Skip to main content
Log in

KIFC1 and myosin Va: two motors for acrosomal biogenesis and nuclear shaping during spermiogenesis of Portunus trituberculatus

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

To investigate the molecular mechanisms underlying the spermiogenesis of the swimming crab Portunus trituberculatus, full lengths of motor proteins KIFC1 and myosin Va were cloned by rapid-amplification of cDNA ends from P. trituberculatus testes cDNA, and their respective probes and specific antibodies were used to track their localization during sperm maturation. Antisense probes were designed from the gene sequences and used to detect the mRNA levels of each gene. According to the results of fluorescence in situ hybridization (FISH), the transcription of kifc1 and myosin Va began at the mid-stage of spermatids, with the kifc1 mRNA being most active at the location where the acrosome cap was formed and the myosin Va was more concentrated in the acrosome complex. Immunofluorescence results showed that KIFC1 and myosin Va were highly expressed in each stage of spermigenesis. In the early spermatids, they were randomly dispersed in the cytoplasm together with cytoskeletons. At the mid-stage, the motors were gathered above one side of the nucleus where the acrosome would later form. In the late spermatids and mature sperm, the KIFC1 was closely distributed in the perinuclear region, indicating its role in nucleus deformation. Myosin Va was distributed in the acrosome complex until sperm maturity. This suggests myosin Va’s potential role in material transportation during acrosome formation and maturation. The above results provide a preliminary illustration of the essential roles of KIFC1 and myosin Va in the spermiogenesis of the swimming crab P. trituberculatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Czechanski A, Kim H, Byers C, Greenstein I, Stumpff J, Reinholdt LG (2015) Kif18a is specifically required for mitotic progression during germ line development. Dev Biol 402(2):253–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBerg HA, Blehm BH, Sheung J, Thompson AR, Bookwalter CS, Torabi SF, Schroer TA, Berger CL, Lu Y, Trybus KM, Selvin PR (2013) Motor domain phosphorylation modulates kinesin-1 transport. J Biol Chem 288(45):32612–32621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond DR (2011) Regulation of microtubule dynamics by kinesins. Semin Cell Dev Biol 22:927–934

    Article  CAS  PubMed  Google Scholar 

  • du Plessis L, Soley JT (2016) Sperm head shaping in ratites: new insights, yet more questions. Tissue Cell pii S0040-8166(16):30205–30201

    Google Scholar 

  • Dugina V, Alieva I, Khromova N, Kireev I, Gunning PW, Kopnin P (2016) Interaction of microtubules with the actin cytoskeleton via cross-talk of EB1-containing +TIPs and γ-actin in epithelial cells. Oncotarget. doi:10.18632/oncotarget.12236

  • Estrada P, Kim J, Coleman J, Walker L, Dunn B, Takizawa P, Novick P, Ferro-Novick S (2003) Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae. J Cell Biol 163(6):1255–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabian L, Forer A (2007) Possible roles of actin and myosin during anaphase chromosome movements in locust spermatocytes. Protoplasma 231(3–4):201–213

    Article  PubMed  Google Scholar 

  • Flores JP, Lee YL, Langford GM (2004) Isolation of the myosin-V/kinesin heteromotor complex by sucrose gradient fractionation. Biol Bull 207(2):163

    Article  PubMed  Google Scholar 

  • Hammer JA 3rd, Sellers JR (2011) Walking to work: roles for class V myosins as cargo transporters. Nat Rev Mol Cell Biol 13(1):13–26

    Article  PubMed  Google Scholar 

  • Hayasaka S, Terada Y, Suzuki K, Murakawa H, Tachibana I, Sankai T, Murakami T, Yaegashi N, Okamura K (2008) Intramanchette transport during primate spermiogenesis: expression of dynein, myosin Va, motor recruiter myosin Va, VIIa-Rab27a/b interacting protein, and Rab27b in the manchette during human and monkey spermiogenesis. Asian J Androl 10(4):561–568

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi K, Hanada T, Fukui Y, Chishti AH (2006) Transport of PIP3 by GAKIN, a kinesin-3 family protein, regulates neuronal cell polarity. J Cell Biol 174(3):425–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou CC, Yang WX (2013) Acroframosome-dependent KIFC1 facilitates acrosome formation during spermatogenesis in the caridean shrimp Exopalaemon modestus. PLoS ONE 8(9):e76065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu JR, Liu M, Hou CC, She ZY, Wang DH, Hao SL, Zhang YP, Yang WX (2015) Gene expression pattern of KIFC3 during spermatogenesis of the skink Eumeces chinensis. Gene 556(2):206–212

