Skip to main content
Log in

Spatiotemporal distribution of extracellular matrix changes during mouse duodenojejunal flexure formation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Although gut flexures characterize gut morphology, the mechanisms underlying flexure formation remain obscure. Previously, we analyzed the mouse duodenojejunal flexure (DJF) as a model for its formation and reported asymmetric morphologies between the inner and outer bending sides of the fetal mouse DJF, implying their contribution to DJF formation. We now present the extracellular matrix (ECM) as an important factor for gut morphogenesis. We investigate ECM distribution during mouse DJF formation by histological techniques. In the intercellular space of the gut wall, high Alcian-Blue positivity for proteoglycans shifted from the outer to the inner side of the gut wall during DJF formation. Immunopositivity for fibronectin, collagen I, or pan-tenascin was higher at the inner than at the outer side. Collagen IV and laminins localized to the epithelial basement membrane. Beneath the mesothelium at the pre-formation stage, collagen IV and laminin immunopositivity showed inverse results, corresponding to the different cellular characteristics at this site. At the post-formation stage, however, laminin positivity beneath the mesothelium was the reverse of that observed during the pre-formation stage. High immunopositivity for collagen IV and laminins at the inner gut wall mesenchyme of the post-formation DJF implied a different blood vessel distribution. We conclude that ECM distribution changes spatiotemporally during mouse DJF formation, indicating ECM association with the establishment of asymmetric morphologies during this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akbareian SE, Nagy N, Steiger CE, Mably JD, Miller SA, Hotta R, Molnar D, Goldstein AM (2013) Enteric neural crest-derived cells promote their migration by modifying their microenvironment through tenascin-C production. Dev Biol 382:446–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breau MA, Dahmani A, Broders-Bondon F, Thiery JP, Dufour S (2009) β1 Integrins are required for the invasion of the caecum and proximal hindgut by enteric neural crest cells. Development 136:2791–2801

    Article  CAS  PubMed  Google Scholar 

  • Burn SF, Hill RE (2009) Left-right asymmetry in gut development: what happens next? Bioessays 31:1026–1037

    Article  CAS  PubMed  Google Scholar 

  • Chiquet-Ehrismann R, Tucker RP (2011) Tenascins and the importance of adhesion modulation. Cold Spring Harb Perspect Biol 3:a004960

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis NM, Kurpios NA, Sun X, Gros J, Martin JF, Tabin CJ (2008) The chirality of gut rotation derives from left-right asymmetric changes in the architecture of the dorsal mesentery. Dev Cell 15:134–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Arcangelis A, Neuville P, Boukamel R, Lefebvre O, Kedinger M, Simon-Assmann P (1996) Inhibition of laminin α1-chain expression leads to alteration of basement membrane assembly and cell differentiation. J Cell Biol 133:417–430

    Article  PubMed  Google Scholar 

  • Gelse K, Pöschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev 55:1531–1546

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Mazariegos J, Theodosiou M, Campo-Paysaa F, Schubert M (2011) Vitamin A: a multifunctional tool for development. Semin Cell Dev Biol 22:603–610

    Article  CAS  PubMed  Google Scholar 

  • Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10:21–33

    Article  CAS  PubMed  Google Scholar 

  • Hohenester E, Yurchenco PD (2013) Laminins in basement membrane assembly. Cell Adhes Migr 7:56–63

    Article  Google Scholar 

  • Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janoštiak R, Pataki AC, Brábek J, Rösel D (2014) Mechanosensors in integrin signaling: the emerging role of p130Cas. Eur J Cell Biol 93:445–454

    Article  PubMed  Google Scholar 

  • Jones FS, Jones PL (2000) The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn 218:235–259

    Article  CAS  PubMed  Google Scholar 

  • Khoshnoodi K, Pedchenko V, Hudson BG (2008) Mammalian collagen IV. Microsc Res Tech 71:357–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Turnbull J, Guimond S (2011) Extracellular matrix and cell signaling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209:139–151

    Article  CAS  PubMed  Google Scholar 

  • Kurpios NA, Ibañes M, Davis NM, Lui W, Katz T, Martin JF, Izpisúa Belmonte JC, Tabin CJ (2008) The direction of gut looping is established by changes in the extracellular matrix and in cell:cell adhesion. Proc Natl Acad Sci U S A 105:8499–8506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labat-Robert J (2012) Cell-matrix interactions, the role of fibronectin and integrins. A survey. Pathol Biol 60:15–19

