Cell and Tissue Research

, Volume 366, Issue 1, pp 37–49 | Cite as

Role of notochord cells and sclerotome-derived cells in vertebral column development in fugu, Takifugu rubripes: histological and gene expression analyses

  • Takamasa Kaneko
  • Khalid Freeha
  • Xiaoming Wu
  • Makoto Mogi
  • Susumu Uji
  • Hayato Yokoi
  • Tohru SuzukiEmail author
Regular Article


Despite the common structure of vertebrates, the development of the vertebral column differs widely between teleosts and tetrapods in several respects, including the ossification of the centrum and the function of the notochord. In contrast to tetrapods, vertebral development in teleosts is not fully understood, particularly for large fish with highly ossified bones. We therefore examined the histology and gene expression profile of vertebral development in fugu, Takifugu rubripes, a model organism for genomic research. Ossification of the fugu centrum is carried out by outer osteoblasts expressing col1a1, col2a1, and sparc, and the growing centra completely divide the notochord into double cone-shaped segments that function as intercentral joints. In this process, the notochord basal cells produce a thick notochord sheath exhibiting Alcian-blue–reactive cartilaginous properties and composing the intercentral ligament in cooperation with the external ligament connective tissue. Synthesis of the matrix by the basal cells was ascertained by an in vitro test. Expression of twist2 indicates that this connective tissue is descended from the embryonic sclerotome. Notochord basal cells express sox9, ihhb, shh, and col2a1a, suggesting that the signaling system involved in chondrocyte proliferation and matrix production also functions in notochord cells for notochord sheath formation. We further found that the notochord expression of both ntla and shh is maintained in the fugu vertebral column, whereas it is turned off after embryogenesis in zebrafish. Thus, our results demonstrate that, in contrast to zebrafish, a dynamic morphogenesis and molecular network continues to function in fugu until the establishment of the adult vertebral column.


