Skip to main content
Log in

Brain architecture of the Pacific White Shrimp Penaeus vannamei Boone, 1931 (Malacostraca, Dendrobranchiata): correspondence of brain structure and sensory input?

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Penaeus vannamei (Dendrobranchiata, Decapoda) is best known as the “Pacific White Shrimp” and is currently the most important crustacean in commercial aquaculture worldwide. Although the neuroanatomy of crustaceans has been well examined in representatives of reptant decapods (“ground-dwelling decapods”), there are only a few studies focusing on shrimps and prawns. In order to obtain insights into the architecture of the brain of P. vannamei, we use neuroanatomical methods including X-ray micro-computed tomography, 3D reconstruction and immunohistochemical staining combined with confocal laser-scanning microscopy and serial sectioning. The brain of P. vannamei exhibits all the prominent neuropils and tracts that characterize the ground pattern of decapod crustaceans. However, the size proportion of some neuropils is salient. The large lateral protocerebrum that comprises the visual neuropils as well as the hemiellipsoid body and medulla terminalis is remarkable. This observation corresponds with the large size of the compound eyes of these animals. In contrast, the remaining median part of the brain is relatively small. It is dominated by the paired antenna 2 neuropils, while the deutocerebral chemosensory lobes play a minor role. Our findings suggest that visual input from the compound eyes and mechanosensory input from the second pair of antennae are major sensory modalities, which this brain processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ammar D, Nazari EM, Müller YMR, Allodi S (2008) New insights on the olfactory lobe of decapod crustaceans. Brain Behav Evol 72:27–36

    Article  PubMed  Google Scholar 

  • Ammar D, Nazari EM, Müller YMR, Allodi S (2013) On the brain of a crustacean: a morphological analysis of CaMKII Expression and its relation to sensory and motor pathways. PLoS ONE 8:e64855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball EE, Cowan AN (1977) Ultrastructure of the antennal sensilla of Acetes (Crustacea, Decapoda, Natantia, Sergestidae). Philos Trans R Soc Lond B 277:429–457

    Article  CAS  Google Scholar 

  • Bell TA, Lightner DV (1988) A handbook of normal penaeid shrimp histology. World Aquaculture Society, Baton Rouge

    Google Scholar 

  • Beltz BS, Kordas K, Lee MM, Long J, Benton JL, Sandeman DC (2003) Ecological, evolutionary, and functional correlates of sensilla number and glomerular density in the olfactory system of decapod crustaceans. J Comp Neurol 455(2):260–269

    Article  PubMed  Google Scholar 

  • Blaustein ND, Derby C, Simmons RB, Beall AC (1988) Structure of the brain and medulla terminalis of the spiny lobster Panulirus argus and the crayfish Procambarus clarkii, with an emphasis on olfactory centers. J Crustac Biol 8:493–499

    Article  Google Scholar 

  • Boone L (1931) A collection of anomuran and macruran Crustacea from the bay of Panama and the fresh waters of the canal zone. Bull Am Mus Nat Hist 63:173

    Google Scholar 

  • Briggs M, Funge-Smith S, Subasinghe R, Phillips M (2004) Introductions and movement of Penaeus vannamei and Penaeus stylirostris in Asia and the Pacific. RAP publications, Food and Agriculture Organization of the United Nations Office for Asia and the Pacific, Bankok

  • Cape SS, Rehm KJ, Ma M, Marder E, Li L (2008) Mass spectral comparison of the neuropeptide complement of the stomatogastric ganglion and brain in the adult and embryonic lobster, Homarus americanus. J Neurochem 105:690–702

    Article  CAS  PubMed  Google Scholar 

  • Chittka L, Niven JE (2009) Are Bigger Brains Better? Curr Biol 19:R995–R1008

  • Christie AE (2014) Expansion of the Litopenaeus vannamei and Penaeus monodon peptidomes using transcriptome shotgun assembly sequence data. Gen Comp Endocrinol 206:235–254

    Article  CAS  PubMed  Google Scholar 

  • Christie AE (2016) Expansion of the neuropeptidome of the globally invasive marine crab Carcinus maenas. Gen Comp Endocrinol 235:150–169

