Skip to main content
Log in

Diacylglycerol kinase ε localizes to subsurface cisterns of cerebellar Purkinje cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Following activation of Gq protein-coupled receptors, phospholipase C yields a pair of second messengers: diacylglycerol (DG) and inositol 1,4,5-trisphosphate. Diacylglycerol kinase (DGK) phosphorylates DG to produce phosphatidic acid, another second messenger. Of the DGK family, DGKε is the only DGK isoform that exhibits substrate specificity for DG with an arachidonoyl acyl chain at the sn-2 position. Recently, we demonstrated that hydrophobic residues in the N-terminus of DGKε play an important role in targeting the endoplasmic reticulum in transfected cells. However, its cellular expression and subcellular localization in the brain remain elusive. In the present study, we investigate this issue using specific DGKε antibody. DGKε was richly expressed in principal neurons of higher brain regions, including pyramidal cells in the hippocampus and neocortex, medium spiny neurons in the striatum and Purkinje cells in the cerebellum. In Purkinje cells, DGKε was localized to the subsurface cisterns and colocalized with inositol 1,4,5-trisphosphate receptor-1 in dendrites and axons. In dendrites of Purkinje cells, DGKε was also distributed in close apposition to DG lipase-α, which catalyzes arachidonoyl-DG to produce 2-arachidonoyl glycerol, a major endocannabinoid in the brain. Behaviorally, DGKε-knockout mice exhibited hyper-locomotive activities and impaired motor coordination and learning. These findings suggest that DGKε plays an important role in neuronal and brain functions through its distinct neuronal expression and subcellular localization and also through coordinated arrangement with other molecules involving the phosphoinositide signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

2-AG:

2-Arachidonoyl glycerol

CB:

Calbindin

DG:

Diacylglycerol

DGK:

Diacylglycerol kinase

DGL:

Diacylglycerol lipase

D1R:

Dopamine D1 receptor

D2R:

Dopamine D2 receptor

ER:

Endoplasmic reticulum

GAD:

Glutamate decarboxylase

IP3 :

Inositol 1,4,5-trisphosphate

IP3R:

Inositol 1,4,5-trisphosphate receptor

JP:

Junctophilin

KO:

Knockout

mGluR1:

Metabotropic glutamate receptor-1

MSN:

Medium spiny neuron

PA:

Phosphatidic acid

PBS:

Phosphate-buffered saline

PC:

Purkinje cell

PI:

Phosphoinositide

PLC:

Phospholipase C

PVDF:

Polyvinylidene difluoride

RT-PCR:

Reverse transcription plus polymerase chain reaction

RyR:

Ryanodine receptor channel

sAHP:

Slow after hyperpolarization

sER:

Smooth endoplasmic reticulum

siRNA:

Short interfering RNA

SR:

Sarcoplasmic reticulum

References

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  • Bisogno T, Howell F, Williams G, Minassi A, Cascio MG, Ligresti A, Matias I, Schiano-Moriello A, Paul P, Williams EJ, Gangadharan U, Hobbs C, Di Marzo V, Doherty P (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 163:463–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breckenridge WC, Gombos G, Morgan IG (1972) The lipid composition of adult rat brain synaptosomal plasma membranes. Biochim Biophys Acta 266:695–707

    Article  CAS  PubMed  Google Scholar 

  • Chang CL, Liou J (2015) Phosphatidylinositol 4,5-bisphosphate homeostasis regulated by Nir2 and Nir3 proteins at endoplasmic reticulum-plasma membrane junctions. J Biol Chem 290:14289–14301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockcroft S, Thomas GM (1992) Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J 288:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    Article  CAS  PubMed  Google Scholar 

  • Divet A, Paesante S, Bleunven C, Anderson A, Treves S, Zorzato F (2005) Novel sarco(endo)plasmic reticulum proteins and calcium homeostasis in striated muscles. J Muscle Res Cell Motil 26:7–12

    Article  CAS  PubMed  Google Scholar 

  • Donaldson C, Taatjes DJ, Zile M, Palmer B, VanBuren P, Spinale F, Maughan D, Von Turkovich M, Bishop N, LeWinter MM (2010) Combined immunoelectron microscopic and computer-assisted image analyses to detect advanced glycation end-products in human myocardium. Histochem Cell Biol 134:23–30

