Skip to main content

Advertisement

Log in

Toolbox in a tadpole: Xenopus for kidney research

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Xenopus is a versatile model organism increasingly used to study organogenesis and genetic diseases. The rapid embryonic development, targeted injections, loss- and gain-of-function experiments and an increasing supply of tools for functional in vivo analysis are unique advantages of the Xenopus system. Here, we review the vast array of methods available that have facilitated its transition into a translational model. We will focus primarily on how these methods have been employed in the study of kidney development, renal function and kidney disease. Future advances in the fields of genome editing, imaging and quantitative ’omics approaches are likely to enable exciting and novel applications for Xenopus to deepen our understanding of core principles of renal development and molecular mechanisms of human kidney disease. Thus, using Xenopus in clinically relevant research diversifies the narrowing pool of “standard” model organisms and provides unique opportunities for translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen BG, Weeks DL (2006) Using phiC31 integrase to make transgenic Xenopus laevis embryos. Nat Protoc 1:1248–1257

    Article  CAS  PubMed  Google Scholar 

  • Amaya E, Kroll KL (1999) A method for generating transgenic frog embryos. Methods Mol Biol 97:393–414

    CAS  PubMed  Google Scholar 

  • Bergmann C, Fliegauf M, Bruchle NO, Frank V, Olbrich H, Kirschner J, Schermer B, Schmedding I, Kispert A, Kranzlin B, Nurnberg G, Becker C, Grimm T, Girschick G, Lynch SA, Kelehan P, Senderek J, Neuhaus TJ, Stallmach T, Zentgraf H, Nurnberg P, Gretz N, Lo C, Lienkamp S, Schafer T, Walz G, Benzing T, Zerres K, Omran H (2008) Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet 82:959–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya D, Marfo CA, Li D, Lane M, Khokha MK (2015) CRISPR/Cas9: An inexpensive, efficient loss of function tool to screen human disease genes in Xenopus. Dev Biol 408:196–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blitz IL, Biesinger J, Xie X, Cho KW (2013) Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis 51:827–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blitz IL, Fish MB, Cho KW (2016) Leapfrogging: primordial germ cell transplantation permits recovery of CRISPR/Cas9-induced mutations in essential genes. Development 143:2868–2875

    Article  CAS  PubMed  Google Scholar 

  • Blum M, Schweickert A, Vick P, Wright CV, Danilchik MV (2014) Symmetry breakage in the vertebrate embryo: when does it happen and how does it work? Dev Biol 393:109–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum M, De Robertis EM, Wallingford JB, Niehrs C (2015) Morpholinos: antisense and sensibility. Dev Cell 35:145–149

    Article  CAS  PubMed  Google Scholar 

  • Bonham JR, Dale G, Scott D, Wagget J (1985) Molecular forms of acetylcholinesterase in Hirschsprung’s disease. Clin Chim Acta 145:297–305

    Article  CAS  PubMed  Google Scholar 

  • Bonnard C, Strobl AC, Shboul M, Lee H, Merriman B, Nelson SF, Ababneh OH, Uz E, Guran T, Kayserili H, Hamamy H, Reversade B (2012) Mutations in IRX5 impair craniofacial development and germ cell migration via SDF1. Nat Genet 44:709–713

    Article  CAS  PubMed  Google Scholar 

  • Boskovski MT, Yuan S, Pedersen NB, Goth CK, Makova S, Clausen H, Brueckner M, Khokha MK (2013) The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality. Nature 504:456–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowes JB, Snyder KA, Segerdell E, Jarabek CJ, Azam K, Zorn AM, Vize PD (2010) Xenbase: gene expression and improved integration. Nucleic Acids Res 38:D607–D612