    Article  CAS  PubMed  Google Scholar 

  • Jessen H, Behnke O, Wingstrand KG, Rostgaard J (1973) Actin-like filaments in the acrosomal apparatus of spermatozoa of a sea urchin. Exp Cell Res 80(1):47–54

    Article  CAS  PubMed  Google Scholar 

  • Jiang YQ, Yang WX (2002) Ultrastructure and reproductive evolution characteristics of the sperm in Exopalaemon modestus. Donghai Mar Sci 20(2):45–50

    Google Scholar 

  • Kadam K, D’Souza S, Natraj U (2007) Spatial distribution of actin and tubulin in human sperm nuclear matrix-intermediate filament whole mounts-a new paradigm. Microsc Res Tech 70(7):589–598

    Article  CAS  PubMed  Google Scholar 

  • Kelleher JF, Mandell MA, Moulder G, Hill KL, L’Hernault SW, Barstead R, Titus MA (2000) Myosin VI is required for asymmetric segregation of cellular components during C. elegans spermatogenesis. Curr Biol 10(23):1489–1496

    Article  CAS  PubMed  Google Scholar 

  • Kierszenbaum AL, Rivkin E, Tres LL (2003) The actin-based motor myosin Va is a component of the acroplaxome, an acrosome-nuclear envelope junctional plate, and of manchette-associated vesicles. Cytogenet Genome Res 103(3–4):337–344

    CAS  PubMed  Google Scholar 

  • Kierszenbaum AL, Rivkin E, Tres LL (2011) Cytoskeletal track selection during cargo transport in spermatids is relevant to male fertility. Spermatogenesis 1(3):221–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehti MS, Kotaja N, Sironen A (2013) KIF3A is essential for sperm tail formation and manchette function. Mol Cell Endocrinol 377(1–2):44–55

    Article  CAS  PubMed  Google Scholar 

  • Lehti MS, Kotaja N, Sironen A (2015) KIF1-binding protein interacts with KIF3A in haploid male germ cells. Reproduction 150(3):209–216

    Article  CAS  PubMed  Google Scholar 

  • Lehti MS, Sironen A (2016) Formation and function of the manchette and flagellum during spermatogenesis. Reproduction 151(4):R43–R54

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Pan CY, Zheng BH, Xiang L, Yang WX (2010) Immunocytochemical studies of the acroframosome during spermiogenesis of the caridean shrimp Macrobrachium nipponense (Crustacea, Natantia). Invert Reprod Dev 54:121–131

    Article  CAS  Google Scholar 

  • Lu Y, Wang Q, Wang DH, Zhou H, Hu YJ, Yang WX (2014) Functional analysis of KIF3A and KIF3B during spermiogenesis of chinese mitten crab Eriocheir sinensis. PLoS ONE 9(5):e97645

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma DD, Bi L, Yang WX (2017a) KIFC1 participates in acrosome formation and nuclear shaping and is essential for spermiogenesis of red crayfish Procambarus clarkii. Oncotarget. doi:10.18632/oncotarget.16429

  • Ma DD, Wang DH, Yang WX (2017b) Kinesins in spermatogenesis. Biol Reprod 96(2):267–276

    Article  PubMed  Google Scholar 

  • Mabuchi I (1976) Isolation of myosin from starfish sperm heads. J Biochem 80(2):413–415

    Article  CAS  PubMed  Google Scholar 

  • Mermall V, Bonafé N, Jones L, Sellers JR, Cooley L, Mooseker MS (2005) Drosophila myosin V is required for larval development and spermatid individualization. Dev Biol 286(1):238–255

    Article  CAS  PubMed  Google Scholar 

  • Moreno RD, Palomino J, Schatten G (2006) Assembly of spermatid acrosome depends on microtubule organization during mammalian spermiogenesis. Dev Biol 293(1):218–227

    Article  CAS  PubMed  Google Scholar 

  • Pathak D, Sepp KJ, Hollenbeck PJ (2010) Evidence that myosin activity opposes microtubule-based axonal transport of mitochondria. J Neurosci 30(26):8984–8992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinaud R, Mello CV, Velho TA, Wynne RD, Tremere LA (2008) Detection of two mRNA species at single-cell resolution by double-fluorescene in situ hybridization. Nat Protoc 3(8):1370–1379

    Article  CAS  PubMed  Google Scholar 

  • Romarowski A, Luque GM, La Spina FA, Krapf D, Buffone MG (2016) Role of actin cytoskeleton during mammalian sperm acrosomal exocytosis. Adv Anat Embryol Cell Biol 220:129–144

    Article  PubMed  Google Scholar 

  • Rossanese OW, Reinke CA, Bevis BJ, Hammond AT, Sears IB, O’Connor J, Glick BS (2001) A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J Cell Biol 153(1):47–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman-Gavrila RV, Forer A (2001) Effects of anti-myosin drugs on anaphase chromosome movement and cytokinesis in crane-fly primary spermatocytes. Cell Motil Cytoskeleton 50(4):180–197

