Skip to main content

Advertisement

Log in

Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The degradation of cartilage in the human body is impacted by aging, disease, genetic predisposition and continued insults resulting from daily activity. The burden of cartilage defects (osteoarthritis, rheumatoid arthritis, intervertebral disc damage, knee replacement surgeries, etc.) is daunting in light of substantial economic and social stresses. This review strives to broaden the scope of regenerative medicine and tissue engineering approaches used for cartilage repair by comparing and contrasting the anatomical and functional nature of the meniscus, articular cartilage (AC) and nucleus pulposus (NP). Many review papers have provided detailed evaluations of these cartilages and cartilage-like tissues individually but none have comprehensively examined the parallels and inconsistencies in signaling, genetic expression and extracellular matrix composition between tissues. For the first time, this review outlines the importance of understanding these three tissues as unique entities, providing a comparative analysis of anatomy, ultrastructure, biochemistry and function for each tissue. This novel approach highlights the similarities and differences between tissues, progressing research toward an understanding of what defines each tissue as distinctive. The goal of this paper is to provide researchers with the fundamental knowledge to correctly engineer the meniscus, AC and NP without inadvertently developing the wrong tissue function or biochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams MA, McNally DS, Dolan P (1996) ‘Stress’ distributions inside interbertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 78:965–972

    Article  CAS  PubMed  Google Scholar 

  • Afoke NY, Byers PD, Hutton WC (1987) Contact pressures in the human hip joint. J Bone Joint Surg Br 69:536–541

    CAS  PubMed  Google Scholar 

  • Agrawal A, Guttapalli A, Narayan S, Narayan S, Albert TJ, Shapiro IM, Risbud MV (2007) Normoxic stabilization of HIF-1alpha drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. Am J Physiol Cell Physiol 293:C621–631

    Article  CAS  PubMed  Google Scholar 

  • Aigner T, Gebhard PM, Schmid E, Bau B, Harley V, Poschl E (2003) SOX9 expression does not correlate with type II collagen expression in adult articular chondrocytes. Matrix Biol 22:363–372

    Article  CAS  PubMed  Google Scholar 

  • Alexopoulos LG, Haider MA, Vail TP, Guilak F (2003) Alterations in the mechanical properties of the human chondrocyte pericellular matrix with osteoarthritis. J Biomech Eng 125:323–333

    Article  PubMed  Google Scholar 

  • Archer CW, Dowthwaite GP, Francis-West P (2003) Development of synovial joints. Birth Defects Res C 69:144–155

    Article  CAS  Google Scholar 

  • arcOGEN Consortium; arcOGEN Collaborators, Zeggini E, Panoutsopoulou K, Southam L, Rayner NW, Day-Williams AG, Lopes MC, Boraska V, Esko T, Evangelou E, Hoffman A, Houwing-Duistermaat JJ, Ingvarsson T, Jonsdottir I, Jonnson H, Kerkhof HJ, Kloppenburg M, Bos SD, Mangino M, Metrustry S, Slagboom PE, Thorleifsson G, Raine EV, Ratnayake M, Ricketts M, Beazley C, Blackburn H, Bumpstead S, Elliott KS, Hunt SE, Potter SC, Shin SY, Yadav VK, Zhai G, Sherburn K, Dixon K, Arden E, Aslam N, Battley PK, Carluke I, Doherty S, Gordon A, Joseph J, Keen R, Koller NC, Mitchell S, O’Neill F, Paling E, Reed MR, Rivadeneira F, Swift D, Walker K, Watkins B, Wheeler M, Birrell F, Ioannidis JP, Meulenbelt I, Metspalu A, Rai A, Salter D, Stefansson K, Stykarsdottir U, Uitterlinden AG, van Meurs JB, Chapman K, Deloukas P, Ollier WE, Wallis GA, Arden N, Carr A, Doherty M, McCaskie A, Willkinson JM, Ralston SH, Valdes AM, Spector TD, Loughlin J (2012) Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 380:815–823

    Article  CAS  Google Scholar 

  • Aspden RM, Yarker YE, Hukins DW (1985) Collagen orientations in the meniscus of the knee joint. J Anat 140:371–380

    PubMed  PubMed Central  Google Scholar 

  • Bank RA, Verzijl N, Lafeber FP, Tekoppele JM (2002) Putative role of lysyl hydroxylation and pyridinoline cross-linking during adolescence in the occurrence of osteoarthritis at old age. Osteoarthritis Cartilage 10:127–134

    Article  CAS  PubMed  Google Scholar 

  • Baratz ME, Fu FH, Mengato R (1986) Meniscal tears: the effect of meniscectomy and of repair on intra-articular contact areas and stress in the human knee. Am J Sports Med 14:270–275

    Article  CAS  PubMed  Google Scholar 

  • Bargar WL, Moreland JR, Markolf KL, Shoemaker SC, Amstutz HC, Grant TT (1980) In vivo stability testing of post-meniscectomy knees. Clin Orthop Relat Res 150:247–252

    Google Scholar 

  • Bastiaansen-Jenniskens YM, Koevoet W, de Bart AC, van der Linden JC, Zuurmond AM, Weinans H, Verhaar JA, van Osch GJ, Degroot J (2008) Contribution of collagen network features to functional properties of engineered cartilage. Osteoarthritis Cartilage 16:359–366

    Article  CAS  PubMed  Google Scholar 

  • Becerra J, Andrades JA, Guerado E, Zamora-Navas P, Lopez-Puertas JM, Reddi AH (2010) Articular cartilage: structure and regeneration. Tissue Eng Part B 16:617–627

    Article  CAS  Google Scholar 

  • Blanco JF, Graciani IF, Sanchez-Guijo FM, Muntion S, Hernandez-Campo P, Santamaria C, Carrancio S, Barbado MV, Cruz G, Gutierrez-Cosio S, Herrero C, San Miguel JF, Brinon JG, del Canizo MC (2010) Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus: comparison with bone marrow mesenchymal stromal cells from the same subjects. Spine (Phila Pa 1976) 35:2259–2265

    Article  Google Scholar 

  • Bogduk N, Twomey LT (1987) Clinical anatomy of the lumbar spine, 1st edn. Churchill Livingstone, New York, pp 130–138

    Google Scholar 

  • Brama PA, Tekoppele JM, Bank RA, van Weeren PR, Barneveld A (1999) Influence of different exercise levels and age on the biochemical characteristics of immature equine articular cartilage. Equine Vet J Suppl 31:55–61