    Article  PubMed  Google Scholar 

  • Christie AE, Stemmler EA, Dickinson PS (2010) Crustacean neuropeptides. Cell Mol Life Sciences 67:4135–4169

    Article  CAS  Google Scholar 

  • Corteel M (2013) White spot syndrome virus infection in P. vannamei and M. rosenbergii: experimental studies on susceptibility to infection and disease. Dissertation, Faculty of Veterinary Medicine, Ghent University, Belgium. ISBN-number: 9789058643308

  • Cronin TW, Feller KD (2014) Sensory Ecology of Vision in Crustaceans. In: Derby C, Thiel M (eds) The Natural History of Crustacea, Vol. 3, Nervous System and Behavior. Oxford University Press, Oxford, pp 235–262

  • Dall WB, Hill BJ, Rothlisberg PC, Sharples DJ (1990) The biology of the Penaeidae. Adv Mar Biol 27:1–489

    Google Scholar 

  • Denton EJ, Gray J (1985) Lateral-line-like antennae of certain of the Penaeidea (Crustacea, Decapoda, Natantia). Proc R Soc Lond B 226:249–261

    Article  Google Scholar 

  • Derby CD, Weissburg MJ (2014) The chemical senses and chemosensory ecology of crustaceans. In: Derby CD, Thiel M (eds) Crustacean Nervous Systems and their Control of Behavior. Springer, New York, pp 263–292

    Google Scholar 

  • Derby CD, Fortier JK, Harrison PJH, Cate HS (2003) The peripheral and central antennular pathway of the Caribbean stomatopod crustacean Neogonodactylus oerstedii. Arthropod Struct Dev 32(2–3):175–188

    Article  PubMed  Google Scholar 

  • Dircksen H, Skiebe P, Abel B, Agricola HJ, Buchner K, Muren JE, Nässel DR (1999) Structure, distribution, and biological activity of novel members of the allatostatin family in the crayfish Orconectes limosus. Peptides 20:695–712

    Article  CAS  PubMed  Google Scholar 

  • Dockray GJ (2004) The expanding family of RFamide peptides and their effects on feeding behaviour. Exp Physiol 89:229–235

    Article  CAS  PubMed  Google Scholar 

  • Duve H, Johnsen AH, Maestro JL, Scott AG, Jaros PP, Thorpe A (1997) Isolation and identification of multiple neuropeptides of the allatostatin superfamily in the shore crab Carcinus maenas. Europ J Biochem 250:727–734

    Article  CAS  PubMed  Google Scholar 

  • Duve H, Johnsen AH, Scott AG, Thorpe A (2002) Allatostatins of the tiger prawn, Penaeus monodon (Crustacea: Penaeidea). Peptides 23:1039–1051

    Article  CAS  PubMed  Google Scholar 

  • Elofsson R, Hagberg M (1986) Evolutionary aspects on the construction of the first opticneuropil (lamina) in Crustacea. Zoomorphol 106:174–178

    Article  Google Scholar 

  • FAO yearbook (2014) Fishery and Aquaculture Statistics 2012. Food and Agriculture Organization of the United Nation, Statistics and Information Branch of the Fisheries and Aquaculture Department, Rome: pp. 1–76

  • Foxton P (1969) The morphology of the antennular flagellum of certain of the Penaeida (Decapoda, Natantia). Crustaceana 16:33–42

    Article  Google Scholar 

  • Gaten E (1998) Optics and evolution: is there an insight? The evolution of superposition eyes in the Decapoda (Crustacea). Contrib Zool 67:223–235

    Google Scholar 

  • Glantz R (2014) Visual Systems of Crustaceans. In: Derby C, Thiel M (eds) The Natural History of Crustacea, Vol. 3, Nervous System and Behavior. Oxford University Press, Oxford, pp 235–262

  • Greenberg MJ, Price DA (1992) Chapter 3 Relationships among the RFRFamide-like peptides. In: Joosse J, Buijs RM, Tilders FJH (eds) The Peptidergic Neuron. Elsevier, Amsterdam, pp 25–37.