    Article  CAS  PubMed  Google Scholar 

  • Sobczak M, Chumak V, Pomorski P, Wojtera E, Majewski Ł, Nowak J, Yamauchi J, Rędowicz MJ (2016) Interaction of myosin VI and its binding partner DOCK7 plays an important role in NGF-stimulated protrusion formation in PC12 cells. Biochim Biophys Acta 1863:1589–1600

    Article  CAS  PubMed  Google Scholar 

  • Sun X, He Y, Hou L, Yang WX (2010) Myosin Va participates in acrosomal formation and nuclear morphogenesis during spermatogenesis of Chinese mitten crab Eriocheir sinensis. PLoS ONE 5(9):e12738

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun X, Mao HT, Yang WX (2012) Gene expression pattern of myosin Va during spermatogenesis of Chinese mitten crab, Eriocheir sinensis. Gene 508(1):78–84

    Article  CAS  PubMed  Google Scholar 

  • Sweeney HL, Houdusse A (2010) Structural and functional insights into the myosin motor mechanism. Annu Rev Biophys 39:539–557

    Article  CAS  PubMed  Google Scholar 

  • Tan FQ, Ma XX, Zhu JQ, Yang WX (2013) The expression pattern of the C-terminal kinesin gene kifc1 during the spermatogenesis of Sepiella maindroni. Gene 532(1):53–62

    Article  CAS  PubMed  Google Scholar 

  • Tang EI, Lee WM, Cheng CY (2016) Coordination of actin- and microtubule-based cytoskeletons supports transport of spermatids and residual bodies/phagosomes during spermatogenesis in the rat testis. Endocrinology 157(4):1644–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaid KS, Guttman JA, Singaraja RR, Vogl AW (2007) A kinesin is present at unique sertoli/spermatid adherens junctions in rat and mouse testes. Biol Reprod 77:1037–1048

    Article  CAS  PubMed  Google Scholar 

  • van Bergeijk P, Adrian M, Hoogenraad CC, Kapitein LC (2015) Optogenetic control of organelle transport and positioning. Nature 518(7537):111–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang DH, Yang WX (2010) Molecular cloning and characterization of KIFC1-like kinesin gene (es-KIFC1) in the testis of the Chinese mitten crab Eriocheir sinensis. Comp Biochem Physiol A 157(2):123–131

    Article  Google Scholar 

  • Wang W, Zhu JQ, Yu HM, Yang WX (2010) KIFC1-like motor protein associates with the cephalopod manchette and participates in sperm nuclear morphogenesis in Octopus tankahkeei. PLoS ONE 5(12):e15616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterman-Storer C, Duey DY, Weber KL, Keech J, Cheney RE, Salmon ED, Bement WM (2000) Microtubules remodel actomyosin networks in Xenopus egg extracts via two mechanisms of F-actin transport. J Cell Biol 150(2):361–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welburn JP (2013) The molecular basis for kinesin functional specificity during mitosis. Cytoskeleton (Hoboken) 70(9):476–493

    Article  CAS  Google Scholar 

  • Wu X, Kocher B, Wei Q, Hammer JA 3rd (1998) Myosin Va associates with microtubule-rich domains in both interphase and dividing cells. Cell Motil Cytoskeleton 40(3):286–303

    Article  CAS  PubMed  Google Scholar 

  • Xiang DF, Zhu JQ, Hou CC, Yang WX (2014) Identification and expression pattern analysis of Piwi genes during the spermiogenesis of Portunus trituberculatus. Gene 534(2):240–248

    Article  CAS  PubMed  Google Scholar 

  • Xiao Q, Hu X, Wei Z, Tam KY (2016) Cytoskeleton molecular motors: structures and their functions in neuron. Int J Biol Sci 12(9):1083–1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao X, Yang WX (2007) Actin-based dynamics during spermatogenesis and its significance. J Zhejiang Univ Sci B 8(7):498–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Tao T, Liu M, Zhou Y, Liu Z, Zhu D (2016) The potential role of juvenile hormone acid methyltransferase in methyl farnesoate (MF) biosynthesis in the swimming crab, Portunus trituberculatus. Anim Reprod Sci 168:40–49

    Article  CAS  PubMed  Google Scholar 

  • Yang WX (1998) Studies on changes in three organelles during spermatogenesis of Macrobrachium nipponense (Dehaan). Chin J Appl Environ Biol 4(1):49–54

    Google Scholar 

  • Yang WX, Jefferson H, Sperry AO (2006) The molecular motor KIFC1 associates with a complex containing nucleoporin NUP62 that is regulated during development and by the small GTPase RAN. Biol Reprod 74(4):684–690