    Article  Google Scholar 

  • Buckwalter JA (1983) Articular cartilage. Instr Course Lect 32:349–370

    CAS  PubMed  Google Scholar 

  • Buckwalter JA, Mankin HJ (1998) Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 47:477–486

    CAS  PubMed  Google Scholar 

  • Cai D, Marty-Roix R, Hsu HP, Spector M (2001) Lapine and canine bone marrow stromal cells contain smooth muscle actin and contract a collagen-glycosaminoglycan matrix. Tissue Eng 7:829–841

    Article  CAS  PubMed  Google Scholar 

  • Chan WC, Au TY, Tam V, Cheah KS, Chan D (2014) Coming together is a beginning: the making of an intervertebral disc. Birth Defects Res C 102:83–100

    Article  CAS  Google Scholar 

  • Chen J, Jing L, Gilchrist CL, Richardson WJ, Fitch RD, Setton LA (2009) Expression of laminin isoforms, receptors, and binding proteins unique to nucleus pulposus cells of immature intervertebral disc. Connect Tissue Res 50:294–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Fu P, Cong R, Wu H, Pei M (2015) Strategies to minimize hypertrophy in cartilage engineering and regeneration. Genes Dis 2:76–95

  • Cheung HS (1987) Distribution of type I, II, III and V in the pepsin solubilized collagens in bovine menisci. Connect Tissue Res 16:343–356

    Article  CAS  PubMed  Google Scholar 

  • Choi JB, Youn I, Cao L, Leddy HA, Gilchrist CL, Setton LA, Guilak F (2007) Zonal changes in the three-dimensional morphology of the chondron under compression: the relationship among cellular, pericellular, and extracellular deformation in articular cartilage. J Biomech 40:2596–2603

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi H, Johnson ZI, Risbud MV (2015) Understanding nucleus pulposus cell phenotype: a prerequisite for stem cell based therapies to treat intervertebral disc degeneration. Curr Stem Cell Res Ther 10:307–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark CR, Ogden JA (1983) Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Joint Surg Am 65:538–547

    Article  CAS  PubMed  Google Scholar 

  • Clouet J, Grimandi G, Pot-Vaucel M, Masson M, Fellah HB, Guigand L, Cherel Y, Bord E, Rannou F, Weiss P, Guicheux J, Vinatier C (2009) Identification of phenotypic discriminating markers for intervertebral disc cells and articular chondrocytes. Rheumatology (Oxford) 48:1447–1450

    Article  CAS  Google Scholar 

  • Cloyd JM, Elliott DM (2007) Elastin content correlates with human disc degeneration in the anulus fibrosus and nucleus pulposus. Spine (Phila Pa 1976) 32:1826–1831

    Article  Google Scholar 

  • Cornejo MC, Cho SK, Giannarelli C, Iatridis JC, Purmessur D (2015) Soluble factors from the notochordal-rich intervertebral disc inhibit endothelial cell invasion and vessel formation in the presence and absence of pro-inflammatory cytokines. Osteoarthritis Cartilage 23:487–496

    Article  CAS  PubMed  Google Scholar 

  • Crock HV, Goldwasser M, Yoshizawa H (1988) Vascular anatomy related to the intervertebral disc. In: Ghosh P (ed) Biology of the intervertebral disc. CRC, Boca Raton, pp 109–133

    Google Scholar 

  • Danzig L, Resnick D, Gonsalves M, Akeson WH (1983) Blood supply to the normal and abnormal menisci of the human knee. Clin Orthop Relat Res 172:271–276

    Google Scholar 

  • Darling EM, Wilusz RE, Bolognesi MP, Zauscher S, Guilak F (2010) Spatial mapping of the biomechanical properties of the pericellular matrix of articular cartilage measured in situ via atomic force microscopy. Biophys J 98:2848–2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Declercq HA, Forsyth RG, Verbruggen A, Verdonk R, Cornelissen MJ, Verdonk PC (2012) CD34 and SMA expression of superficial zone cells in the normal and pathological human meniscus. J Orthop Res 30:800–808

    Article  CAS  PubMed  Google Scholar 

  • Donohue PJ, Jahnke MR, Blaha JD, Caterson B (1988) Characterization of link protein(s) from human intervertebral disc tissues. Biochem J 251:739–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowthwaite GP, Bishop JC, Redman SN, Khan IM, Rooney P, Evans DJ, Haughton L, Bayram Z, Boyer S, Thomson B, Wolfe MS, Archer CW (2004) The surface of articular cartilage contains a progenitor cell population. J Cell Sci 117:889–897

    Article  CAS  PubMed  Google Scholar 

  • Duance VC, Crean JK, Sims TJ, Avery N, Smith S, Menage J, Eisenstein SM, Roberts S (1998) Changes in collagen cross-linking in degenerative disc disease and scoliosis. Spine (Phila Pa 1976) 23:2545–2551

    Article  CAS  Google Scholar 

  • Durr J, Lammi P, Goodman SL, Aigner T, von der Mark K (1996) Identification and immunolocalization of laminin in cartilage. Exp Cell Res 222:225–233

    Article  CAS  PubMed  Google Scholar 

  • Erwin WM, Ashman K, O’Donnel P, Inman RD (2006) Nucleus pulposus notochord cells secrete connective tissue growth factor and up-regulate proteoglycan expression by intervertebral disc chondrocytes. Arthritis Rheum 54:3859–3867

    Article  CAS  PubMed  Google Scholar 

  • Erwin WM, Islam D, Inman RD, Fehlings MG, Tsui FW (2011) Notochordal cells protect nucleus pulposus cells from degradation and apoptosis: implications for the mechanisms of intervertebral disc degeneration. Arthritis Res Ther 13:R215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eyre DR, Muir H (1977) Quantitative analysis of types I and II collagens in human intervertebral discs at various ages. Biochim Biophys Acta 492:29–42

    Article  CAS  PubMed  Google Scholar 

  • Eyre DR, Wu JJ (1983) Collagen of fibrocartilage: a distinctive molecular phenotype in bovine meniscus. FEBS Lett 158:265–270

    Article  CAS  PubMed  Google Scholar 

  • Eyre DR, Brickley-Parsons DM, Glimcher MJ (1978) Predominance of type I collagen at the surface of avian articular cartilage. FEBS Lett 85:259–263