    Article  CAS  PubMed  Google Scholar 

  • Braun DA, Sadowski CE, Kohl S, Lovric S, Astrinidis SA, Pabst WL, Gee HY, Ashraf S, Lawson JA, Shril S, Airik M, Tan W, Schapiro D, Rao J, Choi WI, Hermle T, Kemper MJ, Pohl M, Ozaltin F, Konrad M, Bogdanovic R, Buscher R, Helmchen U, Serdaroglu E, Lifton RP, Antonin W, Hildebrandt F (2016) Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat Genet 48:457–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan HC, Nijjar S, Jones EA (1998) The specification of the pronephric tubules and duct in Xenopus laevis. Mech Dev 75:127–137

    Article  CAS  PubMed  Google Scholar 

  • Brennan HC, Nijjar S, Jones EA (1999) The specification and growth factor inducibility of the pronephric glomus in Xenopus laevis. Development 126:5847–5856

    CAS  PubMed  Google Scholar 

  • Brooks ER, Wallingford JB (2012) Control of vertebrate intraflagellar transport by the planar cell polarity effector Fuz. J Cell Biol 198:37–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks ER, Wallingford JB (2013) The Small GTPase Rsg1 is important for the cytoplasmic localization and axonemal dynamics of intraflagellar transport proteins. Cilia 2:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caine ST, McLaughlin KA (2013) Regeneration of functional pronephric proximal tubules after partial nephrectomy in Xenopus laevis. Dev Dyn 242:219–229

    Article  CAS  PubMed  Google Scholar 

  • Campbell EP, Quigley IK, Kintner C (2016) Foxn4 promotes gene expression required for the formation of multiple motile cilia. Development 143:4654–4664

    Article  CAS  PubMed  Google Scholar 

  • Chan T-c, Ariizumi T, Asashima M (1999) A model system for organ engineering: transplantation of in vitro induced embryonic kidney. Naturwissenschaften 86:224–227

    Article  CAS  PubMed  Google Scholar 

  • Christensen EI, Raciti D, Reggiani L, Verroust PJ, Brandli AW (2008) Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney. Pflugers Arch - Eur J Physiol 456:1163–1176

    Article  CAS  Google Scholar 

  • Dale L, Slack JM (1987) Fate map for the 32-cell stage of Xenopus laevis. Development 99:527–551

    CAS  PubMed  Google Scholar 

  • Dale L, Smith JC, Slack JM (1985) Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies. J Embryol Exp Morpholog 89:289–312

    CAS  Google Scholar 

  • Del Viso F, Huang F, Myers J, Chalfant M, Zhang Y, Reza N, Bewersdorf J, Lusk CP, Khokha MK (2016) Congenital heart disease genetics uncovers context-dependent organization and function of Nucleoporins at Cilia. Dev Cell 38:478–492

    Article  PubMed  CAS  Google Scholar 

  • Desgrange A, Cereghini S (2015) Nephron patterning: lessons from Xenopus, zebrafish, and mouse studies. Cell 4:483–499

    Article  Google Scholar 

  • Doherty JR, Johnson Hamlet MR, Kuliyev E, Mead PE (2007) A flk-1 promoter/enhancer reporter transgenic Xenopus laevis generated using the Sleeping Beauty transposon system: an in vivo model for vascular studies. Dev Dyn 236:2808–2817

    Article  CAS  PubMed  Google Scholar 

  • Eisen JS, Smith JC (2008) Controlling morpholino experiments: don’t stop making antisense. Development 135:1735–1743

    Article  CAS  PubMed  Google Scholar 

  • Elkan ER (1938) The Xenopus pregnancy test. BMJ 2(1253–1274):1252

    Google Scholar 

  • Elliott KL, Fritzsch B (2010) Transplantation of Xenopus laevis ears reveals the ability to form afferent and efferent connections with the spinal cord. Int J Dev Biol 54:1443–1451

    Article  PubMed  Google Scholar 

  • Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ (2001) Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature 414:558–561

