Skip to main content

Advertisement

Log in

In situ proximity of CX3CR1-positive mononuclear phagocytes and VIP-ergic nerve fibers suggests VIP-ergic immunomodulation in the mouse ileum

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Being continuously exposed to a plethora of antigens ranging from food antigens to potential pathogenic organisms, the gastrointestinal (GI) tract harbors the largest collection of immune cells in the mammalian body. This immune system has to maintain a delicate balance between mounting an active immune response and maintaining tolerance. The GI tract is also home to an elaborate intrinsic nervous system, the enteric nervous system (ENS). Various in vitro studies of neuro-immune communication have suggested that vasoactive intestinal peptide (VIP), an important GI neurotransmitter, modulates mononuclear phagocytes (MNPs), i.e., dendritic cells and macrophages. Using a combined approach of reverse transcription plus the polymerase chain reaction, immunofluorescence, three-dimensional maximum intensity projections and immunoelectron microscopy, we investigate the interaction between the enteric innervation and MNPs in the ileal lamina propria (LP). We demonstrate that VIP-ergic fibers of the ENS lie adjacent to CX3CR1+ MNPs and that VPAC1 is constitutively expressed on ileal CX3CR1+ cells in the LP of the mouse. We also identify, for the first time, CX3CR1+ immune cells in the LP at the ultrastructural level. Our data thus reveal the in situ presence of the molecular components that are necessary for a VIP-mediated neuro-immune interaction between the ENS and CX3CR1-expressing immune cells in the LP of the ileum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abad C, Martinez C, Juarranz MG, Arranz A, Leceta J, Delgado M, Gomariz RP (2003) Therapeutic effects of vasoactive intestinal peptide in the trinitrobenzene sulfonic acid mice model of Crohn’s disease. Gastroenterology 124:961–971

    Article  CAS  PubMed  Google Scholar 

  • Alpaerts K, Buckinx R, Adriaensen D, Van Nassauw L, Timmermans JP (2015) Identification and putative roles of distinct subtypes of intestinal dendritic cells in neuro-immune communication: what can be learned from other organ systems? Anat Rec 298:903–916

    Article  Google Scholar 

  • Arranz A, Juarranz Y, Leceta J, Gomariz RP, Martinez C (2008) VIP balances innate and adaptive immune responses induced by specific stimulation of TLR2 and TLR4. Peptides 29:948–956

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2008) Non-synaptic transmission at autonomic neuroeffector junctions. Neurochem Internat 52:14–25

    Article  CAS  Google Scholar 

  • Cailotto C, Gomez-Pinilla PJ, Costes LM, van der Vliet J, Di Giovangiulio M, Nemethova A, Matteoli G, Boeckxstaens GE (2014) Neuro-anatomical evidence indicating indirect modulation of macrophages by vagal efferents in the intestine but not in the spleen. PLos One 9:e87785

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerovic V, Houston SA, Scott CL, Aumeunier A, Yrlid U, Mowat AM, Milling SW (2013) Intestinal CD103(−) dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunol 6:104–113

    Article  CAS  PubMed  Google Scholar 

  • Cerovic V, Bain CC, Mowat AM, Willing SWF (2014) Intestinal macrophages and dendritic cells: what’s the difference? Trends Immunol 35:270–277

    Article  CAS  PubMed  Google Scholar 

  • Chang SY, Song JH, Guleng B, Cotoner CA, Arihiro S, Zhao Y, Chiang HS, O’Keeffe M, Liao G, Karp CL, Kweon MN, Sharpe AH, Bhan A, Terhorst C, Reinecker HC (2013) Circulatory antigen processing by mucosal dendritic cells controls CD8(+) T cell activation. Immunity 38:153–165

    Article  CAS  PubMed  Google Scholar 

  • de Jonge WJ (2013) The gut’s little brain in control of intestinal immunity. ISRN Gastroenterol 2013:630159

    Article  PubMed  PubMed Central  Google Scholar 

  • de Jonge F, Van Nassauw L, Adriaensen D, Van Meir F, Miller HR, Van Marck E, Timmermans JP (2003) Effect of intestinal inflammation on capsaicin-sensitive afferents in the ileum of Schistosoma mansoni-infected mice. Histochem Cell Biol 119:477–484

    Article  PubMed  Google Scholar 

  • de Jonge F, De Laet A, Van Nassauw L, Brown JK, Miller HR, van Bogaert PP, Timmermans JP, Kroese AB (2004) In vitro activation of murine DRG neurons by CGRP-mediated mucosal mast cell degranulation. Am J Physiol Gastrointest Liver Physiol 287:G178–G191

