Skip to main content
Log in

Understanding the developmental pathways pulmonary fibroblasts may follow during alveolar regeneration

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Although pulmonary alveolar interstitial fibroblasts are less specialized than their epithelial and endothelial neighbors, they play essential roles during development and in response to lung injury. At birth, they must adapt to the sudden mechanical changes imposed by the onset of respiration and to a higher ambient oxygen concentration. In diseases such as bronchopulmonary dysplasia and interstitial fibrosis, their adaptive responses are overwhelmed leading to compromised gas-exchange function. Thus, although fibroblasts do not directly participate in gas-exchange, they are essential for creating and maintaining an optimal environment at the alveolar epithelial-endothelial interface. This review summarizes new information and concepts about the ontogeny differentiation, and function of alveolar fibroblasts. Alveolar development will be emphasized, because the development of strategies to evoke alveolar repair and regeneration hinges on thoroughly understanding the way that resident fibroblasts populate specific locations in which extracellular matrix must be produced and remodeled. Other recent reviews have described the disruption that diseases cause to the fibroblast niche and so my objective is to illustrate how the unique developmental origins and differentiation pathways could be harnessed favorably to augment certain fibroblast subpopulations and to optimize the conditions for alveolar regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Al Alam D, El Agha E, Sakuri R, Kheirollahi V, Moiseenko A, Danopoulos S,Shrestha A, Schmoldt C, Quantius J, Herold S, Chao C-M, Tiozzo C, De Langhe S, Plikus MV, Thornton M, Grubbs B, Minoo P, Rehan VK, Belluschi S (2015) Evidence for the involvement of fibroblast growth factor 10 in lipofibroblast formation during embryonic lung development. Development 142:4139–4150

  • Anselmo MA, Dalvin S, Prodhan P, Komatsuzaki K, Aidlen JT, Schnitzer JJ, Wu JY, Kinane TB (2003) Slit and robo: expression patterns in lung development. Gene Expr Patterns 3:13–19

    Article  CAS  PubMed  Google Scholar 

  • Aono Y, Kishi M, Yokota Y, Azuma M, Kinoshita K, Takezaki A, Sato S, Kawano H, Kishi J, Goto H, Uehara H, Izumi K, Nishioka Y (2014) Role of platelet-derived growth factor/platelet-derived growth factor receptor axis in the trafficking of circulating fibrocytes in pulmonary fibrosis. Am J Respir Cell Mol Biol 51:793–801

    Article  PubMed  Google Scholar 

  • Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Randell SH, Noble PB, Hogan BLM (2013) Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123:325–336

    Article  Google Scholar 

  • Barron L, Gharib SA, Duffield JS (2016) Lung pericytes and resident fibroblasts: busy multitaskers. Am J Pathol 186:2519-2531. doi:10.1016/j.ajpath.2016.07.004

    Article  PubMed  Google Scholar 

  • Berry DC, Jiang Y, Graff JM (2016) Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function. Nat Commun 7:10184. doi:10.1038/ncommons10184

    Article  CAS  PubMed  Google Scholar 

  • Bolanos AL, Milla CM, Lira JC, Ramirez R, Checa M, Barrera L, Garcia-Alvarez J, Carbajal V, Becerril C, Gaxiola M, Pardo A, Selman M (2012) Role of sonic hedgehog in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 303:L978–L990

    Article  CAS  PubMed  Google Scholar 

  • Boström H, Willetts K, Pekny M, Leveen P, Lindahl P, Hedstrand H, Pekna M, Hellstrom M, Gebre-Medin S, Schalling M, Nilsson M, Kurland S, Tornell J, Heath JK, Betsholtz C (1996) PGDF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85:863–873

    Article  PubMed  Google Scholar 

  • Boström H, Gritli-Linde A, Betsholtz C (2002) PDGF-A/PDGF alpha-receptor signaling is required for lung growth and the formation of alveoli but not for early lung branching morphogenesis. Dev Dyn 223:155–162