    Article  CAS  PubMed  Google Scholar 

  • Fakhro KA, Choi M, Ware SM, Belmont JW, Towbin JA, Lifton RP, Khokha MK, Brueckner M (2011) Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning. Proc Natl Acad Sci U S A 108:2915–2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Futel M, Leclerc C, Le Bouffant R, Buisson I, Neant I, Umbhauer M, Moreau M, Riou JF (2015) TRPP2-dependent Ca2+ signaling in dorso-lateral mesoderm is required for kidney field establishment in Xenopus. J Cell Sci 128:888–899

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist MJ, Christensen MB, Bronchain O, Brunet F, Chesneau A, Fenger U, Geach TJ, Ironfield HV, Kaya F, Kricha S, Lea R, Masse K, Neant I, Paillard E, Parain K, Perron M, Sinzelle L, Souopgui J, Thuret R, Ymlahi-Ouazzani Q, Pollet N (2009) Database of queryable gene expression patterns for Xenopus. Dev Dyn 238:1379–1388

    Article  CAS  PubMed  Google Scholar 

  • Gordon CT, Xue S, Yigit G, Filali H, Chen K, Rosin N, Yoshiura KI, Oufadem M, Beck TJ, McGowan R, Magee AC, Altmuller J, Dion C, Thiele H, Gurzau AD, Nurnberg P, Meschede D, Muhlbauer W, Okamoto N, Varghese V, Irving R, Sigaudy S, Williams D, Ahmed SF, Bonnard C, Kong MK, Ratbi I, Fejjal N, Fikri M, Elalaoui SC, Reigstad H, Bole-Feysot C, Nitschke P, Ragge N, Levy N, Tuncbilek G, Teo AS, Cunningham ML, Sefiani A, Kayserili H, Murphy JM, Chatdokmaiprai C, Hillmer AM, Wattanasirichaigoon D, Lyonnet S, Magdinier F, Javed A, Blewitt ME, Amiel J, Wollnik B, Reversade B (2017) De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development. Nat Genet 49:249–255

    Article  CAS  PubMed  Google Scholar 

  • Grainger RM, Herry JJ, Henderson RA (1988) Reinvestigation of the role of the optic vesicle in embryonic lens induction. Development 102:517–526

    CAS  PubMed  Google Scholar 

  • Greger R (1996) The membrane transporters regulating epithelial NaCl secretion. Pflugers Arch - Eur J Physiol 432:579–588

    Article  CAS  Google Scholar 

  • Guo X, Zhang T, Hu Z, Zhang Y, Shi Z, Wang Q, Cui Y, Wang F, Zhao H, Chen Y (2014) Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development 141:707–714

    Article  CAS  PubMed  Google Scholar 

  • Gurdon JB, Elsdale TR, Fischberg M (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182:65–65

  • Hamlet MR, Yergeau DA, Kuliyev E, Takeda M, Taira M, Kawakami K, Mead PE (2006) Tol2 transposon-mediated transgenesis in Xenopus tropicalis. Genesis 44:438–445

    Article  PubMed  CAS  Google Scholar 

  • Hannak E, Heald R (2006) Xorbit/CLASP links dynamic microtubules to chromosomes in the Xenopus meiotic spindle. J Cell Biol 172:19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heasman J (2002) Morpholino oligos: making sense of antisense? Dev Biol 243:209–214

    Article  CAS  PubMed  Google Scholar 

  • Higa MM, Ullman KS, Prunuske AJ (2006) Studying nuclear disassembly in vitro using Xenopus egg extract. Methods 39:284–290