  • Hallberg E, Hansson BS (1999) Arthropod sensilla: morphology and phylogenetic considerations. Microsc Res Tech 47:28–439

  • Hallberg E, Skog M (2011) Chemosensory Sensilla in Crustaceans. In: Breithaupt T, Thiel M (eds) Chemical Communication in Crustaceans. Springer, New York, pp 103–121

    Google Scholar 

  • Hallberg E, Johansson KUI, Elofsson R (1992) The aesthetasc concept: Structural variations of putative olfactory receptor cell complexes in Crustacea. Microsc Res Tech 22(4):325–335

    Article  CAS  PubMed  Google Scholar 

  • Hanström B (1926) Untersuchungen über die relative Größe der Gehirnzentren verschiedener Arthropoden unter Berücksichtigung der Lebensweise. Z Mikrosk Anat Zellforsch 7:135–190.

  • Harzsch S, Hansson BS (2008) Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae): neuroanatomical evidence for a superb aerial sense of smell. BMC Neurosci 9:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Harzsch S, Anger K, Dawirs RR (1997) Immunocytochemical detection of acetylated alpha-tubulin and Drosophila synapsin in the embryonic crustacean nervous system. Int J Dev Biol 41:477–484

    CAS  PubMed  Google Scholar 

  • Harzsch S, Miller J, Benton JL, Dawirs RR, Beltz BS (1998) Neurogenesis in the thoracic neuromeres of two crustaceans with different types of metamorphic development. J Exp Biol 201:2465–2479

    PubMed  Google Scholar 

  • Harzsch S, Miller J, Benton JL, Beltz BS (1999) From embryo to adult: persistent neurogenesis and apoptotic cell death shape the lobster deutocerebrum. J Neurosci 19:3472–3485

    CAS  PubMed  Google Scholar 

  • Harzsch S, Rieger V, Krieger J, Seefluth F, Strausfeld NJ, Hansson BS (2011) Transition from marine to terrestrial ecologies: Changes in olfactory and tritocerebral neuropils in land-living isopods. Arthropod Struct Dev 40(3):244–257

    Article  CAS  PubMed  Google Scholar 

  • Harzsch S, Sandeman D, Chaigneau J (2012) Morphology and development of the central nervous system. In: Forest J, von Vaupel Klein JC (eds) Treatise on Zoology – Anatomy, Taxonomy, Biology, vol 3, The Crustacea. Brill, Leiden, pp 9–236

    Chapter  Google Scholar 

  • Holthuis LB (1980) FAO species catalogue 1. Shrimps and prawns of the world. Anotated catalogue of species of interest to fisheries. FAO fish synopsis 125

  • Homberg U (1994) Distribution of neurotransmitters in the insect brain. In: Rathmayer W (ed) Progress in Zoology Vol. 40. Gustav Fischer, Stuttgart

  • Hörnig MK, Sombke A, Haug C, Harzsch S, Haug JT (2016) What nymphal morphology can tell us about parental investment - a group of cockroach hatchlings in Baltic amber documented by a multi-method approach. Palaeontol Electron 19.1(6A):1–20

    Google Scholar 

  • Huybrechts J, Nusbaum MP, Bosch LV, Baggerman G, Loof AD, Schoofs L (2003) Neuropeptidomic analysis of the brain and thoracic ganglion from the Jonah crab, Cancer borealis. Biochem Biophys Res Comm 308:535–544

    Article  CAS  PubMed  Google Scholar 

  • Johansson KUI (1991) Identification of different types of serotonin-like immunoreactive olfactory interneurons in four infraorders of decapods crustaceans. Cell Tissue Res 264:357–362

    Article  Google Scholar 

  • Johansson KUI, Hallberg E (1992a) The organization of the olfactory lobes in Euphausiacea and Mysidacea (Crustacea, Malacostraca). Zoomorphology 112:81–89

    Article  Google Scholar 

  • Johansson KUI, Hallberg E (1992b) Male-specific structures in the olfactory system of mysids (Mysidacea; Crustacea). Cell Tissue Res 268:359–368