    Article  PubMed  Google Scholar 

  • Boucherat O, Franco-Montoya ML, Thibault C, Incitti R, Chailley-Heu B, Delacourt C, Bourbon JR (2007) Gene expression profiling in lung fibroblasts reveals new players in alveolarization. Physiol Genomics 32:128–141

    Article  CAS  PubMed  Google Scholar 

  • Branchfield K, Li R, Lungova V, Verheyden JM, McCulley D, Sun X (2016) A three-dimensional study of alveologenesis in mouse lung. Dev Biol 409:429–441

    Article  CAS  PubMed  Google Scholar 

  • Bruce MC, Honaker CE (1998) Transcriptional regulation of tropoelastin expression in rat lung fibroblasts: changes with age and hyperoxia. Am J Physiol 274:L940–L950

    CAS  PubMed  Google Scholar 

  • Burri PH (1974) The postnatal growth of the rat lung. III. Morphology. Anat Rec 180:77–98

    Article  CAS  PubMed  Google Scholar 

  • Burri PH, Hlushchuk R, Djonov V (2004) Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn 231:474–488

    Article  PubMed  Google Scholar 

  • Cardoso W, Sekhon HS, Hyde DM, Thurlbeck WM (1993) Collagen and elastin in human pulmonary emphysema. Am Rev Respir Dis 147:975–981

    Article  CAS  PubMed  Google Scholar 

  • Chao CM, Moiseenko A, Zimmer KP, Bellusci S (2016) Alveologenesis: key cellular players and fibroblast growth factor 10 signaling. Mol Cell Pediatr 3:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Acciani T, Le Cras T, Lutzko C, Perl A-KT (2012) Dynamic regulation of platelet-derived growth factor receptor α expression in alveolar fibroblasts during realveolarization. Am J Respir Cell Mol Biol 47:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, Corada M, Dejana E, Zhou B, Adams RH (2016) Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun 7:12422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang PT, Kawcak T, McMahon AP (2003) Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung. Genes Dev 17:342–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deimling J, Thompson K, Tseu I, Wang J, Keijzer R, Tanswell AK, Post M (2007) Mesenchymal maintenance of distal epithelial cell phenotype during late fetal lung development. Am J Physiol Lung Cell Mol Physiol 292:L725–L741

    Article  CAS  PubMed  Google Scholar 

  • El Agha E, Herold S, Alam DA, Quantius J, Mackenzie B, Carraro G, Moiseenko A, Chao CM, Minoo P, Seeger W, Bellusci S (2014) Fgf10-positive cells represent a progenitor cell population during lung development and postnatally. Development 141:296–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng H, Hu B, Liu KW, Li Y, Lu X, Cheng T, Yiin JJ, Lu S, Keezer S, Fenton T, Furnari FB, Hamilton RL, Vuori K, Sarkaria JN, Nagane M, Nishikawa R, Cavenee WK, Cheng SY (2011) Activation of Rac1 by Src-dependent phosphorylation of Dock180(Y1811) mediates PDGFRalpha-stimulated glioma tumorigenesis in mice and humans. J Clin Invest 121:4670–4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiore VF, Strane PW, Bryksin AV, White ES, Hagood JS, Barker TH (2015) Conformational coupling of integrin and Thy-1 regulates Fyn priming and fibroblast mechanotransduction. J Cell Biol 211:173–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funke M, Knudsen L, Lagares D, Ebener S, Probst CK, Fontaine BA, Franklin A, Kellner M, Kuhnel M, Matthieu S, Grothausmann R, Chun J, Roberts JD Jr, Ochs M, Tager AM (2016) Lysophosphatidic acid signaling through the lysophosphatidic acid-1 receptor is required for alveolarization. Am J Respir Cell Mol Biol 55:105–116

    Article  CAS  PubMed  Google Scholar 

  • Greenberg JM, Thompson FY, Brooks SK, Shannon JM, Akeson AL (2004) Slit and robo expression in the developing mouse lung. Dev Dyn 230:350–360