    Article  CAS  PubMed  Google Scholar 

  • Hoff S, Halbritter J, Epting D, Frank V, Nguyen TM, van Reeuwijk J, Boehlke C, Schell C, Yasunaga T, Helmstadter M, Mergen M, Filhol E, Boldt K, Horn N, Ueffing M, Otto EA, Eisenberger T, Elting MW, van Wijk JA, Bockenhauer D, Sebire NJ, Rittig S, Vyberg M, Ring T, Pohl M, Pape L, Neuhaus TJ, Elshakhs NA, Koon SJ, Harris PC, Grahammer F, Huber TB, Kuehn EW, Kramer-Zucker A, Bolz HJ, Roepman R, Saunier S, Walz G, Hildebrandt F, Bergmann C, Lienkamp SS (2013) ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. Nat Genet 45:951–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppler S, Vize PD (2012) Xenopus protocols: post-genomic approaches. Humana, New York

    Book  Google Scholar 

  • Ishibashi S, Kroll KL, Amaya E (2012) Generating transgenic frog embryos by restriction enzyme mediated integration (REMI). Methods Mol Biol 917:185–203

    Article  CAS  PubMed  Google Scholar 

  • Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    Article  CAS  PubMed  Google Scholar 

  • Jaffe KM, Grimes DT, Schottenfeld-Roames J, Werner ME, Ku TS, Kim SK, Pelliccia JL, Morante NF, Mitchell BJ, Burdine RD (2016) c21orf59/kurly controls both cilia motility and polarization. Cell Rep 14:1841–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jevtic P, Milunovic-Jevtic A, Dilsaver MR, Gatlin JC, Levy DL (2016) Use of Xenopus cell-free extracts to study size regulation of subcellular structures. Int J Dev Biol 60:277–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Karpinka JB, Fortriede JD, Burns KA, James-Zorn C, Ponferrada VG, Lee J, Karimi K, Zorn AM, Vize PD (2015) Xenbase, the Xenopus model organism database; new virtualized system, data types and genomes. Nucleic Acids Res 43:D756–D763

    Article  PubMed  Google Scholar 

  • Kelley CM, Yergeau DA, Zhu H, Kuliyev E, Mead PE (2012) Xenopus transgenics: methods using transposons. Methods Mol Biol 917:231–243

    Article  CAS  PubMed  Google Scholar 

  • Kim SK, Shindo A, Park TJ, Oh EC, Ghosh S, Gray RS, Lewis RA, Johnson CA, Attie-Bittach T, Katsanis N, Wallingford JB (2010) Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science 329:1337–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kok FO, Shin M, Ni C-W, Gupta A, Grosse AS, van Impel A, Kirchmaier BC, Peterson-Maduro J, Kourkoulis G, Male I (2015) Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell 32:97–108

    Article  CAS  PubMed  Google Scholar 

  • Krogh A (1929) The progress of physiology. Science 70:200–204

    Article  CAS  PubMed  Google Scholar 

  • Leclerc C, Webb SE, Miller AL, Moreau M (2008) An increase in intracellular Ca2+ is involved in pronephric tubule differentiation in the amphibian Xenopus laevis. Dev Biol 321:357–367

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Guo X, Liu Y, Cao Y, Deng Y, Chen X, Cheng CH, Dawid IB, Chen Y, Zhao H (2012) Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A 109:17484–17489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YE, Allen BG, Weeks DL (2012) Using PhiC31 integrase to mediate insertion of DNA in Xenopus embryos. Methods Mol Biol 917:219–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lienkamp SS (2016) Using Xenopus to study genetic kidney diseases. Semin Cell Dev Biol 51:117–124

