Skip to main content

Advertisement

Log in

Blood-brain barrier properties in vitro depend on composition and assembly of endogenous extracellular matrices

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Brain capillary endothelial cells, which constitute the blood-brain barrier (BBB), are enveloped by the extracellular matrix (ECM) produced by endothelial cells, pericytes and astrocytes. The contribution of matrix components secreted by the various cell types at the neurovascular unit, however, remains unclear with respect to their effect on endothelial barrier function. In this study, a new in vitro model was established by growing endothelial cells on an ECM produced by pericytes, astrocytes or a serial combination of both. The last-mentioned was found to be more in vivo-like. We investigated the role of the composition and morphology of ECM supra-structures in maintaining BBB function. The composition was analysed by protein analysis (enzyme-linked immunosorbent assay) and the ultrastructure of generated matrices was analysed by transmission electron microscopy including immunogold labelling. We could show by electric cell–substrate impedance sensing measurements that pericytes and combined matrices significantly improved the barrier tightness of porcine brain capillary endothelial cells (PBCEC). The increase of the resistance was verified by enhanced expression of tight junction proteins. Thus, for the first time, we have shown that barrier integrity is strictly controlled by the ECM, which is a product of all cells involved in the secretion of ECM components and their modification by corresponding cells. Moreover, we have demonstrated that complex matrices by the various cells of the BBB induce barrier marker enzymes in PBCEC, such as alkaline phosphatase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  • Bandtlow CE, Zimmermann DR (2000) Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol Rev 80:1267–1290

    CAS  PubMed  Google Scholar 

  • Behrens DT, Villone D, Koch M, Brunner G, Sorokin L, Robenek H, Bruckner-Tuderman L, Bruckner P, Hansen U (2012) The epidermal basement membrane is a composite of separate laminin- or collagen IV-containing networks connected by aggregated perlecan, but not by nidogens. J Biol Chem 287:18700–18709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beuckmann C, Hellwig S, Galla HJ (1995) Induction of the blood/brain-barrier-associated enzyme alkaline phosphatase in endothelial cells from cerebral capillaries is mediated via cAMP. Eur J Biochem 229:641–644

    Article  CAS  PubMed  Google Scholar 

  • Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–1107

    Article  CAS  PubMed  Google Scholar 

  • DeBault LE (1981) Gamma-glutamyltranspeptidase induction mediated by glial foot process to endothelium contact in co-culture. Brain Res 220:432–435

    Article  CAS  PubMed  Google Scholar 

  • Deracinois B, Pottiez G, Chafey P, Teerlink T, Camoin L, Davids M, Broussard C, Couraud PO, Dehouck MP, Cecchelli R, Karamanos Y, Flahaut C (2013) Glial-cell-mediated re-induction of the blood-brain barrier phenotype in brain capillary endothelial cells: a differential gel electrophoresis study. Proteomics 13:1185–1199

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt B, Sorokin L (2009) The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31:497–511

    Article  PubMed  Google Scholar 

  • Franke H, Galla HJ, Beuckmann CT (1999) An improved low-permeability in vitro-model of the blood-brain barrier: transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res 818:65–71

    Article  CAS  PubMed  Google Scholar 

  • Frieser M, Nockel H, Pausch F, Roder C, Hahn A, Deutzmann R, Sorokin LM (1997) Cloning of the mouse laminin alpha 4 cDNA. Expression in a subset of endothelium. Eur J Biochem 246:727–735

    Article  CAS  PubMed  Google Scholar 

  • Gaillard PJ, Voorwinden LH, Nielsen JL, Ivanov A, Atsumi R, Engman H, Ringbom C, Boer AG de, Breimer DD (2001) Establishment and functional characterization of an in vitro model of the blood–brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur J Pharm Sci 12:215–222

  • Gerhardt H, Wolburg H, Redies C (2000) N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev Dyn 218:472–479

