Skip to main content

Advertisement

Log in

Engineering kidney cells: reprogramming and directed differentiation to renal tissues

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Growing knowledge of how cell identity is determined at the molecular level has enabled the generation of diverse tissue types, including renal cells from pluripotent or somatic cells. Recently, several in vitro protocols involving either directed differentiation or transcription-factor-based reprogramming to kidney cells have been established. Embryonic stem cells or induced pluripotent stem cells can be guided towards a kidney fate by exposing them to combinations of growth factors or small molecules. Here, renal development is recapitulated in vitro resulting in kidney cells or organoids that show striking similarities to mammalian embryonic nephrons. In addition, culture conditions are also defined that allow the expansion of renal progenitor cells in vitro. Another route towards the generation of kidney cells is direct reprogramming. Key transcription factors are used to directly impose renal cell identity on somatic cells, thus circumventing the pluripotent stage. This complementary approach to stem-cell-based differentiation has been demonstrated to generate renal tubule cells and nephron progenitors. In-vitro-generated renal cells offer new opportunities for modelling inherited and acquired renal diseases on a patient-specific genetic background. These cells represent a potential source for developing novel models for kidney diseases, drug screening and nephrotoxicity testing and might represent the first steps towards kidney cell replacement therapies. In this review, we summarize current approaches for the generation of renal cells in vitro and discuss the advantages of each approach and their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Auerbach R, Grobstein C (1958) Inductive interaction of embryonic tissues after dissociation and reaggregation. Exp Cell Res 15:384–397

    Article  CAS  PubMed  Google Scholar 

  • Avior Y, Sagi I, Benvenisty N (2016) Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 17:170–182

    Article  CAS  PubMed  Google Scholar 

  • Baer PC, Tunn UW, Nunez G, Scherberich JE, Geiger H (1999) Transdifferentiation of distal but not proximal tubular epithelial cells from human kidney in culture. Exp Nephrol 7:306–313

    Article  CAS  PubMed  Google Scholar 

  • Batta K, Florkowska M, Kouskoff V, Lacaud G (2014) Direct reprogramming of murine fibroblasts to hematopoietic progenitor cells. Cell Rep 9:1871–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian Q, Cahan P (2016) Computational tools for stem cell Biology. Trends Biotechnol 34:993–1009

  • Bredenoord AL, Clevers H, Knoblich JA (2017) Human tissues in a dish: the research and ethical implications of organoid technology. Science 355:eaaf9414

    Article  PubMed  Google Scholar 

  • Brown AC, Muthukrishnan SD, Oxburgh L (2015) A synthetic niche for nephron progenitor cells. Dev Cell 34:229–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunskill EW, Park JS, Chung E, Chen F, Magella B, Potter SS (2014) Single cell dissection of early kidney development: multilineage priming. Development 141:3093–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buganim Y, Itskovich E, Hu YC, Cheng AW, Ganz K, Sarkar S, Fu D, Welstead GG, Page DC, Jaenisch R (2012) Direct reprogramming of fibroblasts into embryonic Sertoli-like cells by defined factors. Cell Stem Cell 11:373–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahan P, Li H, Morris SA, Lummertz da Rocha E, Daley GQ, Collins JJ (2014) CellNet: network biology applied to stem cell engineering. Cell 158:903–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuah JK, Zink D (2016) Stem cell-derived kidney cells and organoids: recent breakthroughs and emerging applications. Biotechnol Adv 35:150–167

    Article  PubMed  Google Scholar 

  • Freedman BS (2015) Modeling kidney disease with iPS cells. Biomark Insights 10:153–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, Saad AF, Li MK, Hughes MR, Werff RV, Peters DT, Lu J, Baccei A, Siedlecki AM, Valerius MT, Musunuru K, McNagny KM, Steinman TI, Zhou J, Lerou PH, Bonventre JV (2015) Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 6:8715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G (2014) In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 14:188–202