    Article  CAS  PubMed  Google Scholar 

  • Hagood JS, Miller PJ, Lasky JA, Tousson A, Guo B, Fuller GM, McIntosh JC (1999) Differential expression of platelet-derived growth factor-alpha receptor by Thy-1(−) and Thy-1(+) lung fibroblasts. Am J Physiol 277:L218–L224

    CAS  PubMed  Google Scholar 

  • Hagood JS, Prabhakaran P, Kumbla P, Salazar L, MacEwen MW, Barker TH, Ortiz LA, Schoeb T, Siegal GP, Alexander CB, Pardo A, Selman M (2005) Loss of fibroblast Thy-1 expression correlates with lung fibrogenesis. Am J Pathol 167:365–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton TG, Klinghoffer RA, Corrin PD, Soriano P (2003) Evolutionary divergence of platelet derived growth factor alpha receptor signaling mechanisms. Mol Cell Biol 23:4013–4025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He F, Soriano P (2015) Sox10ER(T2) CreER(T2) mice enable tracing of distinct neural crest cell populations. Dev Dyn 244:1394–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heckmann BL, Zhang Z, Xie X, Liu J (2013) The G0/G1 switch gene 2 (G0S2): regulating metabolism and beyond. Biochem Biophys Acta 1831:276–281

    CAS  PubMed  Google Scholar 

  • Herzog EL, Bucala R (2010) Fibrocytes in health and disease. Exp Hematol 38:548–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hines E, Sun X (2014) Tissue crosstalk in lung development. J Cell Biochem 115:1469–1477

    Article  CAS  PubMed  Google Scholar 

  • Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmouliere A, Varga J, Wever O de, Mareel M, Gabbiani G (2012) Recent developments in myofibrobloast biology. Paridigms in connective tissue remodeling. Am J Pathol 180:1355

  • Hitchcock O’Hare K, Sheridan MN (1970) Electron microscopic observations on the morphogenesis of the albino rat lung, with special reference to pulmonary epithelial cells. Am J Anat 127:181–206

    Article  Google Scholar 

  • Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CC, Niklason L, Calle E, Le A, Randell SH, Rock J, Snitow M, Krummel M, Stripp BR, Vu T, White ES, Whitsett JA, Morrisey EE (2014) Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15:123–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwayama T, Steele C, Yao L, Dozmorov MG, Karamichos D, Wren JD, Olson LE (2015) PDGFRalpha signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity. Genes Dev 29:1106–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joannes A, Brayer S, Besnard V, Marchal-Somme J, Jaillet M, Mordant P, Mal H, Borie R, Crestani B, Mailleux AA (2016) FGF9 and FGF18 in idiopathic pulmonary fibrosis promote survival and migration and inhibit myofibroblast differentiation of human lung fibroblasts in vitro. Am J Physiol Lung Cell Mol Physiol 310:L615–L629

    Article  PubMed  Google Scholar 

  • Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153–165

  • Joshi R, Liu S, Brown MD, Young SM, Batie M, Kofron JM, Xu Y, Weaver TE, Apsley K, Varisco BM (2016) Stretch regulates expression and binding of chymotrypsin-like elastase 1 in the postnatal lung. FASEB J 30:590–600

    Article  CAS  PubMed  Google Scholar 

  • Jostarndt-Fögen K, Djonov V, Draeger A (1998) Expression of smooth muscle markers in the developing murine lung: potential contractile properties and lineal descent. Histochem Cell Biol 110:273–284

    Article  PubMed  Google Scholar 

  • Joza S, Wang J, Tseu I, Ackerley C, Post M (2013) Fetal, but not postnatal, deletion of semaphorin-neuropilin-1 signaling affects murine alveolar development. Am J Respir Cell Mol Biol 49:627–636

    Article  CAS  PubMed  Google Scholar 

  • Kanisicak O, Khalil H, Ivey MJ, Karch J, Maliken BD, Correll RN, Brody MJ, Lin SCJ, Aronow BJ, Tallquist MD, Molkentin JD (2016) Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat Commun 7:12260