    Article  CAS  PubMed  Google Scholar 

  • Fairbanks TJ (1948) Knee joint changes after meniscectomy. J Bone Joint Surg Br 30:664–670

    Google Scholar 

  • Fife RS (1985) Identification of link proteins and a 116,000-Dalton matrix protein in canine meniscus. Arch Biochem Biophys 240:682–688

    Article  CAS  PubMed  Google Scholar 

  • Fithian DC, Kelly MA, Mow VC (1990) Material properties and structure-function relationships in the menisci. Clin Orthop Relat Res 252:19–31

    Google Scholar 

  • Fox AJ, Bedi A, Rodeo SA (2012) The basic science of human knee menisci: structure, composition, and function. Sports Health 4:340–351

    Article  PubMed  PubMed Central  Google Scholar 

  • Fox AJ, Wanivenhaus F, Burge AJ, Warren RF, Rodeo SA (2015) The human meniscus: a review of anatomy, function, injury, and advances in treatment. Clin Anat 28:269–287

    Article  PubMed  Google Scholar 

  • Frank RM, Cole BJ (2013) Complex cartilage cases in the athletic patient: advances in malalignment, instability, articular defects, and meniscal insufficiency. Phys Sportsmed 41:41–52

    Article  PubMed  Google Scholar 

  • Freeman MAR, Meachim G (1979) Ageing and degeneration. In: Freeman MAR (ed) Adult articular cartilage, 2nd edn. Pitman, London, pp 487–543

    Google Scholar 

  • Fujii M, Furumatsu T, Yokoyama Y, Kanazawa T, Kajiki Y, Abe N, Ozaki T (2013) Chondromodulin-I derived from the inner meniscus prevents endothelial cell proliferation. J Orthop Res 31:538–543

    Article  CAS  PubMed  Google Scholar 

  • Fujita N, Miyamoto T, Imai J, Hosogane N, Suzuki T, Yagi M, Morita K, Ninomiya K, Miyamoto K, Takaishi H, Matsumoto M, Morioka H, Yabe H, Chiba K, Watanabe S, Toyama Y, Suda T (2005) CD24 is expressed specifically in the nucleus pulposus of intervertebral discs. Biochem Biophys Res Commun 338:1890–1896

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Wei X, Messner K (1998) Healing of the anterior attachment of the rabbit meniscus to bone. Clin Orthop Relat Res 348:246–258

    Article  Google Scholar 

  • Gardner E, O’Rahilly R (1968) The early development of the knee joint in staged human embryos. J Anat 102:289–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghadially FN, Thomas I, Yong N, Lalonde JM (1978) Ultrastructure of rabbit semilunar cartilages. J Anat 125:499–517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh P, Taylor TK (1987) The knee joint meniscus. A fibrocartilage of some distinction. Clin Orthop Relat Res 224:52–63

    Google Scholar 

  • Ghosh P, Ingman AM, Taylor TK (1975) Variations in collagen, non-collagenous proteins, and hexosamine in menisci derived from osteoarthritic and rheumatoid arthritic knee joints. J Rheumatol 2:100–107

    CAS  PubMed  Google Scholar 

  • Goldring SR (2003) Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheumatology (Oxford) 42(Suppl 2ii):11–16

    Google Scholar 

  • Gorensek M, Jaksimovic C, Kregar-Velikonja N, Gorensek M, Knezevic M, Jeras M, Pavlovcic V, Cor A (2004) pulposus repair with cultured autologous elastic cartilage derived chondrocytes. Cell Mol Biol Lett 9:363–373

    PubMed  Google Scholar 

  • Gouttenoire J, Valcourt U, Ronziere MC, Aubert-Foucher E, Mallein-Gerin F, Herbage D (2004) Modulation of collagen synthesis in normal and osteoarthritic cartilage. Biorheology 41:535–542

    CAS  PubMed  Google Scholar 

  • Greenwald RA, Moy WW, Seibold J (1978) Functional properties of cartilage proteoglycans. Semin Arthritis Rheum 8:53–67

    Article  CAS  PubMed  Google Scholar 

  • Hattori S, Oxford C, Reddi AH (2007) Identification of superficial zone articular chondrocyte stem/progenitor cells. Biochem Biophys Res Commun 358:99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233:706–720

    Article  CAS  PubMed  Google Scholar 

  • Hayes AJ, Benjamin M, Ralphs JR (2001) Extracellular matrix in development of the intervertebral disc. Matrix Biol 20:107–121

    Article  CAS  PubMed  Google Scholar 

  • Hayes AJ, Isaacs MD, Hughes C, Caterson B, Ralphs JR (2011) Collagen fibrillogenesis in the development of the annulus fibrosus of the intervertebral disc. Eur Cell Mater 22:226–241

    Article  CAS  PubMed  Google Scholar 

  • He F, Pei M (2012) Rejuvenation of nucleus pulposus cells using extracellular matrix deposited by synovium-derived stem cells. Spine (Phila Pa 1976) 37:459–469

    Article  Google Scholar 

  • He F, Chen X, Pei M (2009) Reconstruction of an in vitro tissue-specific microenvironment to rejuvenate synovium-derived stem cells for cartilage tissue engineering. Tissue Eng Part A 15:3809–3821

    Article  CAS  PubMed  Google Scholar 

  • Heinegard D, Oldberg A (1989) Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J 3:2042–2051

    CAS  PubMed  Google Scholar 

  • Herwig J, Egner E, Buddecke E (1984) Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis 43:635–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiraki Y, Inoue H, Iyama K, Kamizono A, Ochiai M, Shukunami C, Iijima S, Suzuki F, Kondo J (1997) Identification of chondromodulin I as a novel endothelial cell growth inhibitor. Purification and its localization in the avascular zone of epiphyseal cartilage. J Biol Chem 272:32419–32426

    Article  CAS  PubMed  Google Scholar 

  • Hodge WA, Carlson KL, Fijan RS, Burgess RG, Riley PO, Harris WH, Mann RW (1989) Contact pressures from an instrumented hip endoprosthesis. J Bone Joint Surg Am 71:1378–1386

    Article  CAS  PubMed  Google Scholar 

  • Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A (1981) Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 8:101–119