    Article  CAS  PubMed  Google Scholar 

  • Heap GA, So K, Weedon M, Edney N, Bewshea C, Singh A, Annese V, Beckly J, Buurman D, Chaudhary R, Cole AT, Cooper SC, Creed T, Cummings F, Boer NK de, D’Inca R, D’Souza R, Daneshmend TK, Delaney M, Dhar A, Direkze N, Dunckley P, Gaya DR, Gearry R, Gore S, Halfvarson J, Hart A, Hawkey CJ, Hoentjen F, Iqbal T, Irving P, Lal S, Lawrence I, Lees CW, Lockett M, Mann S, Mansfield J, Mowat C, Mulgrew CJ, Muller F, Murray C, Oram R, Orchard T, Parkes M, Phillips R, Pollok R, Radford-Smith G, Sebastian S, Sen S, Shirazi T, Silverberg M, Solomon L, Sturniolo GC, Thomas M, Tremelling M, Tsianos EV, Watts D, Weaver S, Weersma RK, Wesley E, Holden A, Ahmad T (2016) Clinical features and HLA association of 5-aminosalicylate (5-ASA)-induced nephrotoxicity in inflammatory bowel disease. J Crohns Colitis 10:149–158

  • Heinaniemi M, Nykter M, Kramer R, Wienecke-Baldacchino A, Sinkkonen L, Zhou JX, Kreisberg R, Kauffman SA, Huang S, Shmulevich I (2013) Gene-pair expression signatures reveal lineage control. Nat Methods 10:577–583

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinrich C, Spagnoli FM, Berninger B (2015) In vivo reprogramming for tissue repair. Nat Cell Biol 17:204–211

    Article  PubMed  Google Scholar 

  • Hendry CE, Vanslambrouck JM, Ineson J, Suhaimi N, Takasato M, Rae F, Little MH (2013) Direct transcriptional reprogramming of adult cells to embryonic nephron progenitors. J Am Soc Nephrol 24:1424–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imberti B, Tomasoni S, Ciampi O, Pezzotta A, Derosas M, Xinaris C, Rizzo P, Papadimou E, Novelli R, Benigni A, Remuzzi G, Morigi M (2015) Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Sci Rep 5:8826

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwafuchi-Doi M, Zaret KS (2014) Pioneer transcription factors in cell reprogramming. Genes Dev 28:2679–2692

    Article  PubMed  PubMed Central  Google Scholar 

  • Jenkinson SE, Chung GW, Loon E van, Bakar NS, Dalzell AM, Brown CD (2012) The limitations of renal epithelial cell line HK-2 as a model of drug transporter expression and function in the proximal tubule. Pflugers Arch 464:601–611

  • Kamaraj US, Gough J, Polo JM, Petretto E, Rackham OJ (2016) Computational methods for direct cell conversion. Cell Cycle 15:3343-3354

    Article  CAS  PubMed  Google Scholar 

  • Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J, Muller AL, Pichler R, Grahammer F, Kretz O, Huber TB, Walz G, Arnold SJ, Lienkamp SS (2016) Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. Nat Cell Biol 18:1269–1280

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy K, Chuah JK, Su R, Huang P, Eng KG, Xiong S, Li Y, Chia CS, Loo LH, Zink D (2015) Prediction of drug-induced nephrotoxicity and injury mechanisms with human induced pluripotent stem cell-derived cells and machine learning methods. Sci Rep 5:12337

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim D, Dressler GR (2005) Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. J Am Soc Nephrol 16:3527–3534

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause M, Rak-Raszewska A, Pietila I, Quaggin SE, Vainio S (2015) Signaling during kidney development. Cell 4:112–132