    Article  PubMed  Google Scholar 

  • Kauffman SL, Burri PH, Weibel ER (1974) The postnatal growth of the rat lung .II. Autoradiography. Anat Rec 180:63–76

  • van Keymeulen A, Blanpain C (2012) Tracing epithelial stem cells during development, homeostasis, and repair. J Cell Biol 197:575–584

  • Kimani PW, Holmes AJ, Grossmann RE, McGowan SE (2009) PDGF-Rα gene expression predicts proliferation, but PDGF-A suppresses transdifferentiation of neonatal mouse lung myofibroblasts. Respir Res 10:19

    Article  Google Scholar 

  • Klinghoffer RA, Hamilton TG, Hoch R, Soriano P (2002) An allelic series at the PDGFalphaR locus indicates unequal contributions of distinct signaling pathways during development. Dev Cell 2:103–113

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni T, O’Reilly P, Antony VB, Gaggar A, Thannickal VJ (2016) Matrix remodeling in pulmonary fibrosis and emphysema. Am J Respir Cell Mol Biol 54:751–760

    Article  CAS  PubMed  Google Scholar 

  • Li A, Ma S, Smith SM, Lee MK, Fischer A, Borok Z, Bellusci S, Li C, Minoo P (2016) Mesodermal ALK5 controls lung myofibroblast versus lipofibroblast cell fate. BMC Biol 14:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Li M, Li S, Xing Y, Yang CY, Li A, Borok Z, De LS, Minoo P (2014) Progenitors of secondary crest myofibroblasts are developmentally committed in early lung mesoderm. Stem Cells 33:999–1012

    Article  Google Scholar 

  • Li C, Li X, Deng C, Guo C (2016) Circulating fibrocytes are increased in neonates with bronchopulmonary dysplasia. PLoS One 11:e0157181

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Li Y, He H, Liu C, Li W, Xie L, Zhang Y (2016) Csk/Src/EGFR signaling regulates migration of myofibroblasts and alveolarization. Am J Physiol Lung Cell Mol Physiol 310:L562–L571

    Article  PubMed  Google Scholar 

  • Liu L, Kugler MC, Loomis CA, Samdani R, Zhao Z, Chen GJ, Brandt JP, Brownell I, Joyner AL, Rom WN, Munger JS (2013) Hedgehog signaling in neonatal and adult lung. Am J Respir Cell Mol Biol 48:703–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGowan SE (2014) The formation of pulmonary alveoli. In: Harding R, Pinkerton KE (eds) The lung, development, aging and the environment. Elsevier, Amsterdam, pp 65–79

    Google Scholar 

  • McGowan SE, McCoy DM (2011) Fibroblasts expressing PDGF-receptor-alpha diminish during alveolar septal thinning in mice. Pediatr Res 70:44–49

    Article  CAS  PubMed  Google Scholar 

  • McGowan SE, McCoy DM (2013a) Platelet-derived growth factor-A and sonic hedgehog signaling direct lung fibroblast precursors during alveolar septal formation. Am J Physiol Lung Cell Mol Physiol 305:L229–L239

    Article  CAS  PubMed  Google Scholar 

  • McGowan SE, McCoy DM (2013b) Platelet-derived growth factor-A regulates lung fibroblast S-phase entry through p27(kip1) and FoxO3a. Respir Res 14:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGowan SE, McCoy DM (2014) Regulation of fibroblast lipid storage and myofibroblast phenotypes during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol 307:L618–L631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGowan SE, McCoy DM (2015) Fibroblast growth factor signaling in myofibroblasts differs from lipofibroblasts during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol 309:L463–L474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGowan SE, Grossmann RE, Kimani PW, Holmes AJ (2008a) Platelet-derived growth factor receptor-alpha-expressing cells localize to the alveolar entry ring and have characteristics of myofibroblasts during pulmonary alveolar septal formation. Anat Rec 291:1649–1661