    Article  CAS  PubMed  Google Scholar 

  • Höpker WW, Angres G, Klingel K, Komitowski D, Schuchardt E (1986) Changes of the elastin compartment in the human meniscus. Virchows Arch A 408:575–592

    Article  Google Scholar 

  • Hunter CJ, Matyas JR, Duncan NA (2003) The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng 9:667–677

    Article  CAS  PubMed  Google Scholar 

  • Hunter CJ, Matyas JR, Duncan NA (2004) The functional significance of cell clusters in the notochordal nucleus pulposus: survival and signaling in the canine intervertebral disc. Spine (Phila Pa 1976) 29:1099–1104

    Article  Google Scholar 

  • Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10:432–463

    Article  CAS  PubMed  Google Scholar 

  • Hunziker EB (2010) The structure of articular cartilage. In: Archer C, Ralphs J (eds) Regenerative medicine and biomaterials for the repair of connective tissues. Woodhead, Sawston, pp 83–105

    Chapter  Google Scholar 

  • Hunziker EB, Kapfinger E, Geiss J (2007) The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthritis Cartilage 15:403–413

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO, Yamada KM (1982) Fibronectins: multifunctional modular glycoproteins. J Cell Biol 95:369–377

    Article  CAS  PubMed  Google Scholar 

  • Iatridis JC, Nicoll SB, Michalek AJ, Walter BA, Gupta MS (2013) Role of biomechanics in intervertebral disc degeneration and regenerative therapies: what needs repairing in the disc and what are promising biomaterials for its repair? Spine J 13:243–262

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikeda T, Kamekura S, Mabuchi A, Kou I, Seki S, Takato T, Nakamura K, Kawaguchi H, Ikegawa S, Chung UI (2004) The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rheum 50:3561–3573

    Article  CAS  PubMed  Google Scholar 

  • Inkinen RI, Lammi MJ, Lehmonen S, Puustjarvi K, Kaapa E, Tammi MI (1998) Relative increase of biglycan and decorin and altered chondroitin sulfate epitopes in the degenerating human intervertebral disc. J Rheumatol 25:506–514

    CAS  PubMed  Google Scholar 

  • Inoue H (1981) Three-dimensional architecture of lumbar intervertebral discs. Spine (Phila Pa 1976) 6:139–146

    Article  CAS  Google Scholar 

  • Iwamoto M, Tamamura Y, Koyama E, Komori T, Takeshita N, Williams JA, Nakamura T, Enomoto-Iwamoto M, Pacifici M (2007) Transcription factor ERG and joint and articular cartilage formation during mouse limb and spine skeletogenesis. Dev Biol 305:40–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson AR (2015) Notochordal nucleus pulposus cells: prospective strategies for intervertebral disc repair and regeneration. Curr Tissue Eng 4:77–85

    Article  Google Scholar 

  • Johnson EF, Chetty K, Moore IM, Stewart A, Jones W (1982) The distribution and arrangement of elastic fibres in the intervertebral disc of the adult human. J Anat 135:301–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson WE, Evans H, Menage J, Eisenstein SM, El Haj A, Roberts S (2001) Immunohistochemical detection of Schwann cells in innervated and vascularized human intervertebral discs. Spine (Phila Pa 1976) 26:2550–2557

    Article  CAS  Google Scholar 

  • Johnstone B, Bayliss MT (1995) The large proteoglycans of the human intervertebral disc. Changes in their biosynthesis and structure with age, topography, and pathology. Spine (Phila Pa 1976) 20:674–684

    Article  CAS  Google Scholar 

  • Jones BA, Pei M (2012) Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration. Tissue Eng Part B 18:301–311

    Article  CAS  Google Scholar 

  • Jortikka MO, Inkinen RI, Tammi MI, Parkkinen JJ, Haapala J, Kiviranta I, Helminen HJ, Lammi MJ (1997) Immobilisation causes longlasting matrix changes both in the immobilised and contralateral joint cartilage. Ann Rheum Dis 56:255–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurvelin J, Saamanen AM, Arokoski J, Helminen HJ, Kiviranta I, Tammi M (1988) Biomechanical properties of the canine knee articular cartilage as related to matrix proteoglycans and collagen. Eng Med 17:157–162

    Article  CAS  PubMed  Google Scholar 

  • Kambic HE, Futani H, McDevitt CA (2000) Cell, matrix changes and alpha-smooth muscle actin expression in repair of the canine meniscus. Wound Repair Regen 8:554–561

    Article  CAS  PubMed  Google Scholar 

  • Kempson GE, Muir H, Swanson SA, Freeman MA (1970) Correlations between stiffness and the chemical constituents of cartilage on the human femoral head. Biochim Biophys Acta 215:70–77

    Article  CAS  PubMed  Google Scholar 

  • Kennedy JC, Alexander IJ, Hayes KC (1982) Nerve supply of the human knee and its functional importance. Am J Sports Med 10:329–335

    Article  CAS  PubMed  Google Scholar 

  • Kevorkian L, Young DA, Darrah C, Donell ST, Shepstone L, Porter S, Brockbank SM, Edwards DR, Parker AE, Clark IM (2004) Expression profiling of metalloproteinases and their inhibitors in cartilage. Arthritis Rheum 50:131–141

    Article  CAS  PubMed  Google Scholar 

  • Khan IM, Salter DM, Bayliss MT, Thomson BM, Archer CW (2001) Expression of clusterin in the superficial zone of bovine articular cartilage. Arthritis Rheum 44:1795–1799

    Article  CAS  PubMed  Google Scholar 

  • King D (1936) The function of semilunar cartilages. J Bone Joint Surg Am 18:1069–1076

    Google Scholar 

  • Kizawa H, Kou I, Iida A, Sudo A, Miyamoto Y, Fukuda A, Mabuchi A, Kotani A, Kawakami A, Yamamoto S, Uchida A, Nakamura K, Notoya K, Nakamura Y, Ikegawa S (2005) An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat Genet 37:138–144

    Article  CAS  PubMed  Google Scholar 

  • Kopher RA, Penchev VR, Islam MS, Hill KL, Khosla S, Kaufman DS (2010) Human embryonic stem cell-derived CD34+ cells function as MSC progenitor cells. Bone 47:718–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B, Yuasa T, Okabe T, Ochiai T, Kamiya N, Rountree RB, Kingsley DM, Iwamoto M, Enomoto-Iwamoto M, Pacifici M (2008) A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol 316:62–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kypriotou M, Fossard-Demoor M, Chadjichristos C, Ghayor C, de Crombrugghe B, Pujol JP, Galera P (2003) SOX9 exerts a bifunctional effect on type II collagen gene (COL2A1) expression in chondrocytes depending on the differentiation state. DNA Cell Biol 22:119–129

