Advertisement

Cell and Tissue Research

, Volume 366, Issue 1, pp 63–74 | Cite as

Differentiation of human adipose stromal cells in vitro into insulin-sensitive adipocytes

  • Outi HuttalaEmail author
  • R. Mysore
  • J. R. Sarkanen
  • T. Heinonen
  • V. M. Olkkonen
  • T. Ylikomi
Regular Article

Abstract

Adipose tissue-related diseases such as obesity and type 2 diabetes are worldwide epidemics. In order to develop adipose tissue cultures in vitro that mimic more faithfully the in vivo physiology, new well-characterized and publicly accepted differentiation methods of human adipose stem cells are needed. The aims of this study are (1) to improve the existing natural adipose tissue extract (ATE)-based induction method and (2) to study the effects of a differentiation method on insulin responsiveness of the resulting adipocytes. Different induction media were applied on human adipose stromal cell (hASC) monocultures to study the differentiation capacity of the induction media and the functionality of the differentiated adipocytes. Cells were differentiated for 14 days to assess triglyceride accumulation per cell and adipocyte-specific gene expression (PPARγ, adiponectin, AP2, leptin, Glut4, Prdm16, CIDEA, PGC1-α, RIP140, UCP and ADCY5). Insulin response was studied by measuring glucose uptake and inhibition of lipolysis after incubation with 100 or 500 nM insulin. The selected differentiation method included a 3-day induction with ATE, 6 days in serum-free medium supplemented with 1.15 μM insulin and 9.06 μM Troglitazone, followed by 4 days in a defined serum- and insulin-free stimulation medium. This protocol induced prominent general adipocyte gene expression, including markers for both brown and white adipocytes and triglyceride accumulation. Moreover, the cells were sensitive to insulin as observed from increased glucose uptake and inhibition of lipolysis. This differentiation protocol provides a promising approach for the induction of hASC adipogenesis to obtain functional and mature human adipocytes.

Keywords

Adipocyte Adipogenesis In vitro differentiation Maturity Adipose stromal cells 

Notes

Acknowledgments

We thank the staff at the Tampere University Hospital as well as the donors for the adipose tissue samples. We thank Ms Sari Leinonen, Ms Paula Helpiölä, Ms Mirja Hyppönen and Ms Hilkka Mäkinen for technical assistance. Funding for the project was kindly provided by the Diabetes Research Foundation, Finnish Funding Agency for Technology and Innovation, Paavo Nurmi foundation, Ministry of Education and Culture and Ministry of Agriculture and Forestry.

Compliance with ethical standards

Conflict of interest

Patent issued in USA (WO2010026299A1), pending elsewhere.

Supplementary material

441_2016_2409_MOESM1_ESM.pdf (261 kb)
Table S1 Primer sequences used in the quantitative PCR (PDF 261 kb)
441_2016_2409_MOESM2_ESM.tif (903 kb)
Fig. S1 Expression of adipocyte marker mRNAs in the differentiated adipocytes. Expression of adiponectin, Glut4, AP2, leptin and PPARγ in adipocytes differentiated by 11 protocols in the study. The bars represent mean ± SD (n ≥ 3). Statistical significances are not shown in the figure. (TIF 902 kb)