Vertebral column Development Notochord Sclerotome Takifugu rubripes 


  1. Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke MD, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310CrossRefPubMedGoogle Scholar
  2. Bensimon-Brito A, Cardeira J, Cancela ML, Huysseune A, Witten PE (2012) Distinct patterns of notochord mineralization in zebrafish coincide with the localization of Osteocalcin isoform 1 during early vertebral centra formation. BMC Dev Biol 12:28CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bird NC, Mabee PM (2003) Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Dev Dyn 228:337–357CrossRefPubMedGoogle Scholar
  4. Christ B, Huang R, Wilting J (2000) The development of the avian vertebral column. Anat Embryol (Berl) 202:179–194CrossRefGoogle Scholar
  5. Eames BF, Amores A, Yan YL, Postlethwait JH (2012) Evolution of the osteoblast: skeletogenesis in gar and zebrafish. BMC Evol Biol 12:27CrossRefPubMedPubMedCentralGoogle Scholar
  6. Eikenberry EF, Childs B, Sheren SB, Parry DA, Craig AS, Brodsky B (1984) Crystalline fibril structure of type II collagen in lamprey notochord sheath. J Mol Biol 176:261–277CrossRefPubMedGoogle Scholar
  7. Fleming A, Keynes RJ, Tannahill D (2001) The role of the notochord in vertebral column formation. J Anat 199:177–180CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fleming A, Keynes R, Tannahill D (2004) A central role for the notochord in vertebral patterning. Development 131:873–880CrossRefPubMedGoogle Scholar
  9. Fleming A, Kishida MG, Kimmel CB, Keynes RJ (2015) Building the backbone: the development and evolution of vertebral patterning. Development 142:1733–1744CrossRefPubMedGoogle Scholar
  10. Gitelman I (1997) Twist protein in mouse embryogenesis. Dev Biol 189:205–214CrossRefPubMedGoogle Scholar
  11. Grotmol S, Kryvi H, Nordvik K, Totland GK (2003) Notochord segmentation may lay down the pathway for the development of the vertebral bodies in the Atlantic salmon. Anat Embryol (Berl) 207:263–272CrossRefGoogle Scholar
  12. Haga Y, Dominique VJ 3rd, Du SJ (2009) Analyzing notochord segmentation and intervertebral disc formation using the twhh:gfp transgenic zebrafish model. Transgenic Res 18:669–683CrossRefPubMedGoogle Scholar
  13. Ibaraki H, Wu X, Uji S, Yokoi H, Sakai Y, Suzuki T (2015) Transcriptome analysis of vertebral bone in the flounder, Paralichthys olivaceus (Teleostei, Pleuronectiformes), using Illumina sequencing. Mar Genomics 24:269–276CrossRefPubMedGoogle Scholar
  14. Inohaya K, Takano Y, Kudo A (2007) The teleost intervertebral region acts as a growth center of the centrum: in vivo visualization of osteoblasts and their progenitors in transgenic fish. Dev Dyn 236:3031–3046CrossRefPubMedGoogle Scholar
  15. Inohaya K, Takano Y, Kudo A (2010) Production of Wnt4b by floor plate cells is essential for the segmental patterning of the vertebral column in medaka. Development 137:1807–1813CrossRefPubMedGoogle Scholar
  16. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764CrossRefPubMedGoogle Scholar
  17. Krauss S, Concordet JP, Ingham PW (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75:1431–1444CrossRefPubMedGoogle Scholar
  18. Kurokawa T, Suzuki T (2002) Development of neuropeptide Y-related peptides in the digestive organs during the larval stage of Japanese flounder, Paralichthys olivaceus. Gen Comp Endocrinol 126:30–38CrossRefPubMedGoogle Scholar
  19. Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 17:2336–2346Google Scholar
  20. Mansfield JH, Haller E, Holland ND, Brent AE (2015) Development of somites and their derivatives in amphioxus, and implications for the evolution of vertebrate somites. EvoDevo 6:21CrossRefPubMedPubMedCentralGoogle Scholar
  21. Morley RH, Lachani K, Keefe D, Gilchrist MJ, Flicek P, Smith JC, Wardle FC (2009) A gene regulatory network directed by zebrafish No tail accounts for its roles in mesoderm formation. Proc Natl Acad Sci U S A 106:3829–3834CrossRefPubMedPubMedCentralGoogle Scholar
  22. Nakamura S, Kamihagi K, Satakeda H, Katayama M, Pan H, Okamoto H, Noshiro M, Takahashi K, Yoshihara Y, Shimmei M, Okada Y, Kato Y (1996) Enhancement of SPARC (osteonectin) synthesis in arthritic cartilage. Increased levels in synovial fluids from patients with rheumatoid arthritis and regulation by growth factors and cytokines in chondrocyte cultures. Arthritis Rheum 39:539–551CrossRefPubMedGoogle Scholar
  23. Nordvik K, Kryvi H, Totland GK, Grotmol S (2005) The salmon vertebral body develops through mineralization of two preformed tissues that are encompassed by two layers of bone. J Anat 206:103–114CrossRefPubMedPubMedCentralGoogle Scholar
  24. O'Rahilly R, Müller F (1994)Neurulation in the normal human embryo.Ciba Found Symp 181:70-89Google Scholar
  25. Renn J, Buttner A, To TT, Chan SJ, Winkler C (2013) A col10a1:nlGFP transgenic line displays putative osteoblast precursors at the medaka notochordal sheath prior to mineralization. Dev Biol 381:134–143CrossRefPubMedGoogle Scholar
  26. Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3:a004978CrossRefPubMedPubMedCentralGoogle Scholar
  27. Schmitz RJ (1995) Ultrastructure and function of cellular components of the intercentral joint in the percoid vertebral column. J Morphol 226:1–24CrossRefPubMedGoogle Scholar
  28. Schulte-Merker S, Ho RK, Herrmann BG, Nusslein-Volhard C (1992) The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development 116:1021–1032PubMedGoogle Scholar
  29. Smits P, Lefebvre V (2003) Sox5 and Sox6 are required for notochord extracellular matrix sheath formation, notochord cell survival and development of the nucleus pulposus of intervertebral discs. Development 130:1135–1148CrossRefPubMedGoogle Scholar
  30. St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13:2072–2086CrossRefPubMedPubMedCentralGoogle Scholar
  31. Suzuki T, Kurokawa T, Hashimoto H, Sugiyama M (2002) cDNA sequence and tissue expression of Fugu rubripes prion protein-like: a candidate for the teleost orthologue of tetrapod PrPs. Biochem Biophys Res Commun 294:912–917CrossRefPubMedGoogle Scholar
  32. Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26:99–105CrossRefPubMedGoogle Scholar
  33. Uji S, Kurokawa T, Hashimoto H, Kasuya T, Suzuki T (2011) Embryogenic staging of fugu, Takifugu rubripes, and expression profiles of aldh1a2, aldh1a3 and cyp26a1. Dev Growth Differ 53:715–725CrossRefPubMedGoogle Scholar
  34. Warzecha J, Gottig S, Bruning C, Lindhorst E, Arabmothlagh M, Kurth A (2006) Sonic hedgehog protein promotes proliferation and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. J Orthop Sci 11:491–496CrossRefPubMedGoogle Scholar
  35. Willems B, Buttner A, Huysseune A, Renn J, Witten PE, Winkler C (2012) Conditional ablation of osteoblasts in medaka. Dev Biol 364:128–137CrossRefPubMedGoogle Scholar
  36. Yasutake J, Inohaya K, Kudo A (2004) Twist functions in vertebral column formation in medaka, Oryzias latipes. Mech Dev 121:883–894CrossRefPubMedGoogle Scholar
  37. Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, Inoue K, Yamana K, Zanma A, Takada K, Ito Y, Komori T (2004) Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev 18:952–963CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Takamasa Kaneko
    • 1
  • Khalid Freeha
    • 1
  • Xiaoming Wu
    • 1
  • Makoto Mogi
    • 1
  • Susumu Uji
    • 2
  • Hayato Yokoi
    • 1
  • Tohru Suzuki
    • 1
    Email author
  1. 1.Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
  2. 2.National Research Institute of AquacultureFisheries Research AgencyMinami-IseJapan

Personalised recommendations