    Article  CAS  Google Scholar 

  • McGowan SE, Holmes AJ, Mecham RP, Ritty TM (2008b) Arg-Gly-Asp-containing domains of fibrillins-1 and −2 distinctly regulate lung fibroblast migration. Am J Respir Cell Mol Biol 38:435–445

    Article  CAS  PubMed  Google Scholar 

  • McQualter JL, Brouard N, Williams B, Baird BN, Sims-Lucas S, Yuen K, Nilsson SK, Simmons PJ, Bertoncello I (2009) Endogenous fibroblastic progenitor cells in the adult mouse lung are highly enriched in the Sca-1 positive cell fraction. Stem Cells 27:623–633

    Article  CAS  PubMed  Google Scholar 

  • McQualter JL, McCarty RC, Van der Velden J, O’Donoghue RJ, Asselin-Labat M-L, Bozinovski S, Bertoncello I (2013) TGF-β signaling in stromal cells acts upstream of FGF-10 to regulate epithelial stem cell growth in adult lung. Stem Cell Res 11:1222–1233

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JJ, Reynolds SE, Leslie KO, Low RB, Woodcock-Mitchell J (1990) Smooth muscle cell markers in developing rat lung. Am J Respir Cell Mol Biol 3:515–523

    Article  CAS  PubMed  Google Scholar 

  • Ntokou A, Klein F, Dontireddy D, Becker S, Bellusci S, Richardson WD, Szibor M, Braun T, Morty RE, Seeger W, Voswinckel R, Ahlbrecht K (2015) Characterization of the platelet-derived growth factor receptor-alpha-positive cell lineage during murine late lung development. Am J Physiol Lung Cell Mol Physiol 309:L942–L958

    Article  CAS  PubMed  Google Scholar 

  • Pannerec A, Formicola L, Besson V, Marazzi G, Sassoon DA (2013) Defining skeletal muscle resident progenitors and their cell fate potentials. Development 140:2879–2891

    Article  CAS  PubMed  Google Scholar 

  • Park MS, Rieger-Fackeldey E, Schanbacher BL, Cook AC, Bauer JA, Rogers LK, Hansen TN, Welty SE, Smith CV (2007) Altered expressions of fibroblast growth factor receptors and alveolarization in neonatal mice exposed to 85% oxygen. Pediatr Res 62:652–657

    Article  CAS  PubMed  Google Scholar 

  • Peng T, Frank DB, Kadzik RS, Morley MP, Rathi KS, Wang T, Zhou S, Cheng L, Lu MM, Morrisey EE (2015) Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration. Nature 526:578–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phipps RP, Penny DP, Keng P, Quill H, Paxhia A, Derdak S, Felch ME (1990) Differential expression of interleukin 1a by Thy-1+ and Thy-1- lung fibroblast subpopulations: enhancement of interleukin 1a production by tumor necrosis factor-α. Eur J Immunol 20:1723–1727

    Article  CAS  PubMed  Google Scholar 

  • Pierce RA, Joyce B, Officer S, Heintz K, Moore C, McCurrin D, Johnston C, Maniscalco W (2007) Retinoids increase lung elastin expression but fail to alter morphology or angiogenesis genes in premature ventilated baboons. Pediatr Res 61:703–709

    Article  CAS  PubMed  Google Scholar 

  • Pilling D, Zheng Z, Vakil V, Gomer RH (2014) Fibroblasts secrete Slit2 to inhibit fibrocyte differentiation and fibrosis. Proc Natl Acad Sci U S A 111:18291–18296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raab M, Swift J, Dingal PC, Shah P, Shin JW, Discher DE (2012) Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J Cell Biol 199:669–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro SD, Endicott SK, Province MA, Pierce JA, Campbell EJ (1991) Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. J Clin Invest 87:1828–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva DM, Nardiello C, Pozarska A, Morty RE (2015) Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 309:L1239–L1272

