col4a4 in a mouse model of Alport syndrome. Genomics 61:113–124

    Article  CAS  PubMed  Google Scholar 

  • Mai W, Chen D, Ding T, Kim I, Park S, Cho SY, Chu JS, Liang D, Wang N, Wu D, Li S, Zhao P, Zent R, Wu G (2005) Inhibition of Pkhd1 impairs tubulomorphogenesis of cultured IMCD cells. Mol Biol Cell 16:4398–4409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masyuk TV, Huang BQ, Ward CJ, Masyuk AI, Yuan D, Splinter PL, Punyashthiti R, Ritman EL, Torres VE, Harris PC, LaRusso NF (2003) Defects in cholangiocyte fibrocystin expression and ciliary structure in the PCK rat. Gastroenterology 125:1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Michaud JL, Chaisson KM, Parks RJ, Kennedy CR (2006) FSGS-associated alpha-actinin-4 (K256E) impairs cytoskeletal dynamics in podocytes. Kidney Int 70:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki T, Wu GQ, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai YQ, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJM, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342

    Article  CAS  PubMed  Google Scholar 

  • Moser M, Matthiesen S, Kirfel J, Schorle H, Bergmann C, Senderek J, Rudnik-Schoneborn S, Zerres K, Buettner R (2005) A mouse model for cystic biliary dysgenesis in autosomal recessive polycystic kidney disease (ARPKD). Hepatology 41:1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Nomura N, Tajima M, Sugawara N, Morimoto T, Kondo Y, Ohno M, Uchida K, Mutig K, Bachmann S, Soleimani M, Ohta E, Ohta A, Sohara E, Okado T, Rai T, Jentsch TJ, Sasaki S, Uchida S (2011) Generation and analyses of R8L barttin knockin mouse. Am J Physiol Renal Physiol 301:F297–F307

    Article  CAS  PubMed  Google Scholar 

  • Philippe A, Weber S, Esquivel EL, Houbron C, Hamard G, Ratelade J, Kriz W, Schaefer F, Gubler MC, Antignac C (2008) A missense mutation in podocin leads to early and severe renal disease in mice. Kidney Int 73:1038–1047

    Article  CAS  PubMed  Google Scholar 

  • Piontek K, Menezes LF, Garcia-Gonzalez MA, Huso DL, Germino GG (2007) A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat Med 13:1490–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradervand S, Wang Q, Burnier M, Beermann F, Horisberger JD, Hummler E, Rossier BC (1999) A mouse model for Liddle’s syndrome. J Am Soc Nephrol 10:2527–2533

    CAS  PubMed  Google Scholar 

  • Putaala H, Soininen R, Kilpelainen P, Wartiovaara J, Tryggvason K (2001) The murine nephrin gene is specifically expressed in kidney, brain and pancreas: inactivation of the gene leads to massive proteinuria and neonatal death. Hum Mol Genet 10:1–8

    Article  CAS  PubMed  Google Scholar 

  • Qian F, Watnick TJ, Onuchic LF, Germino GG (1996) The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87:979–987

    Article  CAS  PubMed  Google Scholar 

  • Qian Q, Hunter LW, Li M, Marin-Padilla M, Prakash YS, Somlo S, Harris PC, Torres VE, Sieck GC (2003) Pkd2 haploinsufficiency alters intracellular calcium regulation in vascular smooth muscle cells. Hum Mol Genet 12:1875–1880

    Article  CAS  PubMed  Google Scholar 

  • Reinalter SC, Jeck N, Brochhausen C, Watzer B, Nusing RM, Seyberth HW, Komhoff M (2002) Role of cyclooxygenase-2 in hyperprostaglandin E syndrome/antenatal Bartter syndrome. Kidney Int 62:253–260

    Article  CAS  PubMed  Google Scholar 

  • Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riehle M, Buscher AK, Gohlke BO, Kassmann M, Kolatsi-Joannou M, Brasen JH, Nagel M, Becker JU, Winyard P, Hoyer PF, Preissner R, Krautwurst D, Gollasch M, Weber S, Harteneck C (2016) TRPC6 G757D loss-of-function mutation associates with FSGS. J Am Soc Nephrol 27:2771–2783

    PubMed  Google Scholar 

  • Roselli S, Heidet L, Sich M, Henger A, Kretzler M, Gubler MC, Antignac C (2004) Early glomerular filtration defect and severe renal disease in podocin-deficient mice. Mol Cell Biol 24:550–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossetti S, Consugar MB, Chapman AB, Torres VE, Guay-Woodford LM, Grantham JJ, Bennett WM, Meyers CM, Walker DL, Bae K, Zhang QJ, Thompson PA, Miller JP, Harris PC (2007) Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 18:2143–2160

    Article  CAS  PubMed  Google Scholar 

  • Scheinman SJ, Guay-Woodford LM, Thakker RV, Warnock DG (1999) Genetic disorders of renal electrolyte transport. N Engl J Med 340:1177–1187

    Article  CAS  PubMed  Google Scholar 

  • Seyberth HW, Rascher W, Schweer H, Kühl PG, Mehls O, Schärer K (1985) Congenital hypokalemia with hypercalciuria in preterm infants: a hyperprostaglandinuric tubular syndrome different from Bartter syndrome. J Pediatr 107:694–701

    Article  CAS  PubMed  Google Scholar 

  • Seyberth HW, Weber S, Komhoff M (2017) Bartter’s and Gitelman’s syndrome. Curr Opin Pediatr 29:179–186

