Skip to main content

Advertisement

Log in

Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Ion channels included in the family of Connexins (Cx) have been reported to influence the secondary expansion of traumatic spinal cord injury (SCI) and neuropathic pain following SCI. However, Cxs also contribute to spinal cord neurogenesis during the remyelinating process and functional recovery after SCI. Certain Cxs have been recently related to the control of cell proliferation and the differentiation of neuronal progenitors. Adult spinal-cord-derived ependymal stem progenitor cells (epSPC) show high expression levels of Cx50 in non-pathological conditions and lower expression when they actively proliferate after injury (epSPCi). We explore the role of Cx50 in the ependymal population in the modulation of Sox2, a crucial factor of neural progenitor self-renewal and a promising target for promoting neuronal-cell-fate induction for neuronal tissue repair. Short-interfering-RNA ablation or over-expression of Cx50 regulates the expression of Sox2 in both epSPC and epSPCi. Interestingly, Cx50 and Sox2 co-localize at the nucleus indicating a potential role for this ion channel beyond cell-to-cell communication in the spinal cord. In vivo and in vitro experiments with Clotrimazole, a specific pharmacological modulator of Cx50, show the convergent higher expression of Cx50 and Sox2 in the isolated epSPC/epSPCi and in spinal cord tissue. Therefore, the pharmacological modulation of Cx50 might constitute an interesting mechanism for Sox2 induction to modulate the endogenous regenerative potential of neuronal tissue with a potential application in regenerative therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barnabe-Heider F, Goritz C, Sabelstrom H, Takebayashi H, Pfrieger FW, Meletis K, Frisen J (2010) Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7:470–482

    Article  CAS  PubMed  Google Scholar 

  • Bautista W, Nagy JI (2014) Connexin36 in gap junctions forming electrical synapses between motoneurons in sexually dimorphic motor nuclei in spinal cord of rat and mouse. Eur J Neurosci 39:771–787

    Article  CAS  PubMed  Google Scholar 

  • Bautista W, Nagy JI, Dai Y, McCrea DA (2012) Requirement of neuronal connexin36 in pathways mediating presynaptic inhibition of primary afferents in functionally mature mouse spinal cord. J Physiol (Lond) 590:3821–3839

    Article  CAS  Google Scholar 

  • Bautista W, McCrea DA, Nagy JI (2014a) Connexin36 identified at morphologically mixed chemical/electrical synapses on trigeminal motoneurons and at primary afferent terminals on spinal cord neurons in adult mouse and rat. Neuroscience 263:159–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bautista W, Rash JE, Vanderpool KG, Yasumura T, Nagy JI (2014b) Re-evaluation of connexins associated with motoneurons in rodent spinal cord, sexually dimorphic motor nuclei and trigeminal motor nucleus. Eur J Neurosci 39:757–770

    Article  CAS  PubMed  Google Scholar 

  • Bodendiek SB, Rubinos C, Trelles MP, Coleman N, Jenkins DP, Wulff H, Srinivas M (2012) Triarylmethanes, a new class of cx50 inhibitors. Front Pharmacol 3:106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen MJ, Kress B, Han X, Moll K, Peng W, Ji RR, Nedergaard M (2012) Astrocytic CX43 hemichannels and gap junctions play a crucial role in development of chronic neuropathic pain following spinal cord injury. Glia 60:1660–1670

    Article  PubMed  PubMed Central  Google Scholar 

  • Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS, Li P, Ang YS, Lim B, Robson P, Ng HH (2005) Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 25:6031–6046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronin M, Anderson PN, Cook JE, Green CR, Becker DL (2008) Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury. Mol Cell Neurosci 39:152–160

    Article  CAS  PubMed  Google Scholar 

  • Dang X, Doble BW, Kardami E (2003) The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Mol Cell Biochem 242:35–38

    Article  CAS  PubMed  Google Scholar 

  • Duval N, Gomes D, Calaora V, Calabrese A, Meda P, Bruzzone R (2002) Cell coupling and Cx43 expression in embryonic mouse neural progenitor cells. J Cell Sci 115:3241–3251

    CAS  PubMed  Google Scholar 

  • Gaete M, Munoz R, Sanchez N, Tampe R, Moreno M, Contreras EG, Lee-Liu D, Larrain J (2012) Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells. Neural Dev 7:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez-Villafuertes R, Rodriguez-Jimenez FJ, Alastrue-Agudo A, Stojkovic M, Miras-Portugal MT, Moreno-Manzano V (2015) Purinergic receptors in spinal cord-derived ependymal stem/progenitor cells and its potential role in cell-based therapy for spinal cord injury. Cell Transplant 24:1493–1509