    CAS  PubMed  Google Scholar 

  • Sinclair KA, Yerkovich ST, Chen T, McQualter JL, Hopkins PM, Wells CA, Chambers DC (2016) Mesenchymal stromal cells are readily recoverable from lung tissue, but not the alveolar space, in healthy humans. Stem Cells 34:2548–2558. doi:10.1002/stem.2419

    Article  CAS  PubMed  Google Scholar 

  • Smith CL, Baek ST, Sung CY, Tallquist MD (2011) Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ Res 108:e15–e26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srisuma S, Bhattacharya S, Simon DM, Solleti SK, Tyagi S, Starcher B, Mariani TJ (2010) Fibroblast growth factor receptors control epithelial-mesenchymal interactions necessary for alveolar elastogenesis. Am J Respir Crit Care Med 181:838–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swee MH, Parks WC, Pierce RA (1995) Developmental regulation of elastin production, expression of tropoelastin pre-mRNA persists after downregulaton of steady-state mRNA levels. J Biol Chem 270:14899–14906

    Article  CAS  PubMed  Google Scholar 

  • Tsao PN, Vasconcelos M, Izvolsky KI, Qian J, Lu J, Cardoso WV (2009) Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development 136:2297–2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsao PN, Matsuoka C, Wei SC, Sato A, Sato S, Hasegawa K, Chen HK, Ling TY, Mori M, Cardoso WV, Morimoto M (2016) Epithelial Notch signaling regulates lung alveolar morphogenesis and airway epithelial integrity. Proc Natl Acad Sci U S A 113:8242–8247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uezumi A, Ito T, Morikawa D, Shimizu N, Yoneda T, Segawa M, Yamaguchi M, Ogawa R, Matev MM, Miyagoe-Suzuki Y, Takeda S, Tsujikawa K, Tsuchida K, Yamamoto H, Fukada S (2011) Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci 124:3654–3664

    Article  CAS  PubMed  Google Scholar 

  • Vaccaro C, Brody JS (1978) Ultrastructure of developing alveoli. I. The role of the interstitial fibroblast. Anat Rec 192:467–480

    Article  CAS  PubMed  Google Scholar 

  • Weinstein M, Xu X, Ohyama K, Deng CX (1998) FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 125:3615–3623

    CAS  PubMed  Google Scholar 

  • White AC, Xu J, Yin Y, Smith C, Schmid G, Ornitz DM (2006) FGF9 and SHH signaling coordinate lung growth and development through regulation of distinct mesenchymal domains. Development 133:1507–1517

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Nieuwenhuis E, Cohen B, Wang W, Cantry A, Danska J, Coultas L, Rossant J, Wu MYJ, Piscione TD, Nagy A, Gossler A, Hicks GG, Hui C-C, Henkelman RN, Yu L, Sled JG, Gridley T, Egan SE (2009) Lunatic Fringe-mediated Notch signaling is required for lung alveogenesis. Am J Physiol Lung Cell Mol Physiol 298:L45–L56

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin Y, White AC, Huh SH, Hilton MJ, Kanazawa H, Long F, Ornitz DM (2008) An FGF-WNT gene regulatory network controls lung mesenchyme development. Dev Biol 319:426–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Wang F, Ornitz DM (2011) Mesothelial- and epithelial-derived FGF9 have distinct functions in the regulation of lung development. Development 138:3169–3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young SM, Liu S, Joshi R, Batie MR, Kofron M, Guo J, Woods JC, Varisco BM (2015) Localization and stretch-dependence of lung elastase activity in development and compensatory growth. J Appl Physiol 118:921–931

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Poe B, Schwarz M, Elliot SA, Albertine KH, Fenton S, Garg V, Moon AM (2010) Fetal and postnatal lung defects reveal a novel and required role for Fgf8 in lung development. Dev Biol 347:92–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen McGowan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGowan, S. Understanding the developmental pathways pulmonary fibroblasts may follow during alveolar regeneration. Cell Tissue Res 367, 707–719 (2017). https://doi.org/10.1007/s00441-016-2542-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2542-3

Keywords