    Article  CAS  PubMed  Google Scholar 

  • Lee H-Y, Han L, Roughley PJ, Grodzinsky AJ, Ortiz C (2013) Age-related nanostructural and nanomechanical changes of individual human cartilage aggrecan monomers and their glycosaminoglycan side chairs. J Struct Biol 181:264–273

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre V, de Crombrugghe B (1998) Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol 16:529–540

    Article  CAS  PubMed  Google Scholar 

  • Lin BY, Richmond JC, Spector M (2002) Contractile actin expression in torn human menisci. Wound Repair Regen 10:259–266

    Article  CAS  PubMed  Google Scholar 

  • Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenzo P, Bayliss MT, Heinegard D (1998) A novel cartilage protein (CILP) present in the mid-zone of human articular cartilage increases with age. J Biol Chem 273:23463–23468

    Article  CAS  PubMed  Google Scholar 

  • Maroudas AI (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260:808–809

    Article  CAS  PubMed  Google Scholar 

  • Maroudas A, Venn M (1977) Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. II. Swelling. Ann Rheum Dis 36:399–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maroudas A, Stockwell RA, Nachemson A, Urban J (1975) Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J Anat 120:113–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • McDevitt CA, Webber RJ (1990) The ultrastructure and biochemistry of meniscal cartilage. Clin Orthop Relat Res 252:8–18

    Google Scholar 

  • Meirer F, Pemmer B, Pepponi G, Zoeger N, Wobrauschek P, Sprio S, Tampieri A, Goettlicher J, Steininger R, Mangold S, Roschger P, Berzlanovich A, Hofstaetter JG, Streli C (2011) Assessment of chemical species of lead accumulated in tidemarks of human articular cartilage by X-ray absorption near-edge structure analysis. J Synchrotron Radiat 18:238–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melrose J, Ghosh P, Taylor TK (2001) A comparative analysis of the differential spatial and temporal distributions of the large (aggrecan, versican) and small (decorin, biglycan, fibromodulin) proteoglycans of the intervertebral disc. J Anat 198:3–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melrose J, Smith S, Cake M, Read R, Whitelock J (2005) Comparative spatial and temporal localisation of perlecan, aggrecan and type I, II and IV collagen in the ovine meniscus: an ageing study. Histochem Cell Biol 124:225–235

    Article  CAS  PubMed  Google Scholar 

  • Merida-Velasco JA, Sanchez-Montesinos I, Espin-Ferra J, Merida-Velasco JR, Rodriguez-Vazquez JF, Jimenez-Collado J (1997) Development of the human knee joint ligaments. Anat Rec 248:259–268

    Article  CAS  PubMed  Google Scholar 

  • Mi M, Shi S, Li T, Holz J, Lee YJ, Sheu TJ, Liao Q, Xiao T (2012) TIMP2 deficient mice develop accelerated osteoarthritis via promotion of angiogenesis upon destabilization of the medial meniscus. Biochem Biophys Res Commun 423:366–372

    Article  CAS  PubMed  Google Scholar 

  • Millward-Sadler SJ, Wright MO, Flatman PW, Salter DM (2004) ATP in the mechanotransduction pathway of normal human chondrocytes. Biorheology 41:567–575

    CAS  PubMed  Google Scholar 

  • Mine T, Kimura M, Sakka A, Kawai S (2000) Innervation of nociceptors in the menisci of the knee joint: an immunohistochemical study. Arch Orthop Trauma Surg 120:201–204

    Article  CAS  PubMed  Google Scholar 

  • Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010a) Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum 62:3695–3705

    Article  PubMed  Google Scholar 

  • Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010b) Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther 12:R22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mort JS, Caterson B, Poole AR, Roughley PJ (1985) The origin of human cartilage proteoglycan link-protein heterogeneity and fragmentation during aging. Biochem J 232:805–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muinos-Lopez E, Rendal-Vazquez ME, Hermida-Gomez T, Fuentes-Boquete I, Diaz-Prado S, Blanco FJ (2012) Cryopreservation effect on proliferative and chondrogenic potential of human chondrocytes isolated from superficial and deep cartilage. Open Orthop J 6:150–159

    Article  PubMed  PubMed Central  Google Scholar 

  • Musumeci G, Trovato FM, Pichler K, Weinberg AM, Loreto C, Castrogiovanni P (2013) Extra-virgin olive oil diet and mild physical activity prevent cartilage degeneration in an osteoarthritis model: an in vivo and in vitro study on lubricin expression. J Nutr Biochem 24:2064–2075

    Article  CAS  PubMed  Google Scholar 

  • Musumeci G, Castrogiovanni P, Leonardi R, Trovato FM, Szychlinska MA, Di Giunta A, Loreto C, Castorina S (2014) New perspectives for articular cartilage repair treatment through tissue engineering: A contemporary review. World J Orthop 5:80–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Mwale F, Roughley P, Antoniou J (2004) Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc. Eur Cell Mater 8:58–63, discussion 63–54

    Article  CAS  PubMed  Google Scholar 

  • Nakamichi Y, Shukunami C, Yamada T, Aihara K, Kawano H, Sato T, Nishizaki Y, Yamamoto Y, Shindo M, Yoshimura K, Nakamura T, Takahashi N, Kawaguchi H, Hiraki Y, Kato S (2003) Chondromodulin I is a bone remodeling factor. Mol Cell Biol 23:636–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakata K, Shino K, Hamada M, Miyama T, Shinjo H, Horibe S, Tada K, Ochi T, Yoshikawa H (2001) Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop Relat Res 391(Suppl):S208–218

    Article  Google Scholar 

  • Nakaya Y, Sheng G (2008) Epithelial to mesenchymal transition during gastrulation: an embryological view. Dev Growth Differ 50:755–766

    Article  CAS  PubMed  Google Scholar 

  • Nerurkar NL, Elliott DM, Mauck RL (2010) Mechanical design criteria for intervertebral disc tissue engineering. J Biomech 43:1017–1030