References

  1. Armani A, Mammi C, Marzolla V, Calanchini M, Antelmi A, Rosano GM, Fabbri A, Caprio M (2010) Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. J Cell Biochem 110:564–572CrossRefPubMedGoogle Scholar
  2. Barclay JL, Agada H, Jang C, Ward M, Wetzig N, Ho KK (2015) Effects of glucocorticoids on human brown adipocytes. J Endocrinol 224:139–147CrossRefPubMedGoogle Scholar
  3. Bederman IR, Foy S, Chandramouli V, Alexander JC, Previs SF (2009) Triglyceride synthesis in epididymal adipose tissue: contribution of glucose and non-glucose carbon sources. J Biol Chem 284:6101–6108CrossRefPubMedPubMedCentralGoogle Scholar
  4. Berenguer M, Le Marchand-Brustel Y, Govers R (2010) GLUT4 molecules are recruited at random for insertion within the plasma membrane upon insulin stimulation. FEBS Lett 584:537–542CrossRefPubMedGoogle Scholar
  5. Bergen WG, Mersmann HJ (2005) Comparative aspects of lipid metabolism: impact on contemporary research and use of animal models. J Nutr 135:2499–2502PubMedGoogle Scholar
  6. Cao Y (2014) Angiogenesis as a therapeutic target for obesity and metabolic diseases. Chem Immunol Allergy 99:170–179CrossRefPubMedGoogle Scholar
  7. Choi JH, Gimble JM, Lee K, Marra KG, Rubin JP, Yoo JJ, Vunjak-Novakovic G, Kaplan DL (2010a) Adipose tissue engineering for soft tissue regeneration. Tissue Eng Part B 16:413–426CrossRefGoogle Scholar
  8. Choi SM, Tucker DF, Gross DN, Easton RM, DiPilato LM, Dean AS, Monks BR, Birnbaum MJ (2010b) Insulin regulates adipocyte lipolysis via an Akt-independent signaling pathway. Mol Cell Biol 30:5009–5020CrossRefPubMedPubMedCentralGoogle Scholar
  9. Coelho M, Oliveira T, Fernandes R (2013) Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 9:191–200CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cohen P (2006) The twentieth century struggle to decipher insulin signalling. Nat Rev Mol Cell Biol 7:867–873CrossRefPubMedGoogle Scholar
  11. Cristancho AG, Lazar MA (2011) Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12:722–734CrossRefPubMedGoogle Scholar
  12. Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW (2004) Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145:2273–2282CrossRefPubMedGoogle Scholar
  13. Flynn L, Woodhouse KA (2008) Adipose tissue engineering with cells in engineered matrices. Organogenesis 4:228–235CrossRefPubMedPubMedCentralGoogle Scholar
  14. Foley B, Clewell R, Deisenroth C (2015) Development of a human adipose-derived stem cell model for characterization of chemical modulation of Adipogenesis. Appl In Vitro Toxicol 1:66CrossRefGoogle Scholar
  15. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF (2001) Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A 98:2005–2010CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fryer LG, Parbu-Patel A, Carling D (2002) The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277:25226–25232CrossRefPubMedGoogle Scholar
  17. Garofalo RS, Orena SJ, Rafidi K, Torchia AJ, Stock JL, Hildebrandt AL, Coskran T, Black SC, Brees DJ, Wicks JR, McNeish JD, Coleman KG (2003) Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J Clin Invest 112:197–208CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gerhold DL, Liu F, Jiang G, Li Z, Xu J, Lu M, Sachs JR, Bagchi A, Fridman A, Holder DJ, Doebber TW, Berger J, Elbrecht A, Moller DE, Zhang BB (2002) Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-gamma agonists. Endocrinology 143:2106–2118PubMedGoogle Scholar
  19. Gerrits PM, Olson AL, Pessin JE (1993) Regulation of the GLUT4/muscle-fat glucose transporter mRNA in adipose tissue of insulin-deficient diabetic rats. J Biol Chem 268:640–644PubMedGoogle Scholar