    Article  CAS  PubMed  Google Scholar 

  • Endo M (1985) Ca2+ release from sarcoplasmic reticulum. Curr Top Membr Transp 25:181-230

    Article  CAS  Google Scholar 

  • Gao Y, Vasilyev DV, Goncalves MB, Howell FV, Hobbs C, Reisenberg M, Shen R, Zhang MY, Strassle BW, Lu P, Mark L, Piesla MJ, Deng K, Kouranova EV, Ring RH, Whiteside GT, Bates B, Walsh FS, Williams G, Pangalos MN, Samad TA, Doherty P (2010) Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J Neurosci 30:2017–2024

    Article  CAS  PubMed  Google Scholar 

  • Gaspar ML, Aregullin MA, Jesch SA, Nunez LR, Villa-Garcia M, Henry SA (2007) The emergence of yeast lipidomics. Biochim Biophys Acta 1771:241–254

    Article  CAS  PubMed  Google Scholar 

  • Glomset JA (1996) A branched metabolic pathway in animal cells converts 2-monoacylglycerol into sn-1-stearoyl-2-arachidonoyl phosphatidylinositol and other phosphoglycerides. In: Cross RW (ed) Advances in lipobiology. JAI Press, Greenwich, pp 61-100

  • Golovko MY, Rosenberger TA, Faergeman NJ, Feddersen S, Cole NB, Pribill I, Berger J, Nussbaum RL, Murphy EJ (2006) Acyl-CoA synthetase activity links wild-type but not mutant alpha-synuclein to brain arachidonate metabolism. Biochemistry 45:6956–6966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golovko MY, Rosenberger TA, Feddersen S, Faergeman NJ, Murphy EJ (2007) Alpha-synuclein gene ablation increases docosahexaenoic acid incorporation and turnover in brain phospholipids. J Neurochem 101:201–211

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Kondo H (1999) Diacylglycerol kinase in the central nervous system—molecular heterogeneity and gene expression. Chem Phys Lipids 98:109–117

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Kondo H (2004) Functional implications of the diacylglycerol kinase family. Adv Enzyme Regul 44:187–199

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Nakano T, Hozumi Y (2006) Diacylglycerol kinase and animal models: the pathophysiological roles in the brain and heart. Adv Enzyme Regul 46:192–202

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Hozumi Y, Nakano T, Saino SS, Kondo H (2007) Cell biology and pathophysiology of the diacylglycerol kinase family: morphological aspects in tissues and organs. Int Rev Cytol 264:25–63

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Hozumi Y, Nakano T, Saino-Saito S, Martelli AM (2008) Lipid messenger, diacylglycerol, and its regulator, diacylglycerol kinase, in cells, organs, and animals: history and perspective. Tohoku J Exp Med 214:199–212

    Article  CAS  PubMed  Google Scholar 

  • Hashimotodani Y, Ohno-Shosaku T, Tsubokawa H, Ogata H, Emoto K, Maejima T, Araishi K, Shin HS, Kano M (2005) Phospholipase Cbeta serves as a coincidence detector through its Ca2+ dependency for triggering retrograde endocannabinoid signal. Neuron 45:257–268

    Article  CAS  PubMed  Google Scholar 

  • Henkart M, Landis DM, Reese TS (1976) Similarity of junctions between plasma membranes and endoplasmic reticulum in muscle and neurons. J Cell Biol 70:338–347

    Article  CAS  PubMed  Google Scholar 

  • Hozumi Y, Goto K (2012) Diacylglycerol kinase beta in neurons: functional implications at the synapse and in disease. Adv Biol Regul 52:315–325

    Article  CAS  PubMed  Google Scholar 

  • Hozumi Y, Fukaya M, Adachi N, Saito N, Otani K, Kondo H, Watanabe M, Goto K (2008) Diacylglycerol kinase beta accumulates on the perisynaptic site of medium spiny neurons in the striatum. Eur J Neurosci 28:2409–2422