    Article  PubMed  PubMed Central  Google Scholar 

  • Nixon J (1986) Intervetebral disc mechanics: a review. J R Soc Med 79:100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noyes FR, Stabler CL (1989) A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 17:505–513

    Article  CAS  PubMed  Google Scholar 

  • Ochi K, Daigo Y, Katagiri T, Saito-Hisaminato A, Tsunoda T, Toyama Y, Matsumoto H, Nakamura Y (2003) Expression profiles of two types of human knee-joint cartilage. J Hum Genet 48:177–182

    Article  CAS  PubMed  Google Scholar 

  • O’Connor BL (1984) The mechanoreceptor innervation of the posterior attachments of the lateral meniscus of the dog knee joint. J Anat 138:15–26

    PubMed  PubMed Central  Google Scholar 

  • O’Connor BL, McConnaughey JS (1978) The structure and innervation of cat knee menisci, and their relation to a “sensory hypothesis” of meniscal function. Am J Anat 153:431–442

    Article  PubMed  Google Scholar 

  • Ogawa H, Kozhemyakina E, Hung HH, Grodzinsky AJ, Lassar AB (2014) Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB-dependent, fluid flow shear stress-induced signaling pathways. Genes Dev 28:127–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldberg A, Antonsson P, Hedbom E, Heinegard D (1990) Structure and function of extracellular matrix proteoglycans. Biochem Soc Trans 18:789–792

    Article  CAS  PubMed  Google Scholar 

  • Pacifici M, Koyama E, Shibukawa Y, Wu C, Tamamura Y, Enomoto-Iwamoto M, Iwamoto M (2006) Cellular and molecular mechanisms of synovial joint and articular cartilage formation. Ann N Y Acad Sci 1068:74–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra D, Sandell LJ (2012) Antiangiogenic and anticancer molecules in cartilage. Expert Rev Mol Med 14:e10

    Article  CAS  PubMed  Google Scholar 

  • Pattappa G, Li Z, Peroglio M, Wismer N, Alini M, Grad S (2012) Diversity of intervertebral disc cells: phenotype and function. J Anat 221:480–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazin DE, Gamer LW, Capelo LP, Cox KA, Rosen V (2014) Gene signature of the embryonic meniscus. J Orthop Res 32:46–53

    Article  CAS  PubMed  Google Scholar 

  • Peacock A (1951) Observations on the prenatal development of the intervertebral disc in man. J Anat 85:260–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce RH, Mathieson JM, Mort JS, Roughley PJ (1989) Effect of age on the abundance and fragmentation of link protein of the human intervertebral disc. J Orthop Res 7:861–867

    Article  CAS  PubMed  Google Scholar 

  • Pearle AD, Warren RF, Rodeo SA (2005) Basic science of articular cartilage and osteoarthritis. Clin Sports Med 24:1–12

    Article  PubMed  Google Scholar 

  • Pei M, Seidel J, Vunjak-Novakovic G, Freed LE (2002) Growth factors for sequential cellular de- and re-differentiation in tissue engineering. Biochem Biophys Res Commun 294:149–154

    Article  CAS  PubMed  Google Scholar 

  • Pei M, He F, Kish VL (2011a) Expansion on extracellular matrix deposited by human bone marrow stromal cells facilitates stem cell proliferation and tissue-specific lineage potential. Tissue Eng Part A 17:3067–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei M, Li JT, Shoukry M, Zhang Y (2011b) A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering. Eur Cell Mater 22:333–343, discussion 343

    Article  CAS  PubMed  Google Scholar 

  • Pei M, Shoukry M, Li J, Daffner SD, France JC, Emery SE (2012) Modulation of in vitro microenvironment facilitates synovium-derived stem cell-based nucleus pulposus tissue regeneration. Spine (Phila Pa 1976) 37:1538–1547

    Article  Google Scholar 

  • Peters H, Wilm B, Sakai N, Imai K, Maas R, Balling R (1999) Pax1 and Pax9 synergistically regulate vertebral column development. Development 126:5399–5408

    CAS  PubMed  Google Scholar 

  • Pizzute T, Lynch K, Pei M (2015) Impact of tissue-specific stem cells on lineage-specific differentiation: a focus on the musculoskeletal system. Stem Cell Rev 11:119–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole CA (1997) Articular cartilage chondrons: form, function and failure. J Anat 191:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S (2001) Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res 391(Suppl):S26–33

    Article  Google Scholar 

  • Power KA, Grad S, Rutges JP, Creemers LB, van Rijen MH, O’Gaora P, Wall JG, Alini M, Pandit A, Gallagher WM (2011) Identification of cell surface-specific markers to target human nucleus pulposus cells: expression of carbonic anhydrase XII varies with age and degeneration. Arthritis Rheum 63:3876–3886

    Article  CAS  PubMed  Google Scholar 

  • Proffen BL, McElfresh M, Fleming BC, Murray MM (2012) A comparative anatomical study of the human knee and six animal species. Knee 19:493–499

    Article  PubMed  Google Scholar 

  • Pufe T, Petersen WJ, Miosge N, Goldring MB, Mentlein R, Varoga DJ, Tillmann BN (2004) Endostatin/collagen XVIII--an inhibitor of angiogenesis--is expressed in cartilage and fibrocartilage. Matrix Biol 23:267–276

    Article  CAS  PubMed  Google Scholar 

  • Quinn TM, Häuselmann HJ, Shintani N, Hunziker EB (2013) Cell and matrix morphology in articular cartilage from adult human knee and ankle joints suggests depth-associated adaptations to biomechanical and anatomical roles. Osteoarthritis Cartilage 21:1904–1912

    Article  CAS  PubMed  Google Scholar 

  • Raj PP (2008) Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Pract 8:18–44

    Article  PubMed  Google Scholar 

  • Rajpurohit R, Risbud MV, Ducheyne P, Vresilovic EJ, Shapiro IM (2002) Phenotypic characteristics of the nucleus pulposus: expression of hypoxia inducing factor-1, glucose transporter-1 and MMP-2. Cell Tissue Res 308:401–407

    Article  CAS  PubMed  Google Scholar 

  • Ray A, Singh PN, Sohaskey ML, Harland RM, Bandyopadhyay A (2015) Precise spatial restriction of BMP signaling is essential for articular cartilage differentiation. Development 142:1169–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renström P, Johnson RJ (1990) Anatomy and biomechanics of the menisci. Clin Sports Med 9:523–538