    Article  PubMed  Google Scholar 

  • Delgado M, Leceta J, Gomariz RP, Ganea D (1999a) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide stimulate the induction of Th2 responses by up-regulating B7.2 expression. J Immunol 163:3629–3635

    CAS  PubMed  Google Scholar 

  • Delgado M, Pozo D, Martinez C, Leceta J, Calvo JR, Ganea D, Gomariz RP (1999b) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit endotoxin-induced TNF-alpha production by macrophages: in vitro and in vivo studies. J Immunol 162:2358–2367

    CAS  PubMed  Google Scholar 

  • Delgado M, Gonzalez-Rey E, Ganea D (2004a) VIP/PACAP preferentially attract Th2 effectors through differential regulation of chemokine production by dendritic cells. FASEB J 18:1453–1455

    CAS  PubMed  Google Scholar 

  • Delgado M, Reduta A, Sharma V, Ganea D (2004b) VIP/PACAP oppositely affects immature and mature dendritic cell expression of CD80/CD86 and the stimulatory activity for CD4(+) T cells. J Leukoc Biol 75:1122–1130

    Article  CAS  PubMed  Google Scholar 

  • Delgado M, Gonzalez-Rey E, Ganea D (2005) The neuropeptide vasoactive intestinal peptide generates tolerogenic dendritic cells. J Immunol 175:7311–7324

    Article  CAS  PubMed  Google Scholar 

  • Delgado M, Gonzalez-Rey E, Ganea D (2006) Vasoactive intestinal peptide: the dendritic cell → regulatory T cell axis. Ann N Y Acad Sci 1070:233–238

    Article  CAS  PubMed  Google Scholar 

  • Diehl GE, Longman RS, Zhang JX, Breart B, Galan C, Cuesta A, Schwab SR, Littman DR (2013) Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature 494:116–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294

    Article  CAS  PubMed  Google Scholar 

  • Ganea D, Rodriguez R, Delgado M (2003) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: players in innate and adaptive immunity. Cell Mol Biol 49:127–142

    CAS  PubMed  Google Scholar 

  • Ganea D, Hooper KM, Kong W (2015) The neuropeptide VIP: direct effects on immune cells and involvement in inflammatory and autoimmune diseases. Acta Physiol (Oxf) 213:442–452

    Article  CAS  Google Scholar 

  • Gonzalez-Rey E, Delgado M (2006) Therapeutic treatment of experimental colitis with regulatory dendritic cells generated with vasoactive intestinal peptide. Gastroenterology 131:1799–1811

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Rey E, Chorny A, Delgado M (2007) Regulation of immune tolerance by anti-inflammatory neuropeptides. Nat Rev Immunol 7:52–63

    Article  CAS  PubMed  Google Scholar 

  • Helft J, Ginhoux F, Bogunovic M, Merad M (2010) Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol Rev 234:55–75

    Article  CAS  PubMed  Google Scholar 

  • Hooper KM, Kong W, Ganea D (2016) Immunomodulation by vasoactive intestinal polypeptide (VIP). In: Constantinescu C, Arsenescu RI, Arsenescu V (eds) Neuro-immuno-gastroenterology. Springer International, Cham, pp 75–96

    Google Scholar 

  • Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouadjo KE, Nishida Y, Cadrin-Girard JF, Yoshioka M, St-Amand J (2007) Housekeeping and tissue-specific genes in mouse tissues. BMC Genomics 8:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Langer I, Robberecht P (2007) Molecular mechanisms involved in vasoactive intestinal peptide receptor activation and regulation: current knowledge, similarities to and differences from the A family of G-protein-coupled receptors. Biochem Soc Trans 35:724–728

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn-Smith IJ, Costa M, Furness JB (1985) Light and electron microscopic immunocytochemistry of the same nerves from whole mount preparations. J Histochem Cytochem 33:857–866

    Article  CAS  PubMed  Google Scholar 

  • Mann ER, Bernardo D, English NR, Landy J, Al-Hassi HO, Peake ST, Man R, Elliott TR, Spranger H, Lee GH, Parian A, Brant SR, Lazarev M, Hart AL, Li X, Knight SC (2016) Compartment-specific immunity in the human gut: properties and functions of dendritic cells in the colon versus the ileum. Gut 65:256–270

    Article  PubMed  Google Scholar 

  • Martinez C, Delgado M, Abad C, Gomariz RP, Ganea D, Leceta J (1999) Regulation of VIP production and secretion by murine lymphocytes. J Neuroimmunol 93:126–138

