Brain architecture of the Pacific White Shrimp Penaeus vannamei Boone, 1931 (Malacostraca, Dendrobranchiata): correspondence of brain structure and sensory input?

Abstract

Penaeus vannamei (Dendrobranchiata, Decapoda) is best known as the “Pacific White Shrimp” and is currently the most important crustacean in commercial aquaculture worldwide. Although the neuroanatomy of crustaceans has been well examined in representatives of reptant decapods (“ground-dwelling decapods”), there are only a few studies focusing on shrimps and prawns. In order to obtain insights into the architecture of the brain of P. vannamei, we use neuroanatomical methods including X-ray micro-computed tomography, 3D reconstruction and immunohistochemical staining combined with confocal laser-scanning microscopy and serial sectioning. The brain of P. vannamei exhibits all the prominent neuropils and tracts that characterize the ground pattern of decapod crustaceans. However, the size proportion of some neuropils is salient. The large lateral protocerebrum that comprises the visual neuropils as well as the hemiellipsoid body and medulla terminalis is remarkable. This observation corresponds with the large size of the compound eyes of these animals. In contrast, the remaining median part of the brain is relatively small. It is dominated by the paired antenna 2 neuropils, while the deutocerebral chemosensory lobes play a minor role. Our findings suggest that visual input from the compound eyes and mechanosensory input from the second pair of antennae are major sensory modalities, which this brain processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ammar D, Nazari EM, Müller YMR, Allodi S (2008) New insights on the olfactory lobe of decapod crustaceans. Brain Behav Evol 72:27–36

    Article  PubMed  Google Scholar 

  2. Ammar D, Nazari EM, Müller YMR, Allodi S (2013) On the brain of a crustacean: a morphological analysis of CaMKII Expression and its relation to sensory and motor pathways. PLoS ONE 8:e64855

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Ball EE, Cowan AN (1977) Ultrastructure of the antennal sensilla of Acetes (Crustacea, Decapoda, Natantia, Sergestidae). Philos Trans R Soc Lond B 277:429–457

    CAS  Article  Google Scholar 

  4. Bell TA, Lightner DV (1988) A handbook of normal penaeid shrimp histology. World Aquaculture Society, Baton Rouge

    Google Scholar 

  5. Beltz BS, Kordas K, Lee MM, Long J, Benton JL, Sandeman DC (2003) Ecological, evolutionary, and functional correlates of sensilla number and glomerular density in the olfactory system of decapod crustaceans. J Comp Neurol 455(2):260–269

    Article  PubMed  Google Scholar 

  6. Blaustein ND, Derby C, Simmons RB, Beall AC (1988) Structure of the brain and medulla terminalis of the spiny lobster Panulirus argus and the crayfish Procambarus clarkii, with an emphasis on olfactory centers. J Crustac Biol 8:493–499

    Article  Google Scholar 

  7. Boone L (1931) A collection of anomuran and macruran Crustacea from the bay of Panama and the fresh waters of the canal zone. Bull Am Mus Nat Hist 63:173

    Google Scholar 

  8. Briggs M, Funge-Smith S, Subasinghe R, Phillips M (2004) Introductions and movement of Penaeus vannamei and Penaeus stylirostris in Asia and the Pacific. RAP publications, Food and Agriculture Organization of the United Nations Office for Asia and the Pacific, Bankok

  9. Cape SS, Rehm KJ, Ma M, Marder E, Li L (2008) Mass spectral comparison of the neuropeptide complement of the stomatogastric ganglion and brain in the adult and embryonic lobster, Homarus americanus. J Neurochem 105:690–702

    CAS  Article  PubMed  Google Scholar 

  10. Chittka L, Niven JE (2009) Are Bigger Brains Better? Curr Biol 19:R995–R1008

  11. Christie AE (2014) Expansion of the Litopenaeus vannamei and Penaeus monodon peptidomes using transcriptome shotgun assembly sequence data. Gen Comp Endocrinol 206:235–254

    CAS  Article  PubMed  Google Scholar 

  12. Christie AE (2016) Expansion of the neuropeptidome of the globally invasive marine crab Carcinus maenas. Gen Comp Endocrinol 235:150–169