    Article  Google Scholar 

  • Lalit PA, Salick MR, Nelson DO, Squirrell JM, Shafer CM, Patel NG, Saeed I, Schmuck EG, Markandeya YS, Wong R, Lea MR, Eliceiri KW, Hacker TA, Crone WC, Kyba M, Garry DJ, Stewart R, Thomson JA, Downs KM, Lyons GE, Kamp TJ (2016) Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors. Cell Stem Cell 18:354–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam AQ, Freedman BS, Morizane R, Lerou PH, Valerius MT, Bonventre JV (2014) Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J Am Soc Nephrol 25:1211–1225

    Article  CAS  PubMed  Google Scholar 

  • Lang AH, Li H, Collins JJ, Mehta P (2014) Epigenetic landscapes explain partially reprogrammed cells and identify key reprogramming genes. PLoS Comput Biol 10:e1003734

    Article  PubMed  PubMed Central  Google Scholar 

  • Lassar AB, Paterson BM, Weintraub H (1986) Transfection of a DNA locus that mediates the conversion of 10T1/2 fibroblasts to myoblasts. Cell 47:649–656

    Article  CAS  PubMed  Google Scholar 

  • Lazzeri E, Crescioli C, Ronconi E, Mazzinghi B, Sagrinati C, Netti GS, Angelotti ML, Parente E, Ballerini L, Cosmi L, Maggi L, Gesualdo L, Rotondi M, Annunziato F, Maggi E, Lasagni L, Serio M, Romagnani S, Vannelli GB, Romagnani P (2007) Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J Am Soc Nephrol 18:3128–3138

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Chou CL, Knepper MA (2015) Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J Am Soc Nephrol 26:2669–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Araoka T, Wu J, Liao HK, Li M, Lazo M, Zhou B, Sui Y, Wu MZ, Tamura I, Xia Y, Beyret E, Matsusaka T, Pastan I, Rodriguez Esteban C, Guillen I, Guillen P, Campistol JM, Izpisua Belmonte JC (2016) 3D culture supports long-term expansion of mouse and human nephrogenic progenitors. Cell Stem Cell 19:516–529

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Will Y (2012) Evaluation of drugs with specific organ toxicities in organ-specific cell lines. Toxicol Sci 126:114–127

    Article  CAS  PubMed  Google Scholar 

  • Lindgren D, Bostrom AK, Nilsson K, Hansson J, Sjolund J, Moller C, Jirstrom K, Nilsson E, Landberg G, Axelson H, Johansson ME (2011) Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am J Pathol 178:828–837

    Article  PubMed  PubMed Central  Google Scholar 

  • Little MH (2016) Growing kidney tissue from stem cells: how far from "party trick" to medical application? Cell Stem Cell 18:695–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomax GP, Shepard KA (2013) Return of results in translational iPS cell research: considerations for donor informed consent. Stem Cell Res Ther 4:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Mae S, Shono A, Shiota F, Yasuno T, Kajiwara M, Gotoda-Nishimura N, Arai S, Sato-Otubo A, Toyoda T, Takahashi K, Nakayama N, Cowan CA, Aoi T, Ogawa S, McMahon AP, Yamanaka S, Osafune K (2013) Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun 4:1367

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeshima A, Yamashita S, Nojima Y (2003) Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol 14:3138–3146

    Article  PubMed  Google Scholar 

  • Mak IW, Evaniew N, Ghert M (2014) Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res 6:114–118

    PubMed  PubMed Central  Google Scholar 

  • Merkle FT, Eggan K (2013) Modeling human disease with pluripotent stem cells: from genome association to function. Cell Stem Cell 12:656–668

    Article  CAS  PubMed  Google Scholar 

  • Mertens J, Paquola AC, Ku M, Hatch E, Bohnke L, Ladjevardi S, McGrath S, Campbell B, Lee H, Herdy JR, Goncalves JT, Toda T, Kim Y, Winkler J, Yao J, Hetzer MW, Gage FH (2015) Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17:705–718

    Article  CAS  PubMed  Google Scholar 

  • Moriya N, Uchiyama H, Asashima M (1993) Induction of pronephric tubules by activin and retinoic acid in presumptive ectoderm of Xenopus laevis. Dev Growth Differ 35:123–128

