Skip to main content

Advertisement

Log in

In vitro cultures of ectodermal monolayers from the model sea anemone Nematostella vectensis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

An Erratum to this article was published on 07 October 2016

Abstract

We report here a novel approach for the extraction, isolation and culturing of intact ectodermal tissue layers from a model marine invertebrate, the sea anemone Nematostella vectensis. A methodology is described in which a brief exposure of the animal to the mucolytic agent N-acetyl-L-cysteine (NAC) solution triggers the dislodging of the ectodermis from its underlying basement membrane and mesoglea. These extracted fragments of cell sheets adherent to culture-dish substrates, initially form 2D monolayers that are transformed within 24 h post-isolation into 3D structures. These ectodermal tissues were sustained in vitro for several months, retaining their 3D structure while continuously releasing cells into the surrounding media. Cultures were then used for cell type characterizations and, additionally, the underlying organization of actin filaments in the 3D structures are demonstrated. Incorporation of BrdU and immunohistochemical labeling using p-histone H3 primary antibody were performed to compare mitotic activities of ectodermal cells originating from intact and from in vivo regenerating animals. Results revealed no change in mitotic activities at 2 h after bisection and a 1.67-, 1.71- and 3.74-fold increase over 24, 48 and 72 h of regeneration, respectively, depicting a significant correlation coefficient (p < 0.05; R 2 = 0.74). A significant difference was found only between the control and 3-day regenerations (p = 0.016). Cell proliferation was demonstrated in the 3D ectodermis after 6 culturing days. Moreover, monolayers that were subjected to Ca++/Mg++ free medium for the first 2 h after isolation and then replaced by standard medium, showed, at 6 days of culturing, profuse appearance of positive p-histone H3-labeled nuclei in the 3D tissues. Cytochalasin administered throughout the culturing period abolished all p-histone H3 labeling. This study thus depicts novel in vitro tissue culturing of ectodermal layers from a model marine invertebrate, demonstrating the ease with which experiments can be performed and cellular and molecular pathways can be revealed, thus opening studies on 2D tissue organizations and morphogenesis as well as the roles of cellular components in the formation of tissues in this organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bancroft JD, Stevens A (1990) Theory and Practice of Histological Techniques, 3rd edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Bossert PE, Dunn MP, Thomsen GH (2013) A staging system for the regeneration of a polyp from the aboral physa of the anthozoan cnidarian Nematostella vectensis. Dev Dyn 242:1320–1331. doi:10.1002/dvdy.24021

    Article  CAS  PubMed  Google Scholar 

  • Cameron ML, Steele JE (1959) Simplified aldehyde-fuchsin staining of neurosecretory cells. Stain Technol 34:265–266. doi:10.3109/10520295909114686

    Article  CAS  PubMed  Google Scholar 

  • Coyne K, Laursen JR, Yoshino TP (2015) In vitro effects of mucus from the mantle of compatible (Lymnaea elodes) and incompatible (Helisoma trivolvis) snail hosts on Fascioloides magna Miracidia. J Parasitol 101:351–357. doi:10.1645/14-606.1

    Article  PubMed  Google Scholar 

  • Daly M (2002) A systematic revision of Edwardsiidae (Cnidaria, Anthozoa). Invertebr Biol 121:212–225

    Article  Google Scholar 

  • Darling JA, Reitzel AR, Burton PM, Mazza ME, Ryan JF, Sullivan JC, Finnerty JR (2005) Rising starlet: the starlet sea anemone, Nematostella vectensis. BioEssays 27:211–221. doi:10.1002/bies.20181

    Article  CAS  PubMed  Google Scholar 

  • De Caralt S, Uriz MJ, Wijffels RH (2007) Cell culture from sponges: pluripotency and immortality. Trends Biotechnol 25:467–471. doi:10.1016/j.tibtech.2007.08.006

    Article  PubMed  Google Scholar 

  • DuBuc TQ, Traylor-Knowles N, Martindale MQ (2014) Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis. BMC Biol 12:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Extavour CG, Pang K, Matus DQ, Martindale MQ (2005) Vasa and Nanos expression patterns in a sea anemone and the evolution of bilaterians germ cell specification mechanisms. Evol Dev 7:201–215. doi:10.1111/j.1525-142X.2005.05023.x

    Article  CAS  PubMed  Google Scholar 

  • Finnerty JR, Pang K, Burton P, Paulson D, Martindale MQ (2004) Origins of bilateral symmetry: Hox and Dpp expression in a sea anemone. Science 304:1335–1337

    Article  CAS  PubMed  Google Scholar 

  • Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160:171–177. doi:10.1016/j.toxlet.2005.07.001

    Article  CAS  PubMed  Google Scholar 

  • Frank P, Bleakney JS (1976) Histology and sexual reproduction of the anemone Nematostella vectensis Stephenson 1935. J Nat Hist 10:441–449. doi:10.1080/00222937600770331

    Article  Google Scholar 

  • Frank U, Rabinowitz C, Rinkevich B (1994) In vitro establishment of continuous cell cultures and cell lines from ten colonial cnidarians. Mar Biol 120:491–499