    Article  PubMed  Google Scholar 

  13. Christie AE, Stemmler EA, Dickinson PS (2010) Crustacean neuropeptides. Cell Mol Life Sciences 67:4135–4169

    CAS  Article  Google Scholar 

  14. Corteel M (2013) White spot syndrome virus infection in P. vannamei and M. rosenbergii: experimental studies on susceptibility to infection and disease. Dissertation, Faculty of Veterinary Medicine, Ghent University, Belgium. ISBN-number: 9789058643308

  15. Cronin TW, Feller KD (2014) Sensory Ecology of Vision in Crustaceans. In: Derby C, Thiel M (eds) The Natural History of Crustacea, Vol. 3, Nervous System and Behavior. Oxford University Press, Oxford, pp 235–262

  16. Dall WB, Hill BJ, Rothlisberg PC, Sharples DJ (1990) The biology of the Penaeidae. Adv Mar Biol 27:1–489

    Google Scholar 

  17. Denton EJ, Gray J (1985) Lateral-line-like antennae of certain of the Penaeidea (Crustacea, Decapoda, Natantia). Proc R Soc Lond B 226:249–261

    Article  Google Scholar 

  18. Derby CD, Weissburg MJ (2014) The chemical senses and chemosensory ecology of crustaceans. In: Derby CD, Thiel M (eds) Crustacean Nervous Systems and their Control of Behavior. Springer, New York, pp 263–292

    Google Scholar 

  19. Derby CD, Fortier JK, Harrison PJH, Cate HS (2003) The peripheral and central antennular pathway of the Caribbean stomatopod crustacean Neogonodactylus oerstedii. Arthropod Struct Dev 32(2–3):175–188

    Article  PubMed  Google Scholar 

  20. Dircksen H, Skiebe P, Abel B, Agricola HJ, Buchner K, Muren JE, Nässel DR (1999) Structure, distribution, and biological activity of novel members of the allatostatin family in the crayfish Orconectes limosus. Peptides 20:695–712

    CAS  Article  PubMed  Google Scholar 

  21. Dockray GJ (2004) The expanding family of RFamide peptides and their effects on feeding behaviour. Exp Physiol 89:229–235

    CAS  Article  PubMed  Google Scholar 

  22. Duve H, Johnsen AH, Maestro JL, Scott AG, Jaros PP, Thorpe A (1997) Isolation and identification of multiple neuropeptides of the allatostatin superfamily in the shore crab Carcinus maenas. Europ J Biochem 250:727–734

    CAS  Article  PubMed  Google Scholar 

  23. Duve H, Johnsen AH, Scott AG, Thorpe A (2002) Allatostatins of the tiger prawn, Penaeus monodon (Crustacea: Penaeidea). Peptides 23:1039–1051

    CAS  Article  PubMed  Google Scholar 

  24. Elofsson R, Hagberg M (1986) Evolutionary aspects on the construction of the first opticneuropil (lamina) in Crustacea. Zoomorphol 106:174–178

    Article  Google Scholar 

  25. FAO yearbook (2014) Fishery and Aquaculture Statistics 2012. Food and Agriculture Organization of the United Nation, Statistics and Information Branch of the Fisheries and Aquaculture Department, Rome: pp. 1–76

  26. Foxton P (1969) The morphology of the antennular flagellum of certain of the Penaeida (Decapoda, Natantia). Crustaceana 16:33–42

    Article  Google Scholar 

  27. Gaten E (1998) Optics and evolution: is there an insight? The evolution of superposition eyes in the Decapoda (Crustacea). Contrib Zool 67:223–235

    Google Scholar 

  28. Glantz R (2014) Visual Systems of Crustaceans. In: Derby C, Thiel M (eds) The Natural History of Crustacea, Vol. 3, Nervous System and Behavior. Oxford University Press, Oxford, pp 235–262

  29. Greenberg MJ, Price DA (1992) Chapter 3 Relationships among the RFRFamide-like peptides. In: Joosse J, Buijs RM, Tilders FJH (eds) The Peptidergic Neuron. Elsevier, Amsterdam, pp 25–37.