    Article  CAS  Google Scholar 

  • Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV (2015) Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol 33:1193–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris SA, Cahan P, Li H, Zhao AM, San Roman AK, Shivdasani RA, Collins JJ, Daley GQ (2014) Dissecting engineered cell types and enhancing cell fate conversion via CellNet. Cell 158:889–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison M, Klein C, Clemann N, Collier DA, Hardy J, Heisserer B, Cader MZ, Graf M, Kaye J (2015) StemBANCC: governing access to material and data in a large stem cell research consortium. Stem Cell Rev 11:681–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najm FJ, Lager AM, Zaremba A, Wyatt K, Caprariello AV, Factor DC, Karl RT, Maeda T, Miller RH, Tesar PJ (2013) Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol 31:426–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan K, Schumacher KM, Tasnim F, Kandasamy K, Schumacher A, Ni M, Gao S, Gopalan B, Zink D, Ying JY (2013) Human embryonic stem cells differentiate into functional renal proximal tubular-like cells. Kidney Int 83:593–603

    Article  CAS  PubMed  Google Scholar 

  • Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, Lilly P, Sanders J, Sipes G, Bracken W, Dorato M, Van Deun K, Smith P, Berger B, Heller A (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32:56–67

    Article  CAS  PubMed  Google Scholar 

  • Ortiz A, Sanchez-Nino MD, Izquierdo MC, Martin-Cleary C, Garcia-Bermejo L, Moreno JA, Ruiz-Ortega M, Draibe J, Cruzado JM, Garcia-Gonzalez MA, Lopez-Novoa JM, Soler MJ, Sanz AB (2015) Translational value of animal models of kidney failure. Eur J Pharmacol 759:205–220

    Article  CAS  PubMed  Google Scholar 

  • Pan C, Kumar C, Bohl S, Klingmueller U, Mann M (2009) Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics 8:443–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papadimou E, Morigi M, Iatropoulos P, Xinaris C, Tomasoni S, Benedetti V, Longaretti L, Rota C, Todeschini M, Rizzo P, Introna M, Grazia de Simoni M, Remuzzi G, Goligorsky MS, Benigni A (2015) Direct reprogramming of human bone marrow stromal cells into functional renal cells using cell-free extracts. Stem Cell Reports 4:685–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passier R, Orlova V, Mummery C (2016) Complex tissue and disease modeling using hiPSCs. Cell Stem Cell 18:309–321

    Article  CAS  PubMed  Google Scholar 

  • Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rackham OJ, Firas J, Fang H, Oates ME, Holmes ML, Knaupp AS, Consortium F, Suzuki H, Nefzger CM, Daub CO, Shin JW, Petretto E, Forrest AR, Hayashizaki Y, Polo JM, Gough J (2016) A predictive computational framework for direct reprogramming between human cell types. Nat Genet 48:331–335

    Article  CAS  PubMed  Google Scholar 

  • Racusen LC, Monteil C, Sgrignoli A, Lucskay M, Marouillat S, Rhim JG, Morin JP (1997) Cell lines with extended in vitro growth potential from human renal proximal tubule: characterization, response to inducers, and comparison with established cell lines. J Lab Clin Med 129:318–329

    Article  CAS  PubMed  Google Scholar 

  • Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J (2005) Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 54:3427–3434

    Article  CAS  PubMed  Google Scholar 

  • Rezvani M, Espanol-Suner R, Malato Y, Dumont L, Grimm AA, Kienle E, Bindman JG, Wiedtke E, Hsu BY, Naqvi SJ, Schwabe RF, Corvera CU, Grimm D, Willenbring H (2016) In vivo hepatic reprogramming of myofibroblasts with AAV vectors as a therapeutic strategy for liver fibrosis. Cell Stem Cell 18:809–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11:100–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roost MS, Iperen L van, Ariyurek Y, Buermans HP, Arindrarto W, Devalla HD, Passier R, Mummery CL, Carlotti F, Koning EJ de, Zwet EW van, Goeman JJ, Chuva de Sousa Lopes SM (2015) KeyGenes, a tool to probe tissue differentiation using a human fetal transcriptional atlas. Stem Cell Reports 4:1112–1124

  • Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F, Ronconi E, Meini C, Gacci M, Squecco R, Carini M, Gesualdo L, Francini F, Maggi E, Annunziato F, Lasagni L, Serio M, Romagnani S, Romagnani P (2006) Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol 17:2443–2456

    Article  CAS  PubMed  Google Scholar 

  • Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K, Cianci A, DeVine A, Ettenger A, Fitzgerald K, Godfrey M, Gupta D, McPherson J, Malwadkar P, Gupta M, Bell B, Doi A, Jung N, Li X, Lynes MS, Brookes E, Cherry AB, Demirbas D, Tsankov AM, Zon LI, Rubin LL, Feinberg AP, Meissner A, Cowan CA, Daley GQ (2015) A comparison of non-integrating reprogramming methods. Nat Biotechnol 33:58–63

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Ott KM (2016) How to grow a kidney: patient-specific kidney organoids come of age. Nephrol Dial Transplant 32:17-23

    Google Scholar 

  • Sekiya S, Suzuki A (2011) Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475:390–393

    Article  CAS  PubMed  Google Scholar 

  • Seltmann S, Lekschas F, Muller R, Stachelscheid H, Bittner MS, Zhang W, Kidane L, Seriola A, Veiga A, Stacey G, Kurtz A (2016) hPSCreg—the human pluripotent stem cell registry. Nucleic Acids Res 44:D757–D763

    Article  PubMed  Google Scholar 

  • Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, Lopez CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao W, Tompkins RG (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110:3507–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, Sakuma T, Mukoyama M, Yamamoto T, Kurihara H, Nishinakamura R (2016) Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J Am Soc Nephrol 27:1778–1791

    Article  PubMed  Google Scholar 

  • Sherwood RI, Hashimoto T, O’Donnell CW, Lewis S, Barkal AA, Hoff JP van, Karun V, Jaakkola T, Gifford DK (2014) Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat Biotechnol 32:171–178

  • Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay HC, Yang D, Reetz J, Brandes S, Dai Z, Putzer BM, Arauzo-Bravo MJ, Steinemann D, Luedde T, Schwabe RF, Manns MP, Scholer HR, Schambach A, Cantz T, Ott M, Sharma AD (2016) Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell 18:797–808

    Article  CAS  PubMed  Google Scholar 

  • Sutherland GR, Bain AD (1972) Culture of cells from the urine of newborn children. Nature 239:231

    Article  CAS  PubMed  Google Scholar 

  • Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14:53–67

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takasato M, Little MH (2016) A strategy for generating kidney organoids: recapitulating the development in human pluripotent stem cells. Dev Biol 420:210–220

    Article  CAS  PubMed  Google Scholar 

  • Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG, Little MH (2014) Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 16:118–126

    Article  CAS  PubMed  Google Scholar 

  • Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Chuva de Sousa Lopes SM, Little MH (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526:564–568

    Article  CAS  PubMed  Google Scholar 

  • Tanigawa S, Taguchi A, Sharma N, Perantoni AO, Nishinakamura R (2016) Selective in vitro propagation of nephron progenitors derived from embryos and pluripotent stem cells. Cell Rep 15:801–813