    Article  Google Scholar 

  • Fritzenwanker JH, Technau U (2002) Induction of gametogenesis in the basal cnidarian Nematostella vectensis (Anthozoa). Dev Genes Evol 212:99–103. doi:10.1007/s00427-002-0214-7

    Article  PubMed  Google Scholar 

  • Fritzenwanker JH, Saina M, Technau U (2004) Analysis of forkhead and snail expression reveals epithelial–mesenchymal transitions during embryonic and larval development of Nematostella vectensis. Dev Biol 275:389–402. doi:10.1016/j.ydbio.2004.08.014

    Article  CAS  PubMed  Google Scholar 

  • Griffith LG, Naughton G (2002) Tissue engineering--current challenges and expanding opportunities. Science 295:1009–1014. doi:10.1126/science.106921

    Article  CAS  PubMed  Google Scholar 

  • Hand C, Uhlinger KR (1992) The culture, sexual and asexual reproduction, and growth of the sea anemone Nematostella vectensis. Biol Bull 182:169–176

    Article  Google Scholar 

  • Hu GB, Wang D, Wang CH, Yang KF (2008) A novel immortalization vector for the establishment of penaeid shrimp cell lines. In Vitro Cell Dev-Anim 44:51–56. doi:10.1007/s11626-007-9076-7

    Article  CAS  Google Scholar 

  • Ilan M, Contini H, Carmeli S, Rinkevich B (1996) Progress towards cell cultures from marine sponges that produce bioactive compounds. J Mar Biotechnol 4:145–149

    Google Scholar 

  • Jahnel SM, Walzl M, Technau U (2014) Development and epithelial organisation of muscle cells in the sea anemone Nematostella vectensis. Front Zool 11:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Martindale MQ, Pang K, Finnerty JR (2004) Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 131:2463–2474. doi:10.1242/dev.01119

    Article  CAS  PubMed  Google Scholar 

  • Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3:1863–1887. doi:10.3390/ma3031863

    Article  CAS  Google Scholar 

  • Passamaneck YJ, Martindale MQ (2012) Cell proliferation is necessary for the regeneration of oral structures in the anthozoan cnidarian Nematostella vectensis. BMC Dev Biol 12:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng SE, Lou YJ, Huang HJ, Lee IT, Hou LS, Chen WNU, Fang LS, Chen CS (2008) Isolation of tissue layers in hermatypic corals by N-acetylcysteine: morphological and proteomic examinations. Coral Reefs 27:133–142. doi:10.1007/s00338-007-0300-4

    Article  Google Scholar 

  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94. doi:10.1126/science.1139158

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitz C, Rinkevich B (2003) Epithelial cell cultures from Botryllus schlosseri palleal buds: accomplishments and challenges. Methods Cell Sci 25:137–148

    Article  PubMed  Google Scholar 

  • Rabinowitz C, Rinkevich B (2004) In vitro delayed senescence of extirpated buds from zooids of the colonial tunicate Botryllus schlosseri. J Exp Biol 207:1523–1532. doi:10.1242/jeb.00899

    Article  PubMed  Google Scholar 

  • Rabinowitz C, Rinkevich B (2011) De novo emerged stemness signatures in epithelial monolayers developed from extirpated palleal buds. In Vitro Cell Dev-Anim 47:26–31. doi:10.1007/s11626-010-9357-4

    Article  CAS  Google Scholar 

  • Rabinowitz C, Alfassi G, Rinkevich B (2009) Further portrayal of epithelial monolayers emergent de novo from extirpated ascidians palleal buds. In Vitro Cell Dev -Anim 45:334–342. doi:10.1007/s11626-009-9179-4

    Article  Google Scholar 

  • Raz-Bahat M, Erez J, Rinkevich B (2006) In vivo light-microscopic documentation for primary calcification processes in the hermatypic coral Stylophora pistillata. Cell Tissue Res 325:361–368. doi:10.1007/s00441-006-0182-8

    Article  PubMed  Google Scholar 

  • Reitzel AM, Burton PM, Krone C, Finnerty JR (2007a) Comparison of developmental trajectories in the starlet sea anemone Nematostella vectensis: embryogenesis, regeneration, and two forms of asexual fission. Invertebr Biol 126:99–112. doi:10.1111/j.1744-7410.2007.00081.x

    Article  Google Scholar 

  • Reitzel AM, Sullivan JC, Brown BK, Chin DW, Cira EK, Edquist SKM, Genco BM, Joseph OC, Kaufman CA, Kovitvongsa K, Muñoz MM, Negri TL, Taffel JR, Zuehlke RT, Finnerty JR (2007b) Ecological and developmental dynamics of a host-parasite system involving a sea anemone and two ctenophores. J Parasitol 93:1392–1402. doi:10.1645/GE-1250.1

    Article  PubMed  Google Scholar 

  • Renfer E, Amon-Hassenzahl A, Steinmetz PR, Technau UA (2010) Muscle-specific transgenic reporter line of the sea anemone, Nematostella vectensis. Proc Natl Acad Sci U S A 107:104–108. doi:10.1073/pnas.0909148107