    Article  CAS  PubMed  Google Scholar 

  • Massacand JC, Kaiser P, Ernst B, Tardivel A, Burki K, Schneider P, Harris NL (2008) Intestinal bacteria condition dendritic cells to promote IgA production. PLoS One 3:e2588

    Article  PubMed  PubMed Central  Google Scholar 

  • Matteoli G, Boeckxstaens GE (2013) The vagal innervation of the gut and immune homeostasis. Gut 62:1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Newson B, Ahlman H, Dahlström A, Das Gupta TK, Nyhus LM (1979) On the innervation of the ileal mucosa in the rat—a synapse. Acta Physiol Scand 105:387–389

    Article  CAS  PubMed  Google Scholar 

  • Newson B, Dahlström A, Enerbäck L, Ahlman H (1983) Suggestive evidence for a direct innervation of mucosal mast cells. Neuroscience 10:565–570

    Article  CAS  PubMed  Google Scholar 

  • Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–258

    Article  CAS  PubMed  Google Scholar 

  • Nijhuis LE, Olivier BJ, de Jonge WJ (2010) Neurogenic regulation of dendritic cells in the intestine. Biochem Pharmacol 80:2002–2008

    Article  CAS  PubMed  Google Scholar 

  • Pavli P, Woodhams CE, Doe WF, Hume DA (1990) Isolation and characterization of antigen-presenting dendritic cells from the mouse intestinal lamina propria. Immunology 70:40–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367

    Article  CAS  PubMed  Google Scholar 

  • Robberecht P, Cauvin A, Gourlet P, Christophe J (1990) Heterogeneity of VIP receptors. Arch Int Pharmacodyn Ther 303:51–66

    CAS  PubMed  Google Scholar 

  • Schemann M, Michel K, Ceregrzyn M, Zeller F, Seidl S, Bischoff SC (2005) Human mast cell mediator cocktail excites neurons in human and guinea-pig enteric nervous system. Neurogastroenterol Motil 17:281–289

    Article  CAS  PubMed  Google Scholar 

  • Schulz O, Jaensson E, Persson EK, Liu X, Worbs T, Agace WW, Pabst O (2009) Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med 206:3101–3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snoek SA, Borensztajn KS, van den Wijngaard RM, de Jonge WJ (2010) Neuropeptide receptors in intestinal disease: physiology and therapeutic potential. Curr Pharm Des 16:1091–1105

    Article  CAS  PubMed  Google Scholar 

  • Stach W (1973) Nerve plexuses of the duodenal villi. Light and electron microscopic studies. Acta Anat 85:216–231

    Article  CAS  PubMed  Google Scholar 

  • Tamoutounour S, Henri S, Lelouard H, de Bovis B, de Haar C, van der Woude CJ, Woltman AM, Reyal Y, Bonnet D, Sichien D, Bain CC, Mowat AM, Sousa CRE, Poulin LF, Malissen B, Guilliams M (2012) CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur J Immunol 42:3150–3166

    Article  CAS  PubMed  Google Scholar 

  • Tezuka H, Ohteki T (2010) Regulation of intestinal homeostasis by dendritic cells. Immunol Rev 234:247–258

    Article  CAS  PubMed  Google Scholar 

  • Van Nassauw L, Adriaensen D, Timmermans JP (2007) The bidirectional communication between neurons and mast cells within the gastrointestinal tract. Auton Neurosci 133:91–103

    Article  PubMed  Google Scholar 

  • Voedisch S, Rochlitzer S, Veres TZ, Spies E, Braun A (2012) Neuropeptides control the dynamic behavior of airway mucosal dendritic cells. PLos One 7:e45951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav M, Huang MC, Goetzl EJ (2011) VPAC1 (vasoactive intestinal peptide (VIP) receptor type 1) G protein-coupled receptor mediation of VIP enhancement of murine experimental colitis. Cell Immunol 267:124–132

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by FWO-grant G019314N and BOF-GOA project 28313 of the University of Antwerp. The authors thank Elien Theuns, Carine Moers and Dominique De Rijck for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Timmermans.

Additional information

Roeland Buckinx and Katrien Alpaerts contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buckinx, R., Alpaerts, K., Pintelon, I. et al. In situ proximity of CX3CR1-positive mononuclear phagocytes and VIP-ergic nerve fibers suggests VIP-ergic immunomodulation in the mouse ileum. Cell Tissue Res 368, 459–467 (2017). https://doi.org/10.1007/s00441-017-2578-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2578-z

Keywords

Navigation