    PubMed  Google Scholar 

  • Responte DJ, Lee JK, Hu JC, Athanasiou KA (2012) Biomechanics-driven chondrogenesis: from embryo to adult. FASEB J 26:3614–3624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson SM, Knowles R, Tyler J, Mobasheri A, Hoyland JA (2008) Expression of glucose transporters GLUT-1, GLUT-3, GLUT-9 and HIF-1alpha in normal and degenerate human intervertebral disc. Histochem Cell Biol 129:503–511

    Article  CAS  PubMed  Google Scholar 

  • Risbud MV, Guttapalli A, Stokes DG, Hawkins D, Danielson KG, Schaer TP, Albert TJ, Shapiro IM (2006) Nucleus pulposus cells express HIF-1 alpha under normoxic culture conditions: a metabolic adaptation to the intervertebral disc microenvironment. J Cell Biochem 98:152–159

    Article  CAS  PubMed  Google Scholar 

  • Risbud MV, Guttapalli A, Tsai TT, Lee JY, Danielson KG, Vaccaro AR, Albert TJ, Gazit Z, Gazit D, Shapiro IM (2007) Evidence for skeletal progenitor cells in the degenerate human intervertebral disc. Spine (Phila Pa 1976) 32:2537–2544

    Article  Google Scholar 

  • Risbud MV, Schoepflin ZR, Mwale F, Kandel RA, Grad S, Iatridis JC, Sakai D, Hoyland JA (2015) Defining the phenotype of young healthy nucleus pulposus cells: recommendations of the Spine Research Interest Group at the 2014 annual ORS meeting. J Orthop Res 33:283–293

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts S, Eisenstein SM, Menage J, Evans EH, Ashton IK (1995) Mechanoreceptors in intervertebral discs. Morphology, distribution, and neuropeptides. Spine (Phila Pa 1976) 20:2645–2651

    Article  CAS  Google Scholar 

  • Rodrigues-Pinto R, Richardson SM, Hoyland JA (2014) An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration. Eur Spine J 23:1803–1814

    Article  PubMed  Google Scholar 

  • Rutges J, Creemers LB, Dhert W, Milz S, Sakai D, Mochida J, Alini M, Grad S (2010) Variations in gene and protein expression in human nucleus pulposus in comparison with annulus fibrosus and cartilage cells: potential associations with aging and degeneration. Osteoarthritis Cartilage 18:416–423

    Article  CAS  PubMed  Google Scholar 

  • Sakai D, Nakamura Y, Nakai T, Mishima T, Kato S, Grad S, Alini M, Risbud MV, Chan D, Cheah KS, Yamamura K, Masuda K, Okano H, Ando K, Mochida J (2012) Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun 3:1264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine (Phila Pa 1976) 24:2468–2474

    Article  CAS  Google Scholar 

  • Schmid TM, Linsenmayer TF (1985) Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol 100:598–605

    Article  CAS  PubMed  Google Scholar 

  • Schumacher BL, Block JA, Schmid TM, Aydelotte MB, Kuettner KE (1994) A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch Biochem Biophys 311:144–152

    Article  CAS  PubMed  Google Scholar 

  • Shine KM, Simson JA, Spector M (2009) Lubricin distribution in the human intervertebral disc. J Bone Joint Surg Am 91:2205–2212

    Article  PubMed  Google Scholar 

  • Shoukry M, Li J, Pei M (2013) Reconstruction of an in vitro niche for the transition from intervertebral disc development to nucleus pulposus regeneration. Stem Cells Dev 22:1162–1176

    Article  CAS  PubMed  Google Scholar 

  • Shrive N (1974) The weight-bearing role of the menisci of the knee. J Bone J Joint [Br] 56:381

    Google Scholar 

  • Shrive NG, O’Connor JJ, Goodfellow JW (1978) Load bearing in the knee joint. Clin Orthop Relat Res 131:279–287

    Google Scholar 

  • Shwartz Y, Viukov S, Krief S, Zelzer E (2016) Joint development involves a continuous influx of Gdf5-positive cells. Cell Rep 15:2577–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sive JI, Baird P, Jeziorsk M, Watkins A, Hoyland JA, Freemont AJ (2002) Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Mol Pathol 55:91–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skaggs DL, Warden WH, Mow VC (1994) Radial tie fibers influence the tensile properties of the bovine medial meniscus. J Orthop Res 12:176–185

    Article  CAS  PubMed  Google Scholar 

  • Smith LJ, Nerurkar NL, Choi KS, Harfe BD, Elliott DM (2011) Degeneration and regeneration of the intervertebral disc: lessons from development. Dis Model Mech 4:31–41

    Article  PubMed  CAS  Google Scholar 

  • Spilker RL, Donzelli PS, Mow VC (1992) A transversely isotropic biphasic finite element model of the meniscus. J Biomech 25:1027–1045

    Article  CAS  PubMed  Google Scholar 

  • Stockwell RA (1971) The interrelationship of cell density and cartilage thickness in mammalian articular cartilage. J Anat 109:411–421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stosiek P, Kasper M, Karsten U (1988) Expression of cytokeratin and vimentin in nucleus pulposus cells. Differentiation 39:78–81

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Wan ZY, Guo YS, Wang HQ, Luo ZJ (2013) FasL on human nucleus pulposus cells prevents angiogenesis in the disc by inducing Fas-mediated apoptosis of vascular endothelial cells. Int J Clin Exp Pathol 6:2376–2385

    PubMed  PubMed Central  Google Scholar 

  • Takao T, Iwaki T, Kondo J, Hiraki Y (2000) Immunohistochemistry of chondromodulin-I in the human intervertebral discs with special reference to the degenerative changes. Histochem J 32:545–550

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Zhou X, Liu D, Li H, Liang C, Li F, Chen Q (2016) Proportion of collagen type II in the extracellular matrix promotes the differentiation of human adipose-derived mesenchymal stem cells into nucleus pulposus cells. Biofactors 42:212–223