    Article  PubMed  Google Scholar 

  • Hozumi Y, Watanabe M, Goto K (2010) Signaling cascade of diacylglycerol kinase beta in the pituitary intermediate lobe: dopamine D2 receptor/phospholipase Cbeta4/diacylglycerol kinase beta/protein kinase Calpha. J Histochem Cytochem 58:119–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hozumi Y, Matsui H, Sakane F, Watanabe M, Goto K (2013) Distinct expression and localization of diacylglycerol kinase isozymes in rat retina. J Histochem Cytochem 61:462–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Hozumi Y, Akimoto R, Suzuki A, Otani K, Watanabe M, Goto K (2015a) Expression and localization of the diacylglycerol kinase family and of phosphoinositide signaling molecules in adrenal gland. Cell Tissue Res 362:295–305

    Article  CAS  PubMed  Google Scholar 

  • Hozumi Y, Kakefuda K, Yamasaki M, Watanabe M, Hara H, Goto K (2015b) Involvement of diacylglycerol kinase beta in the spine formation at distal dendrites of striatal medium spiny neurons. Brain Res 1594:36–45

    Article  CAS  PubMed  Google Scholar 

  • Hozumi Y, Tanaka T, Nakano T, Matsui H, Nasu T, Koike S, Kakehata S, Ito T, Goto K (2015c) Orotate phosphoribosyltransferase localizes to the Golgi complex and its expression levels affect the sensitivity to anti-cancer drug 5-fluorouracil. Biomed Res 36:403–409

    Article  CAS  PubMed  Google Scholar 

  • Ikeda A, Miyazaki T, Kakizawa S, Okuno Y, Tsuchiya S, Myomoto A, Saito SY, Yamamoto T, Yamazaki T, Iino M, Tsujimoto G, Watanabe M, Takeshima H (2007) Abnormal features in mutant cerebellar Purkinje cells lacking junctophilins. Biochem Biophys Res Commun 363:835–839

    Article  CAS  PubMed  Google Scholar 

  • Kakizawa S, Kishimoto Y, Hashimoto K, Miyazaki T, Furutani K, Shimizu H, Fukaya M, Nishi M, Sakagami H, Ikeda A, Kondo H, Kano M, Watanabe M, Iino M, Takeshima H (2007) Junctophilin-mediated channel crosstalk essential for cerebellar synaptic plasticity. EMBO J 26:1924–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanoh H, Yamada K, Sakane F (1990) Diacylglycerol kinase: a key modulator of signal transduction? Trends Biochem Sci 15:47–50

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann WA, Ferraguti F, Fukazawa Y, Kasugai Y, Shigemoto R, Laake P, Sexton JA, Ruth P, Wietzorrek G, Knaus HG, Storm JF, Ottersen OP (2009) Large-conductance calcium-activated potassium channels in Purkinje cell plasma membranes are clustered at sites of hypolemmal microdomains. J Comp Neurol 515:215–230

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18:527–535

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Hozumi Y, Ito T, Hosoya T, Kondo H, Goto K (2007) Differential subcellular targeting and activity-dependent subcellular localization of diacylglycerol kinase isozymes in transfected cells. Eur J Cell Biol 86:433–444

    Article  CAS  PubMed  Google Scholar 

  • Kohyama-Koganeya A, Watanabe M, Hotta Y (1997) Molecular cloning of a diacylglycerol kinase isozyme predominantly expressed in rat retina. FEBS Lett 409:258–264

    Article  CAS  PubMed  Google Scholar 

  • MacDonald ML, Mack KF, Williams BW, King WC, Glomset JA (1988) A membrane-bound diacylglycerol kinase that selectively phosphorylates arachidonoyl-diacylglycerol. Distinction from cytosolic diacylglycerol kinase and comparison with the membrane-bound enzyme from Escherichia coli. J Biol Chem 263:1584–1592

    CAS  PubMed  Google Scholar 

  • Maejima T, Oka S, Hashimotodani Y, Ohno-Shosaku T, Aiba A, Wu D, Waku K, Sugiura T, Kano M (2005) Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum. J Neurosci 25:6826–6835

    Article  CAS  PubMed  Google Scholar 

  • Malmberg AB, Gilbert H, McCabe RT, Basbaum AI (2003) Powerful antinociceptive effects of the cone snail venom-derived subtype-selective NMDA receptor antagonists conantokins G and T. Pain 101:109–116