    Article  Google Scholar 

  • Kenning M, Harzsch S (2013) Brain anatomy of the marine isopod Saduria entomon Linnaeus, 1758 (Valvifera, Isopoda) with special emphasis on the olfactory pathway. Front Neuroanat 7:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenning M, Müller C, Wirkner CS, Harzsch S (2013) The Malacostraca (Crustacea) from a neurophylogenetic perspective: new insights from brain architecture in Nebalia herbstii Leach, 1814 (Leptostraca, Phyllocarida). Zool Anz 252:319–33

    Article  Google Scholar 

  • Klagges BRE, Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerste R, Reisch D, Schaupp M, Buchner E, Buchner S (1996) Invertebrate Synapsins: A Single Gene Codes for Several Isoforms in Drosophila. J Neurosci 16:3154–3165

    CAS  PubMed  Google Scholar 

  • Kreis TE (1987) Microtubules containing detyrosinated tubulin are less dynamic. EMBO J 6:2597–2606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kreissl S, Strasser C, Galizia CG (2010) Allatostatin Immunoreactivity in the Honeybee Brain. J Comp Neurol 518:1391–1417

    Article  CAS  PubMed  Google Scholar 

  • Krieger J, Sandeman RE, Sandeman DC, Hansson BS, Harzsch S (2010) Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway? Front Zool 7:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Krieger J, Sombke A, Seefluth F, Kenning M, Hansson BS, Harzsch S (2012) Comparative brain architecture of the European shore crab Carcinus maenas (Brachyura) and the common hermit crab Pagurus bernhardus (Anomura), with notes on other marine hermit crabs. Cell Tissue Res 348:47–69

    Article  PubMed  Google Scholar 

  • Krieger J, Braun P, Rivera NT, Schubart CD, Müller CHG, Harzsch S (2015) Comparative analyses of olfactory systems in terrestrial crabs (Brachyura): Evidence for aerial olfaction? PeerJ 3:e1433

    Article  PubMed  PubMed Central  Google Scholar 

  • Kruangkum T, Chotwiwatthanakun C, Vanichviriyakit R, Tinikul Y, Anuracpreeda P, Wanichanon C, Hanna PJ, Sobhon P (2013) Structure of the olfactory receptor organs, their GABAergic neural pathways, and modulation of mating behaviour in the Giant Freshwater Prawn, Macrobrachium rosenbergii. Microsc Res Tech 76:572–87

    Article  CAS  PubMed  Google Scholar 

  • Lenz PH, Hartline DK (2013) Mechanoreception in crustaceans of the pelagic realm. In: Derby CD, Thiel M (eds) Crustacean Nervous Systems and their Control of Behavior. Springer, New York, pp 293–320

    Google Scholar 

  • Loesel R, Wolf H, Kenning M, Harzsch S, Sombke A (2013) Architectural principles and evolution of the arthropod central nervous system. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod Biology and Evolution: Molecules, Development, Morphology. Springer, Berlin, pp 299–342

    Chapter  Google Scholar 

  • Ma M, Gard AL, Xiang F, Wang J, Davoodian N, Lenz PH, Malecha SR, Christie AE, Li L (2010) Combining in silico transcriptome mining and biological mass spectrometry for neuropeptide discovery in the Pacific white shrimp Litopenaeus vannamei. Peptides 31:27–43

    Article  CAS  PubMed  Google Scholar 

  • Marshall J, Cronin TW, Kleinlogel S (2007) Stomatopod eye structure and function: A review. Arthropod Struct Dev 36:420–448

    Article  PubMed  Google Scholar 

  • Mellon DeF Jr (2007) Combining dissimilar senses: central processing of hydrodynamic and chemosensory inputs in aquatic crustaceans. Biol Bull 213:1–11

  • Mellon DeF Jr (2012) Smelling, feeding, tasting and touching: behavioral and neural integration of antennular chemosensory and mechanosensory inputs in crayfish. J Exp Biol 215:2163–2172

  • Mercier AJ, Friedrich R, Boldt M (2003) Physiological functions of FMRFamide‐like peptides (FLPs) in crustaceans. Microsc Res Tech 60:313–324