    Article  CAS  PubMed  Google Scholar 

  • Lienkamp S, Ganner A, Boehlke C, Schmidt T, Arnold SJ, Schafer T, Romaker D, Schuler J, Hoff S, Powelske C, Eifler A, Kronig C, Bullerkotte A, Nitschke R, Kuehn EW, Kim E, Burkhardt H, Brox T, Ronneberger O, Gloy J, Walz G (2010) Inversin relays Frizzled-8 signals to promote proximal pronephros development. Proc Natl Acad Sci U S A 107:20388–20393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lienkamp SS, Liu K, Karner CM, Carroll TJ, Ronneberger O, Wallingford JB, Walz G (2012) Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension. Nat Genet 44:1382–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loots GG, Bergmann A, Hum NR, Oldenburg CE, Wills AE, Hu N, Ovcharenko I, Harland RM (2013) Interrogating transcriptional regulatory sequences in Tol2-mediated Xenopus transgenics. PLoS ONE 8, e68548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love NR, Thuret R, Chen Y, Ishibashi S, Sabherwal N, Paredes R, Alves-Silva J, Dorey K, Noble AM, Guille MJ, Sasai Y, Papalopulu N, Amaya E (2011) pTransgenesis: a cross-species, modular transgenesis resource. Development 138:5451–5458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magalska A, Schellhaus AK, Moreno-Andres D, Zanini F, Schooley A, Sachdev R, Schwarz H, Madlung J, Antonin W (2014) RuvB-like ATPases function in chromatin decondensation at the end of mitosis. Dev Cell 31:305–318

    Article  CAS  PubMed  Google Scholar 

  • Mitchell B, Jacobs R, Li J, Chien S, Kintner C (2007) A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 447:97–101

    Article  CAS  PubMed  Google Scholar 

  • Mitchell B, Stubbs JL, Huisman F, Taborek P, Yu C, Kintner C (2009) The PCP pathway instructs the planar orientation of ciliated cells in the Xenopus larval skin. Curr Biol 19:924–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchison HM, Valente EM (2017) Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol 241:294–309

    Article  PubMed  Google Scholar 

  • Moody SA (1987) Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev Biol 122:300–319

    Article  CAS  PubMed  Google Scholar 

  • Moriya N, Uchiyama H, Asashima M (1993) Induction of pronephric tubules by activin and retinoic acid in presumptive ectoderm of Xenopus laevis. Develop Growth Differ 35:123–128

    Article  CAS  Google Scholar 

  • Naert T, Colpaert R, Van Nieuwenhuysen T, Dimitrakopoulou D, Leoen J, Haustraete J, Boel A, Steyaert W, Lepez T, Deforce D, Willaert A, Creytens D, Vleminckx K (2016) CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis. Sci Rep 6:35264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, Daimon T, Sezutsu H, Yamamoto T, Sakuma T, Suzuki KT (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5:5560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM (2013) Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51:835–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama T, Nakajima K, Cox A, Fisher M, Howell M, Fish MB, Yaoita Y, Grainger RM (2016) No privacy, a Xenopus tropicalis mutant, is a model of human Hermansky-Pudlak Syndrome and allows visualization of internal organogenesis during tadpole development. Dev Biol

  • Nieuwkoop P (1969) The formation of the mesoderm in urodelean amphibians. Wilhelm Roux Arch Entwickl Mech Org 163:298–315

    Article  CAS  PubMed  Google Scholar 

  • Ochi H, Tamai T, Nagano H, Kawaguchi A, Sudou N, Ogino H (2012) Evolution of a tissue-specific silencer underlies divergence in the expression of pax2 and pax8 paralogues. Nat Commun 3:848

    Article  PubMed  CAS  Google Scholar 

  • Ogino H, McConnell WB, Grainger RM (2006) High-throughput transgenesis in Xenopus using I-SceI meganuclease. Nat Protoc 1:1703–1710

    Article  CAS  PubMed  Google Scholar 

  • Osafune K, Nishinakamura R, Komazaki S, Asashima M (2002) In vitro induction of the pronephric duct in Xenopus explants. Develop Growth Differ 44:161–167

    Article  Google Scholar 

  • Pan FC, Chen Y, Loeber J, Henningfeld K, Pieler T (2006) I-SceI meganuclease-mediated transgenesis in Xenopus. Dev Dyn 235:247–252

    Article  PubMed  CAS  Google Scholar 

  • Papke RL, Smith-Maxwell C (2009) High throughput electrophysiology with Xenopus oocytes. Comb Chem High Throughput Screen 12:38–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen A, Skjong C, Shawlot W (2005) Lim 1 is required for nephric duct extension and ureteric bud morphogenesis. Dev Biol 288:571–581