    Article  CAS  PubMed  Google Scholar 

  • Martelli AM, Ognibene A, Buontempo F, Fini M, Bressanin D, Goto K, McCubrey JA, Cocco L, Evangelisti C (2011) Nuclear phosphoinositides and their roles in cell biology and disease. Crit Rev Biochem Mol Biol 46:436–457

    Article  CAS  PubMed  Google Scholar 

  • Matsui H, Hozumi Y, Tanaka T, Okada M, Nakano T, Suzuki Y, Iseki K, Kakehata S, Topham MK, Goto K (2014) Role of the N-terminal hydrophobic residues of DGKepsilon in targeting the endoplasmic reticulum. Biochim Biophys Acta 1842:1440–1450

    Article  PubMed  Google Scholar 

  • Matsumoto A, Okada Y, Nakamichi M, Nakamura M, Toyama Y, Sobue G, Nagai M, Aoki M, Itoyama Y, Okano H (2006) Disease progression of human SOD1 (G93A) transgenic ALS model rats. J Neurosci Res 83:119–133

    Article  CAS  PubMed  Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, Pertwee PG, Griffin G, Bayewitch M, Barg J, Vogel Z (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    Article  CAS  PubMed  Google Scholar 

  • Merida I, Avila-Flores A, Merino E (2008) Diacylglycerol kinases: at the hub of cell signalling. Biochem J 409:1–18

    Article  CAS  PubMed  Google Scholar 

  • Miura E, Fukaya M, Sato T, Sugihara K, Asano M, Yoshioka K, Watanabe M (2006) Expression and distribution of JNK/SAPK-associated scaffold protein JSAP1 in developing and adult mouse brain. J Neurochem 97:1431–1446

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki T, Fukaya M, Shimizu H, Watanabe M (2003) Subtype switching of vesicular glutamate transporters at parallel fibre-Purkinje cell synapses in developing mouse cerebellum. Eur J Neurosci 17:2563–2572

    Article  PubMed  Google Scholar 

  • Nakagawa S, Watanabe M, Isobe T, Kondo H, Inoue Y (1998) Cytological compartmentalization in the staggerer cerebellum, as revealed by calbindin immunohistochemistry for Purkinje cells. J Comp Neurol 395:112–120

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Sato K, Fukaya M, Araishi K, Aiba A, Kano M, Watanabe M (2004) Signaling complex formation of phospholipase Cbeta4 with metabotropic glutamate receptor type 1alpha and 1,4,5-trisphosphate receptor at the perisynapse and endoplasmic reticulum in the mouse brain. Eur J Neurosci 20:2929–2944

    Article  PubMed  Google Scholar 

  • Nakano T, Hozumi Y, Goto K, Wakabayashi I (2009) Localization of diacylglycerol kinase epsilon on stress fibers in vascular smooth muscle cells. Cell Tissue Res 337:167–175

    Article  CAS  PubMed  Google Scholar 

  • Narushima M, Uchigashima M, Hashimoto K, Watanabe M, Kano M (2006) Depolarization-induced suppression of inhibition mediated by endocannabinoids at synapses from fast-spiking interneurons to medium spiny neurons in the striatum. Eur J Neurosci 24:2246–2252

    Article  PubMed  Google Scholar 

  • Nishi M, Sakagami H, Komazaki S, Kondo H, Takeshima H (2003) Coexpression of junctophilin type 3 and type 4 in brain. Brain Res Mol Brain Res 118:102–110

    Article  CAS  PubMed  Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–698

    Article  CAS  PubMed  Google Scholar 

  • Nishizuka Y (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334:661–665

    Article  CAS  PubMed  Google Scholar 

  • Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–614

    Article  CAS  PubMed  Google Scholar 

  • Nomura S, Fukaya M, Tsujioka T, Wu D, Watanabe M (2007) Phospholipase Cbeta3 is distributed in both somatodendritic and axonal compartments and localized around perisynapse and smooth endoplasmic reticulum in mouse Purkinje cell subsets. Eur J Neurosci 25:659–672

    Article  PubMed  Google Scholar 

  • Prescott SM, Majerus PW (1981) The fatty acid composition of phosphatidylinositol from thrombin-stimulated human platelets. J Biol Chem 256:579–582

    CAS  PubMed  Google Scholar 

  • Rhee SG, Suh PG, Ryu SH, Lee SY (1989) Studies of inositol phospholipid-specific phospholipase C. Science 244:546–550