  30. Hallberg E, Hansson BS (1999) Arthropod sensilla: morphology and phylogenetic considerations. Microsc Res Tech 47:28–439

  31. Hallberg E, Skog M (2011) Chemosensory Sensilla in Crustaceans. In: Breithaupt T, Thiel M (eds) Chemical Communication in Crustaceans. Springer, New York, pp 103–121

    Google Scholar 

  32. Hallberg E, Johansson KUI, Elofsson R (1992) The aesthetasc concept: Structural variations of putative olfactory receptor cell complexes in Crustacea. Microsc Res Tech 22(4):325–335

    CAS  Article  PubMed  Google Scholar 

  33. Hanström B (1926) Untersuchungen über die relative Größe der Gehirnzentren verschiedener Arthropoden unter Berücksichtigung der Lebensweise. Z Mikrosk Anat Zellforsch 7:135–190.

  34. Harzsch S, Hansson BS (2008) Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae): neuroanatomical evidence for a superb aerial sense of smell. BMC Neurosci 9:58

    Article  PubMed  PubMed Central  Google Scholar 

  35. Harzsch S, Anger K, Dawirs RR (1997) Immunocytochemical detection of acetylated alpha-tubulin and Drosophila synapsin in the embryonic crustacean nervous system. Int J Dev Biol 41:477–484

    CAS  PubMed  Google Scholar 

  36. Harzsch S, Miller J, Benton JL, Dawirs RR, Beltz BS (1998) Neurogenesis in the thoracic neuromeres of two crustaceans with different types of metamorphic development. J Exp Biol 201:2465–2479

    PubMed  Google Scholar 

  37. Harzsch S, Miller J, Benton JL, Beltz BS (1999) From embryo to adult: persistent neurogenesis and apoptotic cell death shape the lobster deutocerebrum. J Neurosci 19:3472–3485

    CAS  PubMed  Google Scholar 

  38. Harzsch S, Rieger V, Krieger J, Seefluth F, Strausfeld NJ, Hansson BS (2011) Transition from marine to terrestrial ecologies: Changes in olfactory and tritocerebral neuropils in land-living isopods. Arthropod Struct Dev 40(3):244–257

    CAS  Article  PubMed  Google Scholar 

  39. Harzsch S, Sandeman D, Chaigneau J (2012) Morphology and development of the central nervous system. In: Forest J, von Vaupel Klein JC (eds) Treatise on Zoology – Anatomy, Taxonomy, Biology, vol 3, The Crustacea. Brill, Leiden, pp 9–236

    Chapter  Google Scholar 

  40. Holthuis LB (1980) FAO species catalogue 1. Shrimps and prawns of the world. Anotated catalogue of species of interest to fisheries. FAO fish synopsis 125

  41. Homberg U (1994) Distribution of neurotransmitters in the insect brain. In: Rathmayer W (ed) Progress in Zoology Vol. 40. Gustav Fischer, Stuttgart

  42. Hörnig MK, Sombke A, Haug C, Harzsch S, Haug JT (2016) What nymphal morphology can tell us about parental investment - a group of cockroach hatchlings in Baltic amber documented by a multi-method approach. Palaeontol Electron 19.1(6A):1–20

    Google Scholar 

  43. Huybrechts J, Nusbaum MP, Bosch LV, Baggerman G, Loof AD, Schoofs L (2003) Neuropeptidomic analysis of the brain and thoracic ganglion from the Jonah crab, Cancer borealis. Biochem Biophys Res Comm 308:535–544

    CAS  Article  PubMed  Google Scholar 

  44. Johansson KUI (1991) Identification of different types of serotonin-like immunoreactive olfactory interneurons in four infraorders of decapods crustaceans. Cell Tissue Res 264:357–362

    Article  Google Scholar 

  45. Johansson KUI, Hallberg E (1992a) The organization of the olfactory lobes in Euphausiacea and Mysidacea (Crustacea, Malacostraca). Zoomorphology 112:81–89

    Article  Google Scholar 

  46. Johansson KUI, Hallberg E (1992b) Male-specific structures in the olfactory system of mysids (Mysidacea; Crustacea). Cell Tissue Res 268:359–368