  20. Ghoniem AA, Acil Y, Wiltfang J, Gierloff M (2015) Improved adipogenic in vitro differentiation: comparison of different adipogenic cell culture media on human fat and bone stroma cells for fat tissue engineering. Anat Cell Biol 48:85–94CrossRefPubMedPubMedCentralGoogle Scholar
  21. Girandon L, Kregar-Velikonja N, Bozikov K, Barlic A (2011) In vitro models for adipose tissue engineering with adipose-derived stem cells using different scaffolds of natural origin. Folia Biol (Praha) 57:47–56Google Scholar
  22. Greenberg AS (2003) The expanding scope of the metabolic syndrome and implications for the management of cardiovascular risk in type 2 diabetes with particular focus on the emerging role of the thiazolidinediones. J Diabetes Complicat 17:218–228CrossRefPubMedGoogle Scholar
  23. Greenberg AS, Obin MS (2006) Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 83:461S–465SPubMedGoogle Scholar
  24. Gregoire FM (2001) Adipocyte differentiation: from fibroblast to endocrine cell. Exp Biol Med (Maywood) 226:997–1002Google Scholar
  25. Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809PubMedGoogle Scholar
  26. Gu P, Xu A (2013) Interplay between adipose tissue and blood vessels in obesity and vascular dysfunction. Rev Endocr Metab Disord 14:49–58CrossRefPubMedGoogle Scholar
  27. Guan HP, Li Y, Jensen MV, Newgard CB, Steppan CM, Lazar MA (2002) A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat Med 8:1122–1128CrossRefPubMedGoogle Scholar
  28. Hochberg I, Harvey I, Tran QT, Stephenson EJ, Barkan AL, Saltiel A, Chandler WF, Bridges D (2015) Gene expression changes in subcutaneous adipose tissue due to Cushing’s disease. J Mol Endocrinol 55:81–94CrossRefPubMedPubMedCentralGoogle Scholar
  29. Huttala O, Vuorenpaa H, Toimela T, Uotila J, Kuokkanen H, Ylikomi T, Sarkanen JR, Heinonen T (2015) Human vascular model with defined stimulation medium - a characterization study. ALTEX 32:125–136PubMedGoogle Scholar
  30. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556CrossRefPubMedGoogle Scholar
  31. Kim JE, Chen J (2004) Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in Adipogenesis. Diabetes 53:2748–2756CrossRefPubMedGoogle Scholar
  32. Knigge A, Klöting N, Schön MR, Dietrich A, Mathias Fasshauer M, Daniel Gärtner D, Tobias Lohmann T, Miriam Dreßler M, Michael Stumvoll M, Peter Kovacs P, Matthias Blüher M (2015) ADCY5 gene expression in adipose tissue is related to obesity in men and mice. PLoS ONE 10, e0120742CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lacasa D, Taleb S, Keophiphath M, Miranville A, Clement K (2007) Macrophage-secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes. Endocrinology 148:868–877CrossRefPubMedGoogle Scholar
  34. Lequeux C, Auxenfans C, Mojallal A, Sergent M, Damour O (2009) Optimization of a culture medium for the differentiation of preadipocytes into adipocytes in a monolayer. Biomed Mater Eng 19:283–291PubMedGoogle Scholar
  35. Lowe CE, O’Rahilly S, Rochford JJ (2011) Adipogenesis at a glance. J Cell Sci 124:2681–2686CrossRefPubMedGoogle Scholar
  36. Ma J, Nakagawa Y, Kojima I, Shibata H (2013) Prolonged insulin stimulation down-regulates GLUT4 through oxidative stress-mediated retromer inhibition by a protein kinase CK2-dependent mechanism in 3T3-L1 adipocytes. J Biol Chem 289:133–142CrossRefPubMedPubMedCentralGoogle Scholar
  37. MacDougald OA, Mandrup S (2002) Adipogenesis: forces that tip the scales. Trends Endocrinol Metab 13:5–11CrossRefPubMedGoogle Scholar
  38. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y (2001) PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50:2094–2099CrossRefPubMedGoogle Scholar