    Article  CAS  PubMed  Google Scholar 

  • Rentzsch F, Anton R, Saina M, Hammerschmidt M, Holstein TW, Technau U (2006) Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning. Dev Biol 296:375–387. doi:10.1016/j.ydbio.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  • Rinkevich B (1999) Cell cultures from marine invertebrates: obstacles, new approaches and recent improvements. J Biotechnol 70:133–153

    Article  CAS  Google Scholar 

  • Rinkevich B (2005) Marine invertebrate cell cultures: new millennium trends. Mar Biotechnol 7:429–439. doi:10.1007/s10126-004-0108-y

    Article  CAS  PubMed  Google Scholar 

  • Rinkevich B (2011) Cell culture from marine invertebrates: new insights for capturing endless stemness. Mar Biotechnol 13:345–354. doi:10.1007/s10126-010-9354-3

    Article  CAS  PubMed  Google Scholar 

  • Rinkevich B, Rabinowitz C (1993) In vitro culture of blood cells from the colonial protochordate Botryllus schlosseri. In Vitro Cell Dev -Anim 29A:79–85

    Article  Google Scholar 

  • Rinkevich B, Rabinowitz C (1997) Initiation of epithelial cell cultures from palleal buds of Botryllus schlosseri, a colonial tunicate. In Vitro Cell Dev -Anim 33:422–424

    Article  CAS  Google Scholar 

  • Rinkevich B, Avishai N, Rabinowitz C (2005) UV incites diverse levels of DNA breaks in different cellular compartments of a branching coral species. J Exp Biol 208:843–848. doi:10.1242/jeb.01496

    Article  Google Scholar 

  • Sheader M, Suwailem AM, Rowe GA (1997) The anemone, Nematostella vectensis, in Britain: considerations for conservation management. Aquat Conserv: Mar Freshw Ecosyst 7:13–25

    Article  Google Scholar 

  • Singer II (1971) Tentacular and oral-disc regeneration in the sea anemone, Aiptasia diaphana. J Embryol Exp Morphol 26:253–270

    CAS  PubMed  Google Scholar 

  • Stefanik DJ, Friedman LE, Finnerty JR (2013) Collecting, rearing, spawning and inducing regeneration of the starlet sea anemone, Nematostella vectensis. Nat Protoc 8:916–923. doi:10.1038/nprot.2013.044

    Article  PubMed  Google Scholar 

  • Sullivan JC, Ryan JF, Watson JA, Webb J, Mullikin JC, Rokhasar D, Finnerty JR (2006) StellaBase: The Nematostella vectensis genomics database. Nucleic Acids Res 34:D495–D499

    Article  CAS  PubMed  Google Scholar 

  • Tarrant AM, Gilmore TD, Reitzel AM, Levy O, Technau U, Martindale MQ (2015) Current directions and future perspectives from the third Nematostella research conference. Zoology 118:135–140. doi:10.1016/j.zool.2014.06.005

    Article  PubMed  Google Scholar 

  • Technau U (2010) The sea anemone Nematostella vectensis as a model system for the study of the evolutionary origin of triploblasty and bilaterality. Palaeodiversity 3:155–157

    Google Scholar 

  • Tucker RP, Shibata B, Blankenship TN (2011) Ultrastructure of the mesoglea of the sea anemone Nematostella vectensis (Edwardsiidae). Invertebr Biol 130:11–24. doi:10.1111/j.1744-7410.2010.00219.x

    Article  Google Scholar 

  • Vago R (2008) Beyond the skeleton: Cnidarian biomaterials as bioactive extracellular microenvironments for tissue engineering. Organogenesis 4:18–22. doi:10.4161/org.5843

    Article  PubMed  PubMed Central  Google Scholar 

  • Wijffels RH (2008) Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol 26:26–31. doi:10.1016/j.tibtech.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  • Williams RB (1975) A redescription of the brackish-water sea anemone Nematostella vectensis Stephenson, with an appraisal of congeneric species. J Nat Hist 9:51–64

    Article  Google Scholar 

  • Wolenski FS, Layden MJ, Martindale MQ, Gilmore TD, Finnerty JR (2013) Characterizing the spatiotemporal expression of RNAs and proteins in the starlet sea anemone, Nematostella vectensis. Nat Protocol 8:900–915. doi:10.1038/nprot.2013.014

    Article  Google Scholar 

Download references

Acknowledgments

We thank Guy Paz for figure preparations and Elad Rachmilovitz for statistical advice. This study was supported by a grant from the Ministry of National Infrastructures, Energy and Water Resources in Israel.

Authors’ contributions

C.R. conceived, designed, performed the experiments and analyzed the data; C.R. and E.M. performed histological work; C.R. and B.R. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baruch Rinkevich.

Ethics declarations

Competing interests

The authors declare that they have no competing interests

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00441-016-2516-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabinowitz, C., Moiseeva, E. & Rinkevich, B. In vitro cultures of ectodermal monolayers from the model sea anemone Nematostella vectensis . Cell Tissue Res 366, 693–705 (2016). https://doi.org/10.1007/s00441-016-2495-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2495-6

Keywords

Navigation