    Article  Google Scholar 

  47. Kenning M, Harzsch S (2013) Brain anatomy of the marine isopod Saduria entomon Linnaeus, 1758 (Valvifera, Isopoda) with special emphasis on the olfactory pathway. Front Neuroanat 7:32

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kenning M, Müller C, Wirkner CS, Harzsch S (2013) The Malacostraca (Crustacea) from a neurophylogenetic perspective: new insights from brain architecture in Nebalia herbstii Leach, 1814 (Leptostraca, Phyllocarida). Zool Anz 252:319–33

    Article  Google Scholar 

  49. Klagges BRE, Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerste R, Reisch D, Schaupp M, Buchner E, Buchner S (1996) Invertebrate Synapsins: A Single Gene Codes for Several Isoforms in Drosophila. J Neurosci 16:3154–3165

    CAS  PubMed  Google Scholar 

  50. Kreis TE (1987) Microtubules containing detyrosinated tubulin are less dynamic. EMBO J 6:2597–2606

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kreissl S, Strasser C, Galizia CG (2010) Allatostatin Immunoreactivity in the Honeybee Brain. J Comp Neurol 518:1391–1417

    CAS  Article  PubMed  Google Scholar 

  52. Krieger J, Sandeman RE, Sandeman DC, Hansson BS, Harzsch S (2010) Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway? Front Zool 7:25

    Article  PubMed  PubMed Central  Google Scholar 

  53. Krieger J, Sombke A, Seefluth F, Kenning M, Hansson BS, Harzsch S (2012) Comparative brain architecture of the European shore crab Carcinus maenas (Brachyura) and the common hermit crab Pagurus bernhardus (Anomura), with notes on other marine hermit crabs. Cell Tissue Res 348:47–69

    Article  PubMed  Google Scholar 

  54. Krieger J, Braun P, Rivera NT, Schubart CD, Müller CHG, Harzsch S (2015) Comparative analyses of olfactory systems in terrestrial crabs (Brachyura): Evidence for aerial olfaction? PeerJ 3:e1433

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kruangkum T, Chotwiwatthanakun C, Vanichviriyakit R, Tinikul Y, Anuracpreeda P, Wanichanon C, Hanna PJ, Sobhon P (2013) Structure of the olfactory receptor organs, their GABAergic neural pathways, and modulation of mating behaviour in the Giant Freshwater Prawn, Macrobrachium rosenbergii. Microsc Res Tech 76:572–87

    CAS  Article  PubMed  Google Scholar 

  56. Lenz PH, Hartline DK (2013) Mechanoreception in crustaceans of the pelagic realm. In: Derby CD, Thiel M (eds) Crustacean Nervous Systems and their Control of Behavior. Springer, New York, pp 293–320

    Google Scholar 

  57. Loesel R, Wolf H, Kenning M, Harzsch S, Sombke A (2013) Architectural principles and evolution of the arthropod central nervous system. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod Biology and Evolution: Molecules, Development, Morphology. Springer, Berlin, pp 299–342

    Chapter  Google Scholar 

  58. Ma M, Gard AL, Xiang F, Wang J, Davoodian N, Lenz PH, Malecha SR, Christie AE, Li L (2010) Combining in silico transcriptome mining and biological mass spectrometry for neuropeptide discovery in the Pacific white shrimp Litopenaeus vannamei. Peptides 31:27–43

    CAS  Article  PubMed  Google Scholar 

  59. Marshall J, Cronin TW, Kleinlogel S (2007) Stomatopod eye structure and function: A review. Arthropod Struct Dev 36:420–448

    Article  PubMed  Google Scholar 

  60. Mellon DeF Jr (2007) Combining dissimilar senses: central processing of hydrodynamic and chemosensory inputs in aquatic crustaceans. Biol Bull 213:1–11

  61. Mellon DeF Jr (2012) Smelling, feeding, tasting and touching: behavioral and neural integration of antennular chemosensory and mechanosensory inputs in crayfish. J Exp Biol 215:2163–2172

  62. Mercier AJ, Friedrich R, Boldt M (2003) Physiological functions of FMRFamide‐like peptides (FLPs) in crustaceans. Microsc Res Tech 60:313–324