  39. Maffei M, Fei H, Lee GH, Dani C, Leroy P, Zhang Y, Proenca R, Negrel R, Ailhaud G, Friedman JM (1995) Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proc Natl Acad Sci U S A 92:6957–6960CrossRefPubMedPubMedCentralGoogle Scholar
  40. Marra KG, Defail AJ, Clavijo-Alvarez JA, Badylak SF, Taieb A, Schipper B, Bennett J, Rubin JP (2008) FGF-2 enhances vascularization for adipose tissue engineering. Plast Reconstr Surg 121:1153–1164CrossRefPubMedGoogle Scholar
  41. Martinez L, Berenguer M, Bruce MC, Le Marchand-Brustel Y, Govers R (2010) Rosiglitazone increases cell surface GLUT4 levels in 3T3-L1 adipocytes through an enhancement of endosomal recycling. Biochem Pharmacol 79:1300–1309CrossRefPubMedGoogle Scholar
  42. Mick GJ, Wang X, Ling Fu C, McCormick KL (2000) Inhibition of leptin secretion by insulin and metformin in cultured rat adipose tissue. Biochim Biophys Acta 1502:426–432CrossRefPubMedGoogle Scholar
  43. Miyazawa-Hoshimoto S, Takahashi K, Bujo H, Hashimoto N, Saito Y (2003) Elevated serum vascular endothelial growth factor is associated with visceral fat accumulation in human obese subjects. Diabetologia 46:1483–1488CrossRefPubMedGoogle Scholar
  44. Novakofski J (2004) Adipogenesis: usefulness of in vitro and in vivo experimental models. J Anim Sci 82:905–915CrossRefPubMedGoogle Scholar
  45. Ntambi JM, Young-Cheul K (2000) Adipocyte differentiation and gene expression. J Nutr 130:3122S–3126SPubMedGoogle Scholar
  46. Ortega FJ, Moreno-Navarrete JM, Ribas V, Esteve E, Rodriguez-Hermosa JI, Ruiz B, Peral B, Ricart W, Zorzano A, Fernandez-Real JM (2009) Subcutaneous fat shows higher thyroid hormone receptor-alpha1 gene expression than omental fat. Obesity (Silver Spring) 17:2134–2141CrossRefGoogle Scholar
  47. Rodriguez A, Catalan V, Gomez-Ambrosi J, Fruhbeck G (2007) Visceral and subcutaneous adiposity: are both potential therapeutic targets for tackling the metabolic syndrome? Curr Pharm Des 13:2169–2175CrossRefPubMedGoogle Scholar
  48. Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7:885–896CrossRefPubMedGoogle Scholar
  49. Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM (1999) PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4:611–617CrossRefPubMedGoogle Scholar
  50. Rubin CS, Hirsch A, Fung C, Rosen OM (1978) Development of hormone receptors and hormonal responsiveness in vitro. Insulin receptors and insulin sensitivity in the preadipocyte and adipocyte forms of 3T3-L1 cells. J Biol Chem 253:7570–7578PubMedGoogle Scholar
  51. Rutkowski JM, Stern JH, Scherer PE (2015) The cell biology of fat expansion. J Cell Biol 208:501–512CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sarkanen JR, Kaila V, Mannerstrom B, Raty S, Kuokkanen H, Miettinen S, Ylikomi T (2012a) Human adipose tissue extract induces angiogenesis and adipogenesis in vitro. Tissue Eng Part A 18:17–25CrossRefPubMedGoogle Scholar
  53. Sarkanen JR, Vuorenpaa H, Huttala O, Mannerstrom B, Kuokkanen H, Miettinen S, Heinonen T, Ylikomi T (2012b) Adipose stromal cell tubule network model provides a versatile tool for vascular research and tissue engineering. Cells Tissues Organs 196:385–397CrossRefPubMedGoogle Scholar
  54. Sawada T, Miyoshi H, Shimada K, Suzuki A, Okamatsu-Ogura Y, Perfield JW II, Kondo T, Nagai S, Shimizu C, Yoshioka N, Greenberg AS, Kimura K, Koike T (2010) Perilipin overexpression in white adipose tissue induces a brown fat-like phenotype. PLoS ONE 5, e14006CrossRefPubMedPubMedCentralGoogle Scholar
  55. Schoonjans K, Staels B, Auwerx J (1996) The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta 1302:93–109CrossRefPubMedGoogle Scholar