    Article  CAS  PubMed  Google Scholar 

  • Legate KR, Wickström SA, Fässler R (2009) Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev 23:397–418

    Article  CAS  PubMed  Google Scholar 

  • Leitinger B (2011) Transmembrane collagen receptors. Annu Rev Cell Dev Biol 27:265–290

    Article  CAS  PubMed  Google Scholar 

  • Linask KK, Han M, Cai DH, Brauer PR, Maisastry SM (2005) Cardiac morphogenesis: matrix metalloproteinase coordination of cellular mechanisms underlying heart tube formation and directionality of looping. Dev Dyn 233:739–753

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Kim BM, Rajurkar M, Shivdasani RA, McMahon AP (2010) Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development 137:1721–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onouchi S, Ichii O, Otsuka S, Hashimoto Y, Kon Y (2013) Analysis of duodenojejunal flexure formation in mice: implications for understanding the genetic basis for gastrointestinal morphology in mammals. J Anat 223:385–398

    Article  PubMed  PubMed Central  Google Scholar 

  • Onouchi S, Ichii O, Kon Y (2015) Asymmetric morphology of the cells comprising the inner and outer bending sides of the murine duodenojejunal flexure. Cell Tissue Res 360:273–285

    Article  PubMed  Google Scholar 

  • Plotnikov SV, Pasapera AM, Sabass B, Waterman CM (2012) Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151:1513–1527

    Article  CAS  PubMed  Google Scholar 

  • Pöschl E, Schlötzer-ZSchrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U (2003) Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131:1619–1628

    Article  Google Scholar 

  • Savin T, Kurpios NA, Shyer AE, Florescu P, Liang H, Mahadevan L, Tabin CJ (2011) On the growth and form of the gut. Nature 476:57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimokawa K, Kimura-Yoshida C, Nagai N, Mukai K, Matsubara K, Watanabe H, Matsuda Y, Mochida K, Matsuo I (2011) Cell surface heparan sulfate chains regulate local reception of FGF signaling in the mouse embryo. Dev Cell 21:252–272

    Article  Google Scholar 

  • Sidney LE, Branch MJ, Dunphy SE, Dua HS, Hopkinson A (2014) Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells 32:1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon-Assmann P, Lefebvre O, Bellissent-Waydelich A, Olsen J, Orian-Rousseau V, Dearcangelis A (1998) The laminins: role in intestinal morphogenesis and differentiation. Ann N Y Acad Sci 859:46–64

    Article  CAS  PubMed  Google Scholar 

  • Taber LA (2006) Biophysical mechanisms of cardiac looping. Int J Dev Biol 50:323–332

    Article  PubMed  Google Scholar 

  • Welsh IC, Thomsen M, Gludish DW, Alfonso-Parra C, Bai Y, Martin JF, Kurpios NA (2013) Integration of left-right Pitx2 transcription and Wnt signaling drives asymmetric gut morphogenesis via Daam2. Dev Cell 26:629–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiting CV, Tarlton JF, Bailey M, Morgan CL, Bland PW (2003) Abnormal mucosal extracellular matrix deposition is associated with increased TGF-beta receptor-expressing mesenchymal cells in a mouse model of colitis. J Histochem Cytochem 51:1177–1189

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the people involved with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Kon.

Additional information

This work was supported by the JSPS KAKENHI (grant number 2600167304). The research described in this paper was selected for the Encouragement Award at the 158th Japanese Association of Veterinary Anatomists in Aomori (September 7–9, 2015).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Comparison of CD31 positivity between the inner and outer bending sides of the mouse duodenojejunal flexure (DJF) at the post-formation stage (I inner side of the DJF, O outer side of the DJF). a Immunohistochemistry for CD31 in the mouse DJF at the post-formation stage. b Immunohistochemistry for CD34 in a serial section to that in (a) at the post-formation stage. Bars 50 μm. c Comparison of IntDen ratio for the CD31-positive reactions (asterisk significant difference between the inner and outer bending sides of the DJF as given by Wilcoxon test, P < 0.05). Values = means ± standard error; n ≥ 4 (PDF 193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onouchi, S., Ichii, O., Nakamura, T. et al. Spatiotemporal distribution of extracellular matrix changes during mouse duodenojejunal flexure formation. Cell Tissue Res 365, 367–379 (2016). https://doi.org/10.1007/s00441-016-2390-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2390-1

Keywords

Navigation