    Article  CAS  PubMed  Google Scholar 

  • Hafny B el, Bourre JM, Roux F (1996) Synergistic stimulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities by retinoic acid and astroglial factors in immortalized rat brain microvessel endothelial cells. J Cell Physiol 167:451–460

  • Hartmann C (2007) Der induktive und protektive Einfluss der extrazellulären Matrix auf die Blut-Hirn-Schranke in vitro. Institut für Biochemie. Westfälische-Wilhelms Universtität, Münster

    Google Scholar 

  • Hartmann C, Zozulya A, Wegener J, Galla HJ (2007) The impact of glia-derived extracellular matrices on the barrier function of cerebral endothelial cells: an in vitro study. Exp Cell Res 313:1318–1325

    Article  CAS  PubMed  Google Scholar 

  • Hocking DC, Sottile J, McKeown-Longo PJ (1998) Activation of distinct alpha5beta1-mediated signaling pathways by fibronectin’s cell adhesion and matrix assembly domains. J Cell Biol 141:241–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingber DE, Prusty D, Frangioni JV, Cragoe EJ Jr, Lechene C, Schwartz MA (1990) Control of intracellular pH and growth by fibronectin in capillary endothelial cells. J Cell Biol 110:1803–1811

    Article  CAS  PubMed  Google Scholar 

  • Kim D-H, Provenzano PP, Smith CL, Levchenko A (2012) Matrix nanotopography as a regulator of cell function. J Cell Biol 197:351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korte D (2000) Einfluss der extrazellulären Matrix auf cerebrale kapilläre Endothelzellen: eine in vitro Studie. Institut für Biochemie. Westfälische-Wilhelms Universität, Münster

    Google Scholar 

  • Kröll S (2009) Charakterisierung des induktiven Effekts von Astrocyten auf die Barriereintegrität der Blut-Hirn-Schranke in vitro. Institut für Biochemie. Westfälische Wilhelms-Universität, Münster

    Google Scholar 

  • Lai CH, Kuo KH (2005) The critical component to establish in vitro BBB model: pericyte. Brain Res Brain Res Rev 50:258–265

    Article  CAS  PubMed  Google Scholar 

  • Laurie GW, Bing JT, Kleinman HK, Hassell JR, Aumailley M, Martin GR, Feldmann RJ (1986) Localization of binding sites for laminin, heparan sulfate proteoglycan and fibronectin on basement membrane (type IV) collagen. J Mol Biol 189:205–216

    Article  CAS  PubMed  Google Scholar 

  • Li G, Simon MJ, Cancel LM, Shi Z-D, Ji X, Tarbell JM, Morrison B, Fu BM (2010) Permeability of endothelial and astrocyte cocultures: in vitro blood–brain barrier models for drug delivery studies. Ann Biomed Eng 38:2499–2511

    Article  PubMed  PubMed Central  Google Scholar 

  • Lischper M, Beuck S, Thanabalasundaram G, Pieper C, Galla HJ (2010) Metalloproteinase mediated occludin cleavage in the cerebral microcapillary endothelium under pathological conditions. Brain Res 1326:114–127

    Article  CAS  PubMed  Google Scholar 

  • Meyer J, Rauh J, Galla HJ (1991) The susceptibility of cerebral endothelial cells to astroglial induction of blood-brain barrier enzymes depends on their proliferative state. J Neurochem 57:1971–1977

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi H, Utoguchi N, Mayumi T (1997) Preparation of glial extracellular matrix: a novel method to analyze glial-endothelial cell interaction. Brain Res Brain Res Protocol 1:339–343

    Article  CAS  Google Scholar 

  • Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263

    Article  CAS  PubMed  Google Scholar 

  • Nakazato H, Deguchi M, Fujimoto M, Fukushima H (1997) Alkaline phosphatase expression in cultured endothelial cells of aorta and brain microvessels: induction by interleukin-6-type cytokines and suppression by transforming growth factor betas. Life Sci 61:2065–2072