    Article  PubMed  Google Scholar 

  • Goncharenko K, Eftekharpour E, Velumian AA, Carlen PL, Fehlings MG (2014) Changes in gap junction expression and function following ischemic injury of spinal cord white matter. J Neurophysiol 112:2067–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Yu HX, Sun ML, Wang Y, Xi W, Yu YQ (2014) Astrocyte-restricted disruption of connexin-43 impairs neuronal plasticity in mouse barrel cortex. Eur J Neurosci 39:35–45

    Article  CAS  PubMed  Google Scholar 

  • Hartfield EM, Rinaldi F, Glover CP, Wong LF, Caldwell MA, Uney JB (2011) Connexin 36 expression regulates neuronal differentiation from neural progenitor cells. PLoS One 6:e14746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huettner JE, Lu A, Qu Y, Wu Y, Kim M, McDonald JW (2006) Gap junctions and connexon hemichannels in human embryonic stem cells. Stem Cells 24:1654–1667

    Article  PubMed  Google Scholar 

  • Jiang JX, Gu S (2005) Gap junction- and hemichannel-independent actions of connexins. Biochim Biophys Acta 1711:208–214

    Article  CAS  PubMed  Google Scholar 

  • Kanczuga-Koda L, Sulkowski S, Koda M, Sulkowska M (2005) Alterations in connexin26 expression during colorectal carcinogenesis. Oncology 68:217–222

    Article  CAS  PubMed  Google Scholar 

  • Ke Q, Li L, Cai B, Liu C, Yang Y, Gao Y, Huang W, Yuan X, Wang T, Zhang Q, Harris AL, Tao L, Xiang AP (2013) Connexin 43 is involved in the generation of human-induced pluripotent stem cells. Hum Mol Genet 22:2221–2233

    Article  CAS  PubMed  Google Scholar 

  • Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, Scholer HR (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650

    Article  CAS  PubMed  Google Scholar 

  • Krutovskikh VA, Troyanovsky SM, Piccoli C, Tsuda H, Asamoto M, Yamasaki H (2000) Differential effect of subcellular localization of communication impairing gap junction protein connexin43 on tumor cell growth in vivo. Oncogene 19:505–513

    Article  CAS  PubMed  Google Scholar 

  • Kunzelmann P, Schroder W, Traub O, Steinhauser C, Dermietzel R, Willecke K (1999) Late onset and increasing expression of the gap junction protein connexin30 in adult murine brain and long-term cultured astrocytes. Glia 25:111–119

    Article  CAS  PubMed  Google Scholar 

  • Lee IH, Lindqvist E, Kiehn O, Widenfalk J, Olson L (2005) Glial and neuronal connexin expression patterns in the rat spinal cord during development and following injury. J Comp Neurol 489:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Wu J, Chung J, Wrathall JR (2013) SOX2 expression is upregulated in adult spinal cord after contusion injury in both oligodendrocyte lineage and ependymal cells. J Neurosci Res 91:196–210

    Article  CAS  PubMed  Google Scholar 

  • Liebmann M, Stahr A, Guenther M, Witte OW, Frahm C (2013) Astrocytic Cx43 and Cx30 differentially modulate adult neurogenesis in mice. Neurosci Lett 545:40–45

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mao AJ, Bechberger J, Lidington D, Galipeau J, Laird DW, Naus CC (2000) Neuronal differentiation and growth control of neuro-2a cells after retroviral gene delivery of connexin43. J Biol Chem 275:34407–34414

    Article  CAS  PubMed  Google Scholar 

  • Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O, Frisen J (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6:e182

    Article  PubMed  PubMed Central  Google Scholar 

  • Mennecier G, Derangeon M, Coronas V, Herve JC, Mesnil M (2008) Aberrant expression and localization of connexin43 and connexin30 in a rat glioma cell line. Mol Carcinog 47:391–401

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Manzano V, Rodriguez-Jimenez FJ, Garcia-Rosello M, Lainez S, Erceg S, Calvo MT, Ronaghi M, Lloret M, Planells-Cases R, Sanchez-Puelles JM, Stojkovic M (2009) Activated spinal cord ependymal stem cells rescue neurological function. Stem Cells 27:733–743

    Article  PubMed  Google Scholar 

  • Mothe AJ, Tator CH (2005) Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat. Neuroscience 131:177–187

    Article  CAS  PubMed  Google Scholar 

  • Mothe AJ, Zahir T, Santaguida C, Cook D, Tator CH (2011) Neural stem/progenitor cells from the adult human spinal cord are multipotent and self-renewing and differentiate after transplantation. PLoS One 6:e27079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz R, Edwards-Faret G, Moreno M, Zuniga N, Cline H, Larrain J (2015) Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells. Dev Biol 15:229–243

    Article  Google Scholar 

  • Namiki J, Tator CH (1999) Cell proliferation and nestin expression in the ependyma of the adult rat spinal cord after injury. J Neuropathol Exp Neurol 58:489–498

    Article  CAS  PubMed  Google Scholar 

  • Panayiotou E, Malas S (2013) Adult spinal cord ependymal layer: a promising pool of quiescent stem cells to treat spinal cord injury. Front Physiol 4:340