    CAS  Article  PubMed  Google Scholar 

  63. Meyer-Rochow VB, Walsh S (1977) The Eyes of Mesopelagic Crustaceans: I. Gennadas sp. (Penaeidae). Cell Tissue Res 184:87–101

    CAS  Article  PubMed  Google Scholar 

  64. Moreau X, Benzid D, De Jong L, Barthélémy R-M, Casanova J-P (2002) Evidence for the presence of serotonin in Mysidacea (Crustacea, Peracarida) as revealed by fluorescence immunohistochemistry. Cell Tissue Res 310:359–371

    CAS  Article  PubMed  Google Scholar 

  65. Mulisch M, Welsch U (2010) Romeis Mikroskopische Technik 18. Auflage. Spektrum Heildeberg

  66. Nässel DR (1975) The organization of the lamina ganglionaris of the prawn Pandalus borealis. (Kröyer). Cell Tissue Res 163:445–465

    Article  PubMed  Google Scholar 

  67. Nässel DR (1993) Neuropeptides in the insect brain: a review. Cell Tissue Res 273:1–29

    Article  PubMed  Google Scholar 

  68. Nässel DR, Homberg U (2006) Neuropeptides in interneurons of the insect brain. Cell Tissue Res 326:1–24

    Article  PubMed  Google Scholar 

  69. Ngernsoungnern P, Ngernsoungnern A, Kavanaugh S, Sobhon P, Sower SA, Sretaragusa P (2008) The presence and distribution of gonadotropin-releasing hormone-like factor in the central nervous system of the black tiger shrimp, Penaeus monodon. Gen Comp Endocrinol 155:613–622

    CAS  Article  PubMed  Google Scholar 

  70. Nilsson D-E (1989) Optics and evolution of the compound eye. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 30–73

    Chapter  Google Scholar 

  71. Nilsson DE (1990) Three unexpected cases of refracting superposition eyes in crustaceans. J Comp Physiol A 167:71–78

    Article  Google Scholar 

  72. Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211:1792–1804

    CAS  Article  PubMed  Google Scholar 

  73. Polanska M, Tuchina O, Agricola H, Hansson BS, Harzsch S (2012) Neuropeptide complexity in the crustacean central olfactory pathway: immunolocalization of A-type allatostatins and RFamide-like peptides in the brain of a terrestrial hermit crab. Mol Brain 5:29

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Price DA, Greenberg MJ (1989) The hunting of the FaRPs: the distribution of FMRFamide-related peptides. Biol Bull 177:198–205

    CAS  Article  Google Scholar 

  75. Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller C, Rieger V, Rothe BH, Stegner MEJ, Harzsch S (2010) Invertebrate neurophylogeny - suggested terms and definitions for a neuroanatomical glossary. Front Zool 7:29

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rosenberry B (2002) World shrimp farming 2002. Shrimp News International, San Diego

  77. Sandeman DC, Varju D (1988) A behavioral study of tactile localization in the crayfish Cherax destructor. J Comp Physiol 163:525–536

    Article  Google Scholar 

  78. Sandeman DC, Scholtz G, Sandeman RE (1993) Brain evolution in decapod Crustacea. J Exp Zool 265:112–133

    Article  Google Scholar 

  79. Sandeman DC, Kenning M, Harzsch S (2014) Adaptive trends in malacostracan brain form and function related to behaviour. In: Derby C, Thiel M (eds) Crustacean Nervous System and their Control of Behaviour, vol 3, The Natural History of the Crustacea. Oxford University Press, Oxford, pp 11–48

  80. Schachtner J, Schmidt M, Homberg U (2005) Organization and evolutionary trends in primary olfactory brain centers in Tetraconata (Crustacea + Hexapoda). Arthropod Struct Dev 34:257–299

    Article  Google Scholar 

  81. Schmidt M (2007) The olfactory pathway of decapods crustaceans – an invertebrate model for life-long neurogenesis. Chem Senses 32:365–384

    Article  PubMed  Google Scholar 

  82. Schmidt M (2016) Malacostraca. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and Evolution of Invertebrate Nervous Systems”. Oxford University Press, Oxford, pp 529–582