    Article  CAS  PubMed  Google Scholar 

  • Niego B, Medcalf RL (2013) Improved method for the preparation of a human cell-based, contact model of the blood-brain barrier. J Vis Exp 81:50934. 10.3791/50934

    Google Scholar 

  • Osawa T, Onodera M, Feng XY, Nozaka Y (2003) Comparison of the thickness of basement membranes in various tissues of the rat. J Electron Microsc 52:435–440

    Article  Google Scholar 

  • Rauh J (1991) Charakterisierung astroglialer in vitro-Modelle. Technische Hochschule, Darmstadt

    Google Scholar 

  • Rodriguez D, Morrison CJ, Overall CM (2010) Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta 1803:39–54

    Article  CAS  PubMed  Google Scholar 

  • Savettieri G, Di Liegro I, Catania C, Licata L, Pitarresi GL, D'Agostino S, Schiera G, De Caro V, Giandalia G, Giannola LI, Cestelli A (2000)Neurons and ECM regulate occludin localization in brain endothelial cells.Neuroreport 11:1081–1084

  • Sorokin L, Girg W, Gopfert T, Hallmann R, Deutzmann R (1994) Expression of novel 400-kDa laminin chains by mouse and bovine endothelial cells. Eur J Biochem 223:603–610

    Article  CAS  PubMed  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart PA, Wiley MJ (1981) Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail–chick transplantation chimeras. Dev Biol 84:183–192

    Article  CAS  PubMed  Google Scholar 

  • Tao-Cheng JH, Nagy Z, Brightman MW (1990) Astrocytic orthogonal arrays of intramembranous particle assemblies are modulated by brain endothelial cells in vitro. J Neurocytol 19:143–153

    Article  CAS  PubMed  Google Scholar 

  • Tell D von, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312:623–629

  • Thanabalasundaram G, Pieper C, Lischper M, Galla HJ (2010)Regulation of the blood-brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro.Brain Res 1347:1–10

    Article  CAS  PubMed  Google Scholar 

  • Thanabalasundaram G, Schneidewind J, Pieper C, Galla HJ (2011) The impact of pericytes on the blood-brain barrier integrity depends critically on the pericyte differentiation stage. Int J Biochem Cell Biol 43:1284–1293

    Article  CAS  PubMed  Google Scholar 

  • Tilling T, Korte D, Hoheisel D, Galla HJ (1998) Basement membrane proteins influence brain capillary endothelial barrier function in vitro. J Neurochem 71:1151–1157

    Article  CAS  PubMed  Google Scholar 

  • Tilling T, Engelbertz C, Decker S, Korte D, Huwel S, Galla HJ (2002) Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cell cultures. Cell Tissue Res 310:19–29

    Article  CAS  PubMed  Google Scholar 

  • Villone D, Fritsch A, Koch M, Bruckner-Tuderman L, Hansen U, Bruckner P (2008) Supramolecular interactions in the dermo-epidermal junction zone: anchoring fibril-collagen VII tightly binds to banded collagen fibrils. J Biol Chem 283:24506–24513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vasc Pharmacol 38:323–337

    Article  CAS  Google Scholar 

  • Yousif LF, Di Russo J, Sorokin L (2013) Laminin isoforms in endothelial and perivascular basement membranes. Cell Adhes Migr 7:101–110

    Article  Google Scholar 

  • Zozulya A, Weidenfeller C, Galla HJ (2008) Pericyte-endothelial cell interaction increases MMP-9 secretion at the blood-brain barrier in vitro. Brain Res 1189:1–11

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Sabine Hüwel for her continuous help with the cell cultures and constructive discussions. Special thanks are due to Mridula Dwivedi for support in correcting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Galla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zobel, K., Hansen, U. & Galla, HJ. Blood-brain barrier properties in vitro depend on composition and assembly of endogenous extracellular matrices. Cell Tissue Res 365, 233–245 (2016). https://doi.org/10.1007/s00441-016-2397-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2397-7

Keywords

Navigation