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Rochow VB, Walsh S (1977) The Eyes of Mesopelagic Crustaceans: I. Gennadas sp. (Penaeidae). Cell Tissue Res 184:87–101

    Article  CAS  PubMed  Google Scholar 

  • Moreau X, Benzid D, De Jong L, Barthélémy R-M, Casanova J-P (2002) Evidence for the presence of serotonin in Mysidacea (Crustacea, Peracarida) as revealed by fluorescence immunohistochemistry. Cell Tissue Res 310:359–371

    Article  CAS  PubMed  Google Scholar 

  • Mulisch M, Welsch U (2010) Romeis Mikroskopische Technik 18. Auflage. Spektrum Heildeberg

  • Nässel DR (1975) The organization of the lamina ganglionaris of the prawn Pandalus borealis. (Kröyer). Cell Tissue Res 163:445–465

    Article  PubMed  Google Scholar 

  • Nässel DR (1993) Neuropeptides in the insect brain: a review. Cell Tissue Res 273:1–29

    Article  PubMed  Google Scholar 

  • Nässel DR, Homberg U (2006) Neuropeptides in interneurons of the insect brain. Cell Tissue Res 326:1–24

    Article  PubMed  Google Scholar 

  • Ngernsoungnern P, Ngernsoungnern A, Kavanaugh S, Sobhon P, Sower SA, Sretaragusa P (2008) The presence and distribution of gonadotropin-releasing hormone-like factor in the central nervous system of the black tiger shrimp, Penaeus monodon. Gen Comp Endocrinol 155:613–622

    Article  CAS  PubMed  Google Scholar 

  • Nilsson D-E (1989) Optics and evolution of the compound eye. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 30–73

    Chapter  Google Scholar 

  • Nilsson DE (1990) Three unexpected cases of refracting superposition eyes in crustaceans. J Comp Physiol A 167:71–78

    Article  Google Scholar 

  • Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211:1792–1804

    Article  CAS  PubMed  Google Scholar 

  • Polanska M, Tuchina O, Agricola H, Hansson BS, Harzsch S (2012) Neuropeptide complexity in the crustacean central olfactory pathway: immunolocalization of A-type allatostatins and RFamide-like peptides in the brain of a terrestrial hermit crab. Mol Brain 5:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price DA, Greenberg MJ (1989) The hunting of the FaRPs: the distribution of FMRFamide-related peptides. Biol Bull 177:198–205

    Article  CAS  Google Scholar 

  • Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller C, Rieger V, Rothe BH, Stegner MEJ, Harzsch S (2010) Invertebrate neurophylogeny - suggested terms and definitions for a neuroanatomical glossary. Front Zool 7:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberry B (2002) World shrimp farming 2002. Shrimp News International, San Diego

  • Sandeman DC, Varju D (1988) A behavioral study of tactile localization in the crayfish Cherax destructor. J Comp Physiol 163:525–536

    Article  Google Scholar 

  • Sandeman DC, Scholtz G, Sandeman RE (1993) Brain evolution in decapod Crustacea. J Exp Zool 265:112–133

    Article  Google Scholar 

  • Sandeman DC, Kenning M, Harzsch S (2014) Adaptive trends in malacostracan brain form and function related to behaviour. In: Derby C, Thiel M (eds) Crustacean Nervous System and their Control of Behaviour, vol 3, The Natural History of the Crustacea. Oxford University Press, Oxford, pp 11–48

  • Schachtner J, Schmidt M, Homberg U (2005) Organization and evolutionary trends in primary olfactory brain centers in Tetraconata (Crustacea + Hexapoda). Arthropod Struct Dev 34:257–299

    Article  Google Scholar 

  • Schmidt M (2007) The olfactory pathway of decapods crustaceans – an invertebrate model for life-long neurogenesis. Chem Senses 32:365–384

    Article  PubMed  Google Scholar 

  • Schmidt M (2016) Malacostraca. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and Evolution of Invertebrate Nervous Systems”. Oxford University Press, Oxford, pp 529–582