    Article  CAS  PubMed  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  CAS  PubMed  Google Scholar 

  • Raciti D, Reggiani L, Geffers L, Jiang Q, Bacchion F, Subrizi AE, Clements D, Tindal C, Davidson DR, Kaissling B, Brandli AW (2008) Organization of the pronephric kidney revealed by large-scale gene expression mapping. Genome Biol 9:R84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reid CD, Karra K, Chang J, Piskol R, Li Q, Li JB, Cherry JM, Baker JC (2016) XenMine: a genomic interaction tool for the Xenopus community. Dev Biol

  • Reversade B, Escande-Beillard N, Dimopoulou A, Fischer B, Chng SC, Li Y, Shboul M, Tham PY, Kayserili H, Al-Gazali L, Shahwan M, Brancati F, Lee H, O’Connor BD, Schmidt-von Kegler M, Merriman B, Nelson SF, Masri A, Alkazaleh F, Guerra D, Ferrari P, Nanda A, Rajab A, Markie D, Gray M, Nelson J, Grix A, Sommer A, Savarirayan R, Janecke AR, Steichen E, Sillence D, Hausser I, Budde B, Nurnberg G, Nurnberg P, Seemann P, Kunkel D, Zambruno G, Dallapiccola B, Schuelke M, Robertson S, Hamamy H, Wollnik B, Van Maldergem L, Mundlos S, Kornak U (2009) Mutations in PYCR1 cause cutis laxa with progeroid features. Nat Genet 41:1016–1021

    Article  CAS  PubMed  Google Scholar 

  • Sadaghiani B, Thiebaud CH (1987) Neural crest development in the Xenopus laevis embryo, studied by interspecific transplantation and scanning electron microscopy. Dev Biol 124:91–110

    Article  CAS  PubMed  Google Scholar 

  • Schafer T, Putz M, Lienkamp S, Ganner A, Bergbreiter A, Ramachandran H, Gieloff V, Gerner M, Mattonet C, Czarnecki PG, Sayer JA, Otto EA, Hildebrandt F, Kramer-Zucker A, Walz G (2008) Genetic and physical interaction between the NPHP5 and NPHP6 gene products. Hum Mol Genet 17:3655–3662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmitt SM, Gull M, Brandli AW (2014) Engineering Xenopus embryos for phenotypic drug discovery screening. Adv Drug Deliv Rev 69–70:225–246

    Article  PubMed  CAS  Google Scholar 

  • Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:336–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Z, Wang F, Cui Y, Liu Z, Guo X, Zhang Y, Deng Y, Zhao H, Chen Y (2015) Heritable CRISPR/Cas9-mediated targeted integration in Xenopus tropicalis. FASEB J 29:4914–4923

    Article  CAS  PubMed  Google Scholar 

  • Silva P, Solomon RJ, Epstein FH (1996) The rectal gland of Squalus acanthias: a model for the transport of chloride. Kidney Int 49:1552–1556

    Article  CAS  PubMed  Google Scholar 

  • Sinzelle L, Vallin J, Coen L, Chesneau A, Du Pasquier D, Pollet N, Demeneix B, Mazabraud A (2006) Generation of trangenic Xenopus laevis using the Sleeping Beauty transposon system. Transgenic Res 15:751–760

    Article  CAS  PubMed  Google Scholar 

  • Sive HL, Grainger RM, Harland RM (2000) Early development of Xenopus laevis: a laboratory manual. Cold Spring Harbor Press, New York.