    Article  PubMed  Google Scholar 

  • Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A, Walz G, Piontek KB, Germino GG, Weimbs T (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 103:5466–5471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian B, Sun H, Yan P, Charoonratana VT, Higgs HN, Wang F, Lai KM, Valenzuela DM, Brown EJ, Schlondorff JS, Pollak MR (2016) Mice with mutant Inf2 show impaired podocyte and slit diaphragm integrity in response to protamine-induced kidney injury. Kidney Int 90:363–372

    Article  CAS  PubMed  Google Scholar 

  • Tabassum A, Rajeshwari T, Soni N, Raju DS, Yadav M, Nayarisseri A, Jahan P (2014) Structural characterization and mutational assessment of podocin—a novel drug target to nephrotic syndrome—an in silico approach. Interdiscip Sci 6:32–39

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Chernavvsky DR, Gomez RA, Igarashi P, Gitelman HJ, Smithies O (2000) Uncompensated polyuria in a mouse model of Bartter’s syndrome. Proc Natl Acad Sci U S A 97:5434–5439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres VE, Wang X, Qian Q, Somlo S, Harris PC, Gattone VH II (2004) Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med 10:363–364

    Article  CAS  PubMed  Google Scholar 

  • Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney disease. Lancet 369:1287–1301

    Article  PubMed  Google Scholar 

  • Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, Perrone RD, Krasa HB, Ouyang J, Czerwiec FS (2012) Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 367:2407–2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walz G, Budde K, Mannaa M, Nurnberger J, Wanner C, Sommerer C, Kunzendorf U, Banas B, Horl WH, Obermuller N, Arns W, Pavenstadt H, Gaedeke J, Buchert M, May C, Gschaidmeier H, Kramer S, Eckardt KU (2010) Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med 363:830–840

    Article  CAS  PubMed  Google Scholar 

  • Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, Kubly V, Cunningham JM, Bacallao R, Ishibashi M, Milliner DS, Torres VE, Harris PC (2002) The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 30:259–269

    Article  PubMed  Google Scholar 

  • Warnock DG (1998) Liddle syndrome: an autosomal dominant form of human hypertension. Kidney Int 53:18–24

    Article  CAS  PubMed  Google Scholar 

  • Wartiovaara J, Ofverstedt LG, Khoshnoodi J, Zhang J, Makela E, Sandin S, Ruotsalainen V, Cheng RH, Jalanko H, Skoglund U, Tryggvason K (2004) Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest 114:1475–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson PD (2008) Mouse models of polycystic kidney disease. Curr Top Dev Biol 84:311–350

    Article  CAS  PubMed  Google Scholar 

  • Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804

    Article  CAS  PubMed  Google Scholar 

  • Woollard JR, Punyashtiti R, Richardson S, Masyuk TV, Whelan S, Huang BQ, Lager DJ, vanDeursen J, Torres VE, Gattone VH, LaRusso NF, Harris PC, Ward CJ (2007) A mouse model of autosomal recessive polycystic kidney disease with biliary duct and proximal tubule dilatation. Kidney Int 72:328–336

    Article  CAS  PubMed  Google Scholar 

  • Wu G, D’Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, Maeda Y, Le TC, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S (1998) Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93:177–188

    Article  CAS  PubMed  Google Scholar 

  • Yang SS, Lo YF, Yu IS, Lin SW, Chang TH, Hsu YJ, Chao TK, Sytwu HK, Uchida S, Sasaki S, Lin SH (2010) Generation and analysis of the thiazide-sensitive Na+−Cl- cotransporter (Ncc/Slc12a3) Ser707X knockin mouse as a model of Gitelman syndrome. Hum Mutat 31:1304–1315

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Park JM, Arend L, Huang Y, Topaloglu R, Pasumarthy A, Praetorius H, Spring K, Briggs JP, Schnermann J (2000) Low chloride stimulation of prostaglandin E2 release and cyclooxygenase-2 expression in a mouse macula densa cell line. J Biol Chem 275:37922–37929

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Le TC, Kos CH, Henderson JM, Allen PG, Denker BM, Pollak MR (2004) Alpha-actinin-4-mediated FSGS: an inherited kidney disease caused by an aggregated and rapidly degraded cytoskeletal protein. PLoS Biol 2:e167

    Article  PubMed  PubMed Central  Google Scholar 

  • Zerres K, Mucher G, Becker J, Steinkamm C, Rudnik-Schoneborn S, Heikkila P, Rapola J, Salonen R, Germino GG, Onuchic L, Somlo S, Avner ED, Harman LA, Stockwin JM, Guay-Woodford LM (1998) Prenatal diagnosis of autosomal recessive polycystic kidney disease (ARPKD): molecular genetics, clinical experience, and fetal morphology. Am J Med Genet 76:137–144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I.G. was supported by a fellowship from the Deutsche Forschungsgemeinschaft (GR 3301/4-1) and grants from the University Medical Center Giessen and Marburg, Philipps-University Marburg Innovation Fund and the Von Behring-Röntgen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivica Grgic.

Ethics declarations

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmeister, A.F., Kömhoff, M., Weber, S. et al. Disease modeling in genetic kidney diseases: mice. Cell Tissue Res 369, 159–170 (2017). https://doi.org/10.1007/s00441-017-2639-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2639-3

Keywords

Navigation