    Google Scholar 

  • Schmidt M, Ache BW (1997) Immunocytochemical analysis of glomerular regionalization and neuronal diversity in the olfactory deutocerebrum of the spiny lobster. Cell Tissue Res 287:541–563

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Mellon DEF (2011) Neuronal processing of chemical information in crustaceans. In: Breithaupt T, Thiel M (eds) Chemical Communication in Crustaceans. Springer, New York, pp 123–147

  • Sinakevitch I, Douglass JK, Scholtz G, Loesel R, Strausfeld NJ (2003) Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. J Comp Neurol 467:150–172

    Article  CAS  PubMed  Google Scholar 

  • Sombke A, Lipke E, Michalik P, Uhl G, Harzsch S (2015) Potential and limitations of X-ray micro-computed tomography in arthropod neuroanatomy – a methodological and comparative survey. J Comp Neurol 523:1281–1295

    Article  PubMed  PubMed Central  Google Scholar 

  • Stay B, Tobe SS (2007) The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. Annu Rev Entomol 52:277–299

    Article  CAS  PubMed  Google Scholar 

  • Stay B, Tobe SS, Bendena WG (1995) Allatostatins: identification, primary structures, functions and distribution. Ad Insect Physiol 25:267–337

    Article  Google Scholar 

  • Stein W, Städele C, Smarandache-Wellmann CR (2016) Evolutionary aspects of motor control and coordination: the central pattern generators in the crustacean stomatogastric and swimmeret systems. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and Evolution of Invertebrate Nervous Systems. Oxford University Press, Oxford, pp 583–596

  • Strausfeld NJ (2005) The evolution of crustacean and insect optic lobes and the origins of chiasmata. Arthropod Struct Dev 34:235–256

    Article  Google Scholar 

  • Strausfeld NJ (2009) Brain organization and the origin of insects: an assessment. Proc R Soc Lond B 276:1929–1937

    Article  Google Scholar 

  • Strausfeld N J (2012) Arthropod brains: evolution, functional elegance, and historical significance. Belknap,

  • Strausfeld NJ, Nässel DR (1981) Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insects. In: Autrum, H (ed) Handbook of sensory physiology, 7 (6B), Invertebrate visual center and behaviors, I . Springer, Berlin, pp 1–132

  • Sullivan JM, Beltz BS (2004) Evolutionary changes in the olfactory pathway projection neuron pathways of eumalacostracan crustaceans. J Comp Neurol 470:25–38

    Article  PubMed  Google Scholar 

  • Sullivan JM, Benton JL, Sandeman DC, Beltz BS (2007) Adult neurogenesis: a common strategy across diverse species. J Comp Neurol 500:574–584

  • Sztarker J, Strausfeld NJ, Tomsic D (2005) Organization of optic lobes that support motion detection in a semiterrestrial crab. J Comp Neurol 493:396–411

    Article  PubMed  PubMed Central  Google Scholar 

  • Tautz J (1987a) Water vibrations elicit active antennal movements in the crayfish, Orconectes limosus. Anim Behav 35:748–754

    Article  Google Scholar 

  • Tautz J (1987b) Interneurons in the brain of crayfish. Brain Res 407:230–239

    Article  CAS  PubMed  Google Scholar 

  • Tautz J, Müller-Tautz R (1983) Antennal neuropile in the brain of crayfish: morphology of neurons. J Comp Neurol 218:415–425

    Article  CAS  PubMed  Google Scholar 

  • Tavares C, Martin JW (2010) Chapter 63, Suborder Dendrobranchiata Bate, 1988. In: Schram FR, von Vaupel Klein JC (eds) The Crustacea. Treatise on Zoology – anatomy, taxonomy, biology. Brill, Leiden, pp 99–164

    Google Scholar 

  • Tinikul Y, Poljaroen J, Kornthong N, Chotwiwatthanakun C, Anuracpreeda P, Poomtong T, Hanna PJ, Sobhon P (2011a) Distribution and change of serotonin and dopamine levels in the central nervous system and ovary of the Pacific white shrimp, Litopenaeus vannamei, during ovarian maturation cycle. Cell Tissue Res 345:103–124