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez de Turco EB, Tang W, Topham MK, Sakane F, Marcheselli VL, Chen C, Taketomi A, Prescott SM, Bazan NG (2001) Diacylglycerol kinase epsilon regulates seizure susceptibility and long-term potentiation through arachidonoyl- inositol lipid signaling. Proc Natl Acad Sci U S A 98:4740–4745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakane F, Imai S, Kai M, Yasuda S, Kanoh H (2007) Diacylglycerol kinases: why so many of them? Biochim Biophys Acta 1771:793–806

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki M, Takahashi Y, Mukaino M, Saito N, Toyama Y, Okano H, Nakamura M (2011) Novel concept of motor functional analysis for spinal cord injury in adult mice. J Biomed Biotechnol 2011:157458

    Article  PubMed  Google Scholar 

  • Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388:773–778

    Article  CAS  PubMed  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97

    Article  CAS  PubMed  Google Scholar 

  • Sun GY, Sun AY (1974) Synaptosomal plasma membranes: acyl group composition of phosphoglycerides and (Na + plus K+)-ATPase activity during fatty acid deficiency. J Neurochem 22:15–18

    Article  CAS  PubMed  Google Scholar 

  • Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6:11–22

    CAS  PubMed  Google Scholar 

  • Tanaka J, Nakagawa S, Kushiya E, Yamasaki M, Fukaya M, Iwanaga T, Simon MI, Sakimura K, Kano M, Watanabe M (2000) Gq protein alpha subunits Galphaq and Galpha11 are localized at postsynaptic extra-junctional membrane of cerebellar Purkinje cells and hippocampal pyramidal cells. Eur J Neurosci 12:781–792

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Bunting M, Zimmerman GA, McIntyre TM, Prescott SM (1996) Molecular cloning of a novel human diacylglycerol kinase highly selective for arachidonate-containing substrates. J Biol Chem 271:10237–10241

    Article  CAS  PubMed  Google Scholar 

  • Tanimura A, Yamazaki M, Hashimotodani Y, Uchigashima M, Kawata S, Abe M, Kita Y, Hashimoto K, Shimizu T, Watanabe M, Sakimura K, Kano M (2010) The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron 65:320–327

    Article  CAS  PubMed  Google Scholar 

  • Topham MK (2006) Signaling roles of diacylglycerol kinases. J Cell Biochem 97:474–484

    Article  CAS  PubMed  Google Scholar 

  • Toulmay A, Prinz WA (2011) Lipid transfer and signaling at organelle contact sites: the tip of the iceberg. Curr Opin Cell Biol 23:458–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhratsky A, Shmigol A (1996) Calcium-induced calcium release in neurones. Cell Calcium 19:1–14

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Fukaya M, Uchigashima M, Miura E, Kamiya H, Kano M, Watanabe M (2006) Localization of diacylglycerol lipase-alpha around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J Neurosci 26:4740–4751

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Du G (2009) Phosphatidic acid signaling regulation of Ras superfamily of small guanosine triphosphatases. Biochim Biophys Acta 1791:850–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao ZQ, Scott M, Chiechio S, Wang JS, Renner KJ, Gereau RW, Johnson RL, Deneris ES, Chen ZF (2006) Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J Neurosci 26:12781–12788

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (Y.H., K.G.) and also in part by the Platform for Drug Discovery, Informatics and Structural Life Science (PDIS) from MEXT (K.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasukazu Hozumi.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure S1

Double and triple immunofluorescence for DGKε, VGluT1 or VGluT2, and calbindin in the cerebellum. In all images, DGKε is colored red. Green fluorescence represents calbindin (CB). Cyan and blue fluorescence represent VGluT1 and VGluT2, respectively. No DGKε immunoreactivity is apposed to VGluT1 (a, a’) or VGluT2 (b, b’) in the cerebellar molecular layer. Bars 5 μm (a’), 10 μm (b’). (GIF 511 kb)

High resolution image (TIF 9527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hozumi, Y., Fujiwara, H., Kaneko, K. et al. Diacylglycerol kinase ε localizes to subsurface cisterns of cerebellar Purkinje cells. Cell Tissue Res 368, 441–458 (2017). https://doi.org/10.1007/s00441-017-2579-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2579-y

Keywords

Navigation