    Google Scholar 

  83. Schmidt M, Ache BW (1997) Immunocytochemical analysis of glomerular regionalization and neuronal diversity in the olfactory deutocerebrum of the spiny lobster. Cell Tissue Res 287:541–563

    CAS  Article  PubMed  Google Scholar 

  84. Schmidt M, Mellon DEF (2011) Neuronal processing of chemical information in crustaceans. In: Breithaupt T, Thiel M (eds) Chemical Communication in Crustaceans. Springer, New York, pp 123–147

  85. Sinakevitch I, Douglass JK, Scholtz G, Loesel R, Strausfeld NJ (2003) Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. J Comp Neurol 467:150–172

    CAS  Article  PubMed  Google Scholar 

  86. Sombke A, Lipke E, Michalik P, Uhl G, Harzsch S (2015) Potential and limitations of X-ray micro-computed tomography in arthropod neuroanatomy – a methodological and comparative survey. J Comp Neurol 523:1281–1295

    Article  PubMed  PubMed Central  Google Scholar 

  87. Stay B, Tobe SS (2007) The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. Annu Rev Entomol 52:277–299

    CAS  Article  PubMed  Google Scholar 

  88. Stay B, Tobe SS, Bendena WG (1995) Allatostatins: identification, primary structures, functions and distribution. Ad Insect Physiol 25:267–337

    Article  Google Scholar 

  89. Stein W, Städele C, Smarandache-Wellmann CR (2016) Evolutionary aspects of motor control and coordination: the central pattern generators in the crustacean stomatogastric and swimmeret systems. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and Evolution of Invertebrate Nervous Systems. Oxford University Press, Oxford, pp 583–596

  90. Strausfeld NJ (2005) The evolution of crustacean and insect optic lobes and the origins of chiasmata. Arthropod Struct Dev 34:235–256

    Article  Google Scholar 

  91. Strausfeld NJ (2009) Brain organization and the origin of insects: an assessment. Proc R Soc Lond B 276:1929–1937

    Article  Google Scholar 

  92. Strausfeld N J (2012) Arthropod brains: evolution, functional elegance, and historical significance. Belknap,

  93. Strausfeld NJ, Nässel DR (1981) Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insects. In: Autrum, H (ed) Handbook of sensory physiology, 7 (6B), Invertebrate visual center and behaviors, I . Springer, Berlin, pp 1–132

  94. Sullivan JM, Beltz BS (2004) Evolutionary changes in the olfactory pathway projection neuron pathways of eumalacostracan crustaceans. J Comp Neurol 470:25–38

    Article  PubMed  Google Scholar 

  95. Sullivan JM, Benton JL, Sandeman DC, Beltz BS (2007) Adult neurogenesis: a common strategy across diverse species. J Comp Neurol 500:574–584

  96. Sztarker J, Strausfeld NJ, Tomsic D (2005) Organization of optic lobes that support motion detection in a semiterrestrial crab. J Comp Neurol 493:396–411

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tautz J (1987a) Water vibrations elicit active antennal movements in the crayfish, Orconectes limosus. Anim Behav 35:748–754

    Article  Google Scholar 

  98. Tautz J (1987b) Interneurons in the brain of crayfish. Brain Res 407:230–239

    CAS  Article  PubMed  Google Scholar 

  99. Tautz J, Müller-Tautz R (1983) Antennal neuropile in the brain of crayfish: morphology of neurons. J Comp Neurol 218:415–425

    CAS  Article  PubMed  Google Scholar 

  100. Tavares C, Martin JW (2010) Chapter 63, Suborder Dendrobranchiata Bate, 1988. In: Schram FR, von Vaupel Klein JC (eds) The Crustacea. Treatise on Zoology – anatomy, taxonomy, biology. Brill, Leiden, pp 99–164

    Google Scholar 

  101. Tinikul Y, Poljaroen J, Kornthong N, Chotwiwatthanakun C, Anuracpreeda P, Poomtong T, Hanna PJ, Sobhon P (2011a) Distribution and change of serotonin and dopamine levels in the central nervous system and ovary of the Pacific white shrimp, Litopenaeus vannamei, during ovarian maturation cycle. Cell Tissue Res 345:103–124