    Article  CAS  PubMed  Google Scholar 

  • Tinikul Y, Poljaroen J, Nuurai P, Anuracpreeda P, Chotwiwatthanakun C, Phougpetchara I, Kornthong N, Poomtong T, Hanna PJ, Sobhon P (2011b) Existence and distribution of gonadotropin-releasing hormone-like peptides in the central nervous system and ovary of the Pacific white shrimp, Litopenaeus vannamei. Cell Tissue Res 343:579–593

    Article  CAS  PubMed  Google Scholar 

  • Tomsic D (2016) Visual motion processing subserving behavior in crabs. Curr Opin Neurobiol 41:113–121

    Article  CAS  PubMed  Google Scholar 

  • Tomsic D, Maldonado H (2014) Chapter 19. Neurobiology of Learning and Memory of Crustaceans. In: Derby C, Thiel M (eds) Crustacean Nervous Systems and Their Control of Behavior; The Natural History of Crustaceans. Oxford University Press, Oxford, pp 341–365

  • Vitzthum H, Homberg U, Agricola H (1996) Distribution of Dip-allatostatin I-like immunoreactivity in the brain of the locust Schistocerca gregaria with detailed analysis of immunostaining in the central complex. J Comp Neurol 369:419–437

    Article  CAS  PubMed  Google Scholar 

  • Wickins JE (1976) Prawn biology and culture. Oceanogr Mar Biol Annu Rev 14:435–507

    Google Scholar 

  • Wilkens LA, Schmitz B, Herrnkind WF (1996) Antennal responses to hydrodynamic and tactile stimuli in the spiny lobster Panulirus argus. Biol Bull 191:187–198

    Article  Google Scholar 

  • Wolff G, Harzsch S, Hansson BS, Brown S, Strausfeld NJ (2012) Neuronal organization of the hemiellipsoid body of the land hermit crab Coenobita clypeatus: correspondence with the mushroom body ground pattern. J Comp Neurol 520:2824–2846

    Article  PubMed  Google Scholar 

  • Yin GL, Yang JS, Cao JX, Yang WJ (2006) Molecular cloning and characterization of FGLamide allatostatin gene from the prawn, Macrobrachium rosenbergii. Peptides 27:1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Zajac J, Mollereau C (2006) RFamide peptides. Editorial Introduction. Peptides 27:941–942

  • Zeil M, Hemmi JM (2006) The visual ecology of fiddler crabs. J Comp Physiol A 192:1–25

  • Zeil J, Sandeman R, Sandeman D (1985) Tactile localisation: the function of active antennal movements in the crayfish Cherax destructor. J Comp Physiol A 157:607–17

  • Zysnar ES (1970) The eyes of the white shrimp, Penaeus setiferus (Linnaeus) with a note on the rock shrimp, Sicyonia brevirostris Stimpson. Contribut Mar Sci 15:87–102

    Google Scholar 

Download references

Acknowledgements

We are grateful to Marcus Thon from the Garnelen Farm Grevesmühlen GmbH & Co KG for providing live Penaeus vannamei, an essential requirement for this study. Thanks also to Erich Buchner (Würzburg) for the gift of the SYNORF1 synapsin antiserum. We gratefully acknowledge Jakob Krieger for the μCT scan of Penaeus vannamei and his general support as well as Andy Sombke for his help with 3D reconstruction. We would like to express our gratitude to Marie Hörnig for her assistance with composite photography and Elisabeth Lipke for introducing us to the histological embedding procedure. This project was funded by the German Science Foundation (HA 2540/16-1, INST 292/119-1 FUGG, INST 292/120-1 FUGG).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Harzsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meth, R., Wittfoth, C. & Harzsch, S. Brain architecture of the Pacific White Shrimp Penaeus vannamei Boone, 1931 (Malacostraca, Dendrobranchiata): correspondence of brain structure and sensory input?. Cell Tissue Res 369, 255–271 (2017). https://doi.org/10.1007/s00441-017-2607-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2607-y

Keywords

Navigation