    Article  CAS  Google Scholar 

  • Thiagarajan RD, Cloonan N, Gardiner BB, Mercer TR, Kolle G, Nourbakhsh E, Wani S, Tang D, Krishnan K, Georgas KM, Rumballe BA, Chiu HS, Steen JA, Mattick JS, Little MH, Grimmond SM (2011) Refining transcriptional programs in kidney development by integration of deep RNA-sequencing and array-based spatial profiling. BMC Genomics 12:441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyohara T, Mae S, Sueta S, Inoue T, Yamagishi Y, Kawamoto T, Kasahara T, Hoshina A, Toyoda T, Tanaka H, Araoka T, Sato-Otsubo A, Takahashi K, Sato Y, Yamaji N, Ogawa S, Yamanaka S, Osafune K (2015) Cell therapy using human induced pluripotent stem cell-derived renal progenitors ameliorates acute kidney injury in mice. Stem Cells Transl Med 4:980–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unbekandt M, Davies JA (2010) Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney Int 77:407–416

    Article  PubMed  Google Scholar 

  • Van Driest SL, McGregor TL, Velez Edwards DR, Saville BR, Kitchner TE, Hebbring SJ, Brilliant M, Jouni H, Kullo IJ, Creech CB, Kannankeril PJ, Vear SI, Brothers KB, Bowton EA, Shaffer CM, Patel N, Delaney JT, Bradford Y, Wilson S, Olson LM, Crawford DC, Potts AL, Ho RH, Roden DM, Denny JC (2015) Genome-wide association study of serum creatinine levels during vancomycin therapy. PLoS One 10:e0127791

    Article  PubMed  PubMed Central  Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wainger BJ, Buttermore ED, Oliveira JT, Mellin C, Lee S, Saber WA, Wang AJ, Ichida JK, Chiu IM, Barrett L, Huebner EA, Bilgin C, Tsujimoto N, Brenneis C, Kapur K, Rubin LL, Eggan K, Woolf CJ (2015) Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat Neurosci 18:17–24

    Article  CAS  PubMed  Google Scholar 

  • Ward HH, Romero E, Welford A, Pickett G, Bacallao R, Gattone VH 2nd, Ness SA, Wandinger-Ness A, Roitbak T (2011) Adult human CD133/1(+) kidney cells isolated from papilla integrate into developing kidney tubules. Biochim Biophys Acta 1812:1344–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilmer MJ, Ng CP, Lanz HL, Vulto P, Suter-Dick L, Masereeuw R (2016) Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol 34:156–170

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Nivet E, Sancho-Martinez I, Gallegos T, Suzuki K, Okamura D, Wu MZ, Dubova I, Esteban CR, Montserrat N, Campistol JM, Izpisua Belmonte JC (2013) Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol 15:1507–1515

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Du Y, Deng H (2015) Direct lineage reprogramming: strategies, mechanisms, and applications. Cell Stem Cell 16:119–134

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–632

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Benda C, Duzinger S, Huang Y, Li X, Li Y, Guo X, Cao G, Chen S, Hao L, Chan YC, Ng KM, Ho JC, Wieser M, Wu J, Redl H, Tse HF, Grillari J, Grillari-Voglauer R, Pei D, Esteban MA (2011) Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol 22:1221–1228

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, Wang Y, Zhang Y, Zhuang Q, Li Y, Bao X, Tse HF, Grillari J, Grillari-Voglauer R, Pei D, Esteban MA (2012) Generation of human induced pluripotent stem cells from urine samples. Nat Protoc 7:2080–2089

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Emmy Noether Programme to S.S.L. (LI1817/2-1) and S.J.A. (AR732/1-1), by Project B07 of the Collaborative Research Initiative (SFB 1140 - KIDGEM) of the German Research Foundation (DFG) to S.S.L. and S.J.A., by the BIOSS Centre of Biological Signalling Studies and the Excellence Initiative of the German Research Foundation (GSC-4, Spemann Graduate School) to S.J.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soeren S. Lienkamp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaminski, M.M., Tosic, J., Pichler, R. et al. Engineering kidney cells: reprogramming and directed differentiation to renal tissues. Cell Tissue Res 369, 185–197 (2017). https://doi.org/10.1007/s00441-017-2629-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2629-5

Keywords

Navigation