    Article  CAS  PubMed  Google Scholar 

  • Yang WX, Sperry AO (2003) C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod 69:1719–1729

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Wei Q, Adelstein RS, Wang PJ (2012) Non-muscle myosin IIB is essential for cytokinesis during male meiotic cell division. Dev Biol 369(2):356–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu K, Hou L, Zhu JQ, Ying XP, Yang WX (2009) KIFC1 participates in acrosomal biogenesis, with discussion of its importance for the perforatorium in the Chinese mitten crab Eriocheir sinensis. Cell Tissue Res 337:113–123

    Article  CAS  PubMed  Google Scholar 

  • Zepeda-Bastida A, Chiquete-Felix N, Uribe-Carvajal S, Mujica A (2011) The acrosomal matrix from guinea pig sperm contains structural proteins, suggesting the presence of an actin skeleton. J Androl 32(4):411–419

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ou Y, Cheng M, Saadi HS, Thundathil JC, van der Hoorn FA (2012) KLC3 is involved in sperm tail midpiece formation and sperm function. Dev Biol 366(2):101–110

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Takita J, Tanaka Y, Setou M, Nakagawa T, Takeda S, Yang HW, Terada S, Nakata T, Takei Y, Saito M (2001) Charcot-Marie-tooth disease type 2A caused by mutation in a microtubule motor KIF1Bβ. Cell 105:587–597

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Wang Y, Li W, Zhao Z, Ren Y, Wang Y, Gu S, Lin Q, Wang D, Jiang L, Su N, Zhang X, Liu L, Cheng Z, Lei C, Wang J, Guo X, Wu F, Ikehashi H, Wang H, Wan J (2011) Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. Plant Cell 23(1):111–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Y, Millette CF, Sperry AO (2002) KRP3A and KRP3B: candidate motors in spermatid maturation in the seminiferous epithelium. Biol Reprod 66:843–855

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all members of the Sperm Laboratory in Zhejiang University for their valuable assistance on the present work. The authors also thank Chris Wood for his effort in grammar checking and linguistic polishing of this manuscript. This project was supported by the Natural Science Foundation of China (Nos. 31572603 and 41276151) and the Zhejiang Provincial Natural Science Foundation of China (No. LY15H040003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Xi Yang.

Ethics declarations

Funding

This project was supported by the Natural Science Foundation of China (Nos. 31,572,603 and 41,276,151) and the Zhejiang Provincial Natural Science Foundation of China (No. LY15H040003).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No specific permits were required for the collection of samples.

Informed consent

Informed consent was obtained from all individual participants included in this study.

Electronic supplementary material

Fig. S1

Full-length cDNA of the kifc1 in P. trituberculatus. The deduced amino acid sequence is shown below the nucleotide sequence. The 2638-bp full length kifc1 cDNA consists of a 129-bp 5′ untranslated region, a 385-bp 3′ untranslated region and a 2124-bp open reading frame encoding 708 amino acids. (DOC 104 kb)

Fig. S2

Full-length cDNA of the myosin va in P. trituberculatus. The deduced amino acid sequence is shown below the nucleotide sequence. The 5561-bp full length myosin va cDNA consists of a 133-bp 5′ untranslated region, a 142-bp 3′ untranslated region and a 5286-bp open reading frame that encodes 1761 amino acids. (DOCX 39 kb)

Fig. S3

Induced expression of recombinant protein Pet 28a–MVa CBD. 14 Induction at 16 °C for 12 h; 58 induction at 37 °C for 12 h. 1, 5 control supernatant; 2, 6 control precipitate; 3, 7 Pet 28a–CBD supernatant; 4, 8; Pet 28a–Mva CBD precipitate. The recombinant protein expression was induced at both 37 °C and 16 °C, highly expressed in the precipitate as inclusion body protein (at about 37 KD, blue box). (GIF 349 kb)

High resolution image (TIFF 737 kb)

Fig. S4

KIFC1 overexpression in GC1 spg cell lines. KIFC1 is dispersed in both the nucleus and the cytoplasm but with the higher accumulation in the nucleus. 20 h KIFC1 modulates microtubule structure and changes cell morphology. 48 h the nucleus was seen to be elongated. Bar 20 μm). (GIF 513 kb)

High resolution image (TIFF 877 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, DD., Pan, MY., Hou, CC. et al. KIFC1 and myosin Va: two motors for acrosomal biogenesis and nuclear shaping during spermiogenesis of Portunus trituberculatus . Cell Tissue Res 369, 625–640 (2017). https://doi.org/10.1007/s00441-017-2638-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2638-4

Keywords

Navigation