  56. Scroyen I, Hemmeryckx B, Lijnen HR (2013) From mice to men--mouse models in obesity research: what can we learn? Thromb Haemost 110:634–640CrossRefPubMedGoogle Scholar
  57. Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, Tavernier G, Langin D, Spiegelman BM (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6:38–54CrossRefPubMedPubMedCentralGoogle Scholar
  58. Shinoda K, Luijten IH, Hasegawa Y, Hong H, Sonne SB, Kim M, Xue R, Chondronikola M, Cypess AM, Tseng YH, Nedergaard J, Sidossis LS, Kajimura S (2015) Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat Med 21:389–394CrossRefPubMedPubMedCentralGoogle Scholar
  59. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Naslund E, Britton T, Concha H, Hassan M, Ryden M, Frisen J, Arner P (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787CrossRefPubMedGoogle Scholar
  60. Stephens JM (2012) The fat controller: adipocyte development. PLoS Biol 10, e1001436CrossRefPubMedPubMedCentralGoogle Scholar
  61. Switzer NJ, Mangat HS, Karmali S (2013) Current trends in obesity: body composition assessment, weight regulation, and emerging techniques in managing severe obesity. J Interv Gastroenterol 3:34–36CrossRefGoogle Scholar
  62. Tabata Y, Miyao M, Inamoto T, Ishii T, Hirano Y, Yamaoki Y, Ikada Y (2000) De novo formation of adipose tissue by controlled release of basic fibroblast growth factor. Tissue Eng 6:279–289CrossRefPubMedGoogle Scholar
  63. van Baak MA (2013) Nutrition as a link between obesity and cardiovascular disease: how can we stop the obesity epidemic? Thromb Haemost 110:689–696CrossRefPubMedGoogle Scholar
  64. van Beek EA, Bakker AH, Kruyt PM, Hofker MH, Saris WH, Keijer J (2007) Intra- and interindividual variation in gene expression in human adipose tissue. Pflugers Arch 453:851–861CrossRefPubMedGoogle Scholar
  65. Verseijden F, Jahr H, Posthumus-van Sluijs SJ, Ten Hagen TL, Hovius SE, Seynhaeve AL, van Neck JW, van Osch GJ, Hofer SO (2009) Angiogenic capacity of human adipose-derived stromal cells during adipogenic differentiation: an in vitro study. Tissue Eng Part A 15:445–452CrossRefPubMedGoogle Scholar
  66. Walker GE, Marzullo P, Ricotti R, Bona G, Prodam F (2014) The pathophysiology of abdominal adipose tissue depots in health and disease. Horm Mol Biol Clin Investig 19:57–74PubMedGoogle Scholar
  67. Watson RT, Pessin JE (2007) GLUT4 translocation: the last 200 nanometers. Cell Signal 19:2209–2217CrossRefPubMedGoogle Scholar
  68. Wu Z, Bucher NL, Farmer SR (1996) Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol Cell Biol 16:4128–4136CrossRefPubMedPubMedCentralGoogle Scholar
  69. Xiao L, Sobue T, Esliger A, Kronenberg MS, Coffin JD, Doetschman T, Hurley MM (2010) Disruption of the Fgf2 gene activates the adipogenic and suppresses the osteogenic program in mesenchymal marrow stromal stem cells. Bone 47:360–370CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yang X, Smith U (2007) Adipose tissue distribution and risk of metabolic disease: does thiazolidinedione-induced adipose tissue redistribution provide a clue to the answer? Diabetologia 50:1127–1139CrossRefPubMedGoogle Scholar
  71. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Outi Huttala
    • 1
    Email author
  • R. Mysore
    • 2
  • J. R. Sarkanen
    • 3
    • 4
  • T. Heinonen
    • 1
  • V. M. Olkkonen
    • 2
    • 5
  • T. Ylikomi
    • 3
    • 4
  1. 1.FICAMUniversity of TampereTampereFinland
  2. 2.Minerva Foundation Institute for Medical ResearchHelsinkiFinland
  3. 3.Cell BiologyUniversity of TampereTampereFinland
  4. 4.Science CentrePirkanmaa Hospital DistrictTampereFinland
  5. 5.Department of Anatomy, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland

Personalised recommendations