    CAS  PubMed  Google Scholar 

  • Tengblad A, Pearce RH, Grimmer BJ (1984) Demonstration of link protein in proteoglycan aggregates from human intervertebral disc. Biochem J 222:85–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Yuan W, Fujita N, Wang J, Wang H, Shapiro IM, Risbud MV (2013) Inflammatory cytokines associated with degenerative disc disease control aggrecanase-1 (ADAMTS-4) expression in nucleus pulposus cells through MAPK and NF-kappaB. Am J Pathol 182:2310–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran CM, Fujita N, Huang BL, Ong JR, Lyons KM, Shapiro IM, Risbud MV (2013) Hypoxia-inducible factor (HIF)-1alpha and CCN2 form a regulatory circuit in hypoxic nucleus pulposus cells: CCN2 suppresses HIF-1alpha level and transcriptional activity. J Biol Chem 288:12654–12666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treppo S, Koepp H, Quan EC, Cole AA, Kuettner KE, Grodzinsky AJ (2000) Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J Orthop Res 18:739–748

    Article  CAS  PubMed  Google Scholar 

  • Upton ML, Chen J, Setton LA (2006) Region-specific constitutive gene expression in the adult porcine meniscus. J Orthop Res 24:1562–1570

    Article  CAS  PubMed  Google Scholar 

  • Urban JP, McMullin JF (1988) Swelling pressures of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration. Spine (Phila Pa 1976) 13:179–187

    Article  CAS  Google Scholar 

  • Urban JP, Roberts S (1995) Development and degeneration of the intervertebral discs. Mol Med Today 1:329–335

    Article  CAS  PubMed  Google Scholar 

  • Urban JP, Maroudas A, Bayliss MT, Dillon J (1979) Swelling pressures of proteoglycans at the concentrations found in cartilaginous tissues. Biorheology 16:447–464

    CAS  PubMed  Google Scholar 

  • Verdonk PC, Forsyth RG, Wang J, Almqvist KF, Verdonk R, Veys EM, Verbruggen G (2005) Characterisation of human knee meniscus cell phenotype. Osteoarthritis Cartilage 13:548–560

    Article  CAS  PubMed  Google Scholar 

  • Vergroesen P-PA, van der Veen AJ, van Royen BJ, Kingma I, Smit TH (2014) Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness. Eur Spine J 23:2359–2368

    Article  PubMed  Google Scholar 

  • Vonk LA, Kroeze RJ, Doulabi BZ, Hoogendoorn RJ, Huang C, Helder MN, Everts V, Bank RA (2010) Caprine articular, meniscus and intervertebral disc cartilage: an integral analysis of collagen network and chondrocytes. Matrix Biol 29:209–218

    Article  CAS  PubMed  Google Scholar 

  • Walker PS, Erkman MJ (1975) The role of the menisci in force transmission across the knee. Clin Orthop Relat Res 109:184–192

    Article  Google Scholar 

  • Wang P, Zhang F, He Q, Wang J, Shiu HT, Shu Y, Tsang WP, Liang S, Zhao K, Wan C (2016) Flavonoid compound icariin activates hypoxia inducible factor-1alpha in chondrocytes and promotes articular cartilage repair. PLoS ONE 11:e0148372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warren R, Arnoczky SP, Wickiewicz TL (1986) Anatomy of the knee. In: Nicholas JA, Hershman EB (eds) The lower extremity and spine in sports medicine. Mosby: St. Louis, pp 657–694

  • Waters RL, Lunsford BR, Perry J, Byrd R (1988) Energy-speed relationship of walking: standard tables. J Orthop Res 6:215–222

    Article  CAS  PubMed  Google Scholar 

  • Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976) 24:755–762

    Article  CAS  Google Scholar 

  • Wilke HJ, Neef P, Hinz B, Seidel H, Claes L (2001) Intradiscal pressure together with anthropometric data—a data set for the volidation of models. Clin Biomech (Bristol, Avon) 16(Suppl 1):S111–126

    Article  Google Scholar 

  • Williamson AK, Chen AC, Sah RL (2001) Compressive properties and function-composition relationships of developing bovine articular cartilage. J Orthop Res 19:1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Williamson AK, Chen AC, Masuda K, Thonar EJ, Sah RL (2003) Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J Orthop Res 21:872–880

    Article  CAS  PubMed  Google Scholar 

  • Wong M, Carter DR (2003) Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone 33:1–13

    Article  CAS  PubMed  Google Scholar 

  • Yasuhara R, Ohta Y, Yuasa T, Kondo N, Hoang T, Addya S, Fortina P, Pacifici M, Iwamoto M, Enomoto-Iwamoto M (2011) Roles of beta-catenin signaling in phenotypic expression and proliferation of articular cartilage superficial zone cells. Lab Invest 91:1739–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Tirlapur U, Fairbank J, Handford P, Roberts S, Winlove CP, Cui Z, Urban J (2007) Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc. J Anat 210:460–471

    Article  PubMed  PubMed Central  Google Scholar 

  • Yukata K, Matsui Y, Shukunami C, Takimoto A, Goto T, Nishizaki Y, Nakamichi Y, Kubo T, Sano T, Kato S, Hiraki Y, Yasui N (2008) Altered fracture callus formation in chondromodulin-I deficient mice. Bone 43:1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Pizzute T, Pei M (2014) A review of crosstalk between MAPK and Wnt signals and its impact on cartilage regeneration. Cell Tissue Res 358:633–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chen S, Pei M (2016a) Biomechanical signals guiding stem cell cartilage engineering: from molecular adaption to tissue functionality. Eur Cell Mater 30:59–78

    Article  Google Scholar 

  • Zhang X, Prasadam I, Fang W, Crawford R, Xiao Y (2016b) Chondromodulin-1 ameliorates osteoarthritis progression by inhibiting HIF-2alpha activity. Osteoarthritis Cartilage 24:1970–1980

    Article  CAS  PubMed  Google Scholar 

  • Zimny ML, Albright DJ, Dabezies E (1988) Mechanoreceptors in the human medial meniscus. Acta Anat (Basel) 133:35–40

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Suzanne Danley for editing the manuscript and Quincy Hathaway for valuable comments and revision. This project was partially supported by Research Grants from the Musculoskeletal Transplant Foundation and the National Institutes of Health (R03AR062763-01A1, R01AR067747-01A1) (to M.P.), Natural Science Foundation of Shanghai City, China (15ZR1414000, to P.F.) and Natural Science Foundation of China (81601889, to S.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Pei.

Ethics declarations

Author disclosure statement

No competing financial interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Fu, P., Wu, H. et al. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function. Cell Tissue Res 370, 53–70 (2017). https://doi.org/10.1007/s00441-017-2613-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2613-0

Keywords

Navigation