  • Sive HL, Grainger RM, Harland RM (2007) Inducing ovulation in Xenopus laevis. CSH protocols 2007:pdb prot4734

  • Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401

    Article  CAS  PubMed  Google Scholar 

  • Spemann H, Mangold H (1924) Über induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Dev Genes Evol 100:599–638

    Google Scholar 

  • Suzuki N, Hirano K, Ogino H, Ochi H (2015) Identification of distal enhancers for Six2 expression in pronephros. Int J Dev Biol 59:241–246

  • Tandon P, Conlon F, Furlow JD, Horb ME (2016) Expanding the genetic toolkit in Xenopus: approaches and opportunities for human disease modeling. Dev Biol

  • Toriyama M, Lee C, Taylor SP, Duran I, Cohn DH, Bruel AL, Tabler JM, Drew K, Kelly MR, Kim S, Park TJ, Braun DA, Pierquin G, Biver A, Wagner K, Malfroot A, Panigrahi I, Franco B, Al-Lami HA, Yeung Y, Choi YJ, University of Washington Center for Mendelian G, Duffourd Y, Faivre L, Riviere JB, Chen J, Liu KJ, Marcotte EM, Hildebrandt F, Thauvin-Robinet C, Krakow D, Jackson PK, Wallingford JB (2016) The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nat Genet 48:648–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uochi T, Asashima M (1998) XCIRP (Xenopus homolog of cold-inducible RNA-binding protein) is expressed transiently in developing pronephros and neural tissue. Gene 211:245–250

    Article  CAS  PubMed  Google Scholar 

  • Vize PD, Jones EA, Pfister R (1995) Development of the Xenopus pronephric system. Dev Biol 171:531–540

    Article  CAS  PubMed  Google Scholar 

  • Vize PD, McCoy KE, Zhou X (2009) Multichannel wholemount fluorescent and fluorescent/chromogenic in situ hybridization in Xenopus embryos. Nat Protoc 4:975–983

    Article  PubMed  Google Scholar 

  • Vollmer B, Lorenz M, Moreno-Andres D, Bodenhofer M, De Magistris P, Astrinidis SA, Schooley A, Flotenmeyer M, Leptihn S, Antonin W (2015) Nup153 recruits the Nup107-160 complex to the inner nuclear membrane for interphasic nuclear pore complex assembly. Dev Cell 33:717–728

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Shi Z, Cui Y, Guo X, Shi YB, Chen Y (2015) Targeted gene disruption in Xenopus laevis using CRISPR/Cas9. Cell Biosci 5:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wessely O, Tran U (2011) Xenopus pronephros development--past, present, and future. Pediatr Nephrol 26:1545–1551

    Article  PubMed  PubMed Central  Google Scholar 

  • White JT, Zhang B, Cerqueira DM, Tran U, Wessely O (2010) Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus. Development 137:1863–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasunaga T, Hoff S, Schell C, Helmstadter M, Kretz O, Kuechlin S, Yakulov TA, Engel C, Muller B, Bensch R, Ronneberger O, Huber TB, Lienkamp SS, Walz G (2015) The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells. J Cell Biol 211:963–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JJ, Harland RM (2012) Targeted gene disruption with engineered zinc-finger nucleases (ZFNs). Methods Mol Biol 917:129–141

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Ulbrich MH, Li MH, Buraei Z, Chen XZ, Ong AC, Tong L, Isacoff EY, Yang J (2009) Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci U S A 106:11558–11563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Mitchell BJ (2015) Basal bodies in Xenopus. Cilia 5:2

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Vize PD (2004) Proximo-distal specialization of epithelial transport processes within the Xenopus pronephric kidney tubules. Dev Biol 271:322–338

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Emmy Noether Programme to SSL (LI1817/2-1) and Project B07 of the collaborative research initiative (SFB 1140) to SSL by the German Research Foundation (DFG).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soeren S. Lienkamp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Getwan, M., Lienkamp, S.S. Toolbox in a tadpole: Xenopus for kidney research. Cell Tissue Res 369, 143–157 (2017). https://doi.org/10.1007/s00441-017-2611-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2611-2

Keywords

Navigation