    CAS  Article  PubMed  Google Scholar 

  102. Tinikul Y, Poljaroen J, Nuurai P, Anuracpreeda P, Chotwiwatthanakun C, Phougpetchara I, Kornthong N, Poomtong T, Hanna PJ, Sobhon P (2011b) Existence and distribution of gonadotropin-releasing hormone-like peptides in the central nervous system and ovary of the Pacific white shrimp, Litopenaeus vannamei. Cell Tissue Res 343:579–593

    CAS  Article  PubMed  Google Scholar 

  103. Tomsic D (2016) Visual motion processing subserving behavior in crabs. Curr Opin Neurobiol 41:113–121

    CAS  Article  PubMed  Google Scholar 

  104. Tomsic D, Maldonado H (2014) Chapter 19. Neurobiology of Learning and Memory of Crustaceans. In: Derby C, Thiel M (eds) Crustacean Nervous Systems and Their Control of Behavior; The Natural History of Crustaceans. Oxford University Press, Oxford, pp 341–365

  105. Vitzthum H, Homberg U, Agricola H (1996) Distribution of Dip-allatostatin I-like immunoreactivity in the brain of the locust Schistocerca gregaria with detailed analysis of immunostaining in the central complex. J Comp Neurol 369:419–437

    CAS  Article  PubMed  Google Scholar 

  106. Wickins JE (1976) Prawn biology and culture. Oceanogr Mar Biol Annu Rev 14:435–507

    Google Scholar 

  107. Wilkens LA, Schmitz B, Herrnkind WF (1996) Antennal responses to hydrodynamic and tactile stimuli in the spiny lobster Panulirus argus. Biol Bull 191:187–198

    Article  Google Scholar 

  108. Wolff G, Harzsch S, Hansson BS, Brown S, Strausfeld NJ (2012) Neuronal organization of the hemiellipsoid body of the land hermit crab Coenobita clypeatus: correspondence with the mushroom body ground pattern. J Comp Neurol 520:2824–2846

    Article  PubMed  Google Scholar 

  109. Yin GL, Yang JS, Cao JX, Yang WJ (2006) Molecular cloning and characterization of FGLamide allatostatin gene from the prawn, Macrobrachium rosenbergii. Peptides 27:1241–1250

    CAS  Article  PubMed  Google Scholar 

  110. Zajac J, Mollereau C (2006) RFamide peptides. Editorial Introduction. Peptides 27:941–942

  111. Zeil M, Hemmi JM (2006) The visual ecology of fiddler crabs. J Comp Physiol A 192:1–25

  112. Zeil J, Sandeman R, Sandeman D (1985) Tactile localisation: the function of active antennal movements in the crayfish Cherax destructor. J Comp Physiol A 157:607–17

  113. Zysnar ES (1970) The eyes of the white shrimp, Penaeus setiferus (Linnaeus) with a note on the rock shrimp, Sicyonia brevirostris Stimpson. Contribut Mar Sci 15:87–102

    Google Scholar 

Download references

Acknowledgements

We are grateful to Marcus Thon from the Garnelen Farm Grevesmühlen GmbH & Co KG for providing live Penaeus vannamei, an essential requirement for this study. Thanks also to Erich Buchner (Würzburg) for the gift of the SYNORF1 synapsin antiserum. We gratefully acknowledge Jakob Krieger for the μCT scan of Penaeus vannamei and his general support as well as Andy Sombke for his help with 3D reconstruction. We would like to express our gratitude to Marie Hörnig for her assistance with composite photography and Elisabeth Lipke for introducing us to the histological embedding procedure. This project was funded by the German Science Foundation (HA 2540/16-1, INST 292/119-1 FUGG, INST 292/120-1 FUGG).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Steffen Harzsch.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meth, R., Wittfoth, C. & Harzsch, S. Brain architecture of the Pacific White Shrimp Penaeus vannamei Boone, 1931 (Malacostraca, Dendrobranchiata): correspondence of brain structure and sensory input?. Cell Tissue Res 369, 255–271 (2017). https://doi.org/10.1007/s00441-017-2607-y

Download citation

Keywords

  • Crustacea
  • Immunohistochemistry
  • Allatostatin
  • Brain architecture and evolution
  • FMRFamide