    Article  PubMed  PubMed Central  Google Scholar 

  • Park S, Lee EJ, Chun HJ, Keum B, Seo YS, Kim YS, Jeen YT, Lee HS, Um SH, Kim CD, Ryu HS, In KH, Uhm CS, Lee SJ (2011) Electron microscopic study of intercellular space: correlation analysis of bronchial asthma and gastroesophageal reflux disease. J Gastroenterol Hepatol 26:104–107

    Article  PubMed  Google Scholar 

  • Patel D, Zhang X, Veenstra RD (2014) Connexin hemichannel and pannexin channel electrophysiology: how do they differ? FEBS Lett 588:1372–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit A, Sanders AD, Kennedy TE, Tetzlaff W, Glattfelder KJ, Dalley RA, Puchalski RB, Jones AR, Roskams AJ (2011) Adult spinal cord radial glia display a unique progenitor phenotype. PLoS One 6:e24538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Jimnez FJ, Alastrue-Agudo A, Erceg S, Stojkovic M, Moreno-Manzano V (2012) FM19G11 favors spinal cord injury regeneration and stem cell self-renewal by mitochondrial uncoupling and glucose metabolism induction. Stem Cells 30:2221–2233

    Article  PubMed  Google Scholar 

  • Rodriguez-Jimenez FJ, Alastrue-Agudo A, Stojkovic M, Erceg S, Moreno-Manzano V (2015) Connexin 50 expression in ependymal stem progenitor cells after spinal cord injury activation. Int J Mol Sci 16:26608–26618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roscoe WA, Messersmith E, Meyer-Franke A, Wipke B, Karlik SJ (2007) Connexin 43 gap junction proteins are up-regulated in remyelinating spinal cord. J Neurosci Res 85:945–953

    Article  CAS  PubMed  Google Scholar 

  • Rozental R, Morales M, Mehler MF, Urban M, Kremer M, Dermietzel R, Kessler JA, Spray DC (1998) Changes in the properties of gap junctions during neuronal differentiation of hippocampal progenitor cells. J Neurosci 18:1753–1762

    CAS  PubMed  Google Scholar 

  • Russo RE, Reali C, Radmilovich M, Fernandez A, Trujillo-Cenoz O (2008) Connexin 43 delimits functional domains of neurogenic precursors in the spinal cord. J Neurosci 28:3298–3309

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Niu W, Liu ML, Zou Y, Zhang CL (2014) In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun 5:3338

    PubMed  PubMed Central  Google Scholar 

  • Todorova MG, Soria B, Quesada I (2008) Gap junctional intercellular communication is required to maintain embryonic stem cells in a non-differentiated and proliferative state. J Cell Physiol 214:354–362

    Article  CAS  PubMed  Google Scholar 

  • Usul H, Cakir E, Arslan E, Peksoylu B, Alver A, Sayin OC, Topbas M, Baykal S (2006) Effects of clotrimazole on experimental spinal cord injury. Arch Med Res 37:571–575

    Article  CAS  PubMed  Google Scholar 

  • Usul H, Arslan E, Cansever T, Cobanoglu U, Baykal S (2008) Effects of clotrimazole on experimental spinal cord ischemia/reperfusion injury in rats. Spine 33:2863–2867

    Article  PubMed  Google Scholar 

  • Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609

    CAS  PubMed  Google Scholar 

  • White TW, Goodenough DA, Paul DL (1998) Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J Cell Biol 143:815–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worsdorfer P, Maxeiner S, Markopoulos C, Kirfel G, Wulf V, Auth T, Urschel S, Maltzahn J von, Willecke K (2008) Connexin expression and functional analysis of gap junctional communication in mouse embryonic stem cells. Stem Cells 26:431–439

  • Xu Q, Cheong YK, He SQ, Tiwari V, Liu J, Wang Y, Raja SN, Li J, Guan Y, Li W (2014) Suppression of spinal connexin 43 expression attenuates mechanical hypersensitivity in rats after an L5 spinal nerve injury. Neurosci Lett 566:194–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank María Teresa Calvo-Fernandez, Fabrice Durupt, Francesca De Giorgio, Maravillas Mellado, Erik Lopez-Mocholi and Alicia García-Jareño for their excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Moreno-Manzano.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical approval

All applicable international and/or national guidelines for the care and use of animlas were followed. All procedures performed in studies involving animlas were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

This study was funded by grants CONSOLIDER-INGENIO 2010 CSD2008-00005 from the Ministerio de Economía y Competitividad and PI10/01683 and PI13/00319 from the Instituto de Salud Carlos III.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Jimenez, F.J., Alastrue, A., Stojkovic, M. et al. Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells. Cell Tissue Res 365, 295–307 (2016). https://doi.org/10.1007/s00441-016-2421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2421-y

Keywords

Navigation