Skip to main content
Log in

Modulation of aquaporins 3 and 9 after exposure of ovine ovarian tissue to cryoprotectants followed by in vitro culture

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Our aim has been to evaluate the effect of cryoprotective agents (CPAs) on the exposure, vitrification (VIT), and in vitro culture (IVC) of ovarian tissue with regard to the expression and immunolocalization of aquaporins (AQPs) 3 and 9 in ovine preantral follicles. Tissues were treated as follows: Experiment I: (1) control (without exposure to CPAs), (2) e-EG (exposure to ethylene glycol), (3) er-EG (exposure to and removal of EG), (4) e-DMSO (exposure to dimethyl sulfoxide), (5) er-DMSO (exposure to and removal of DMSO), (6) e-EG+DMSO (exposure to EG+DMSO), (7) er-EG+DMSO (exposure to and removal of EG+DMSO); Experiment II: (1) control, (2) VIT, (3) IVC, (4) VIT-IVC. In Experiment I, following er-EG or er-DMSO, tissue showed the down-regulation (P < 0.05) of AQP3 mRNA. The mRNA transcript levels were reduced (P < 0.05) for AQP9 in tissue following er-EG+DMSO. Immunolocalization was positive for both proteins (AQP3 and AQP9) on ovine preantral follicles following all treatments, except in the e-EG+DMSO group. In Experiment II, the mRNA levels of AQP3 and AQP9 following VIT treatment were similar (P > 0.05) to that of the control group. Nevertheless, VIT-IVC treatment led to the down-regulation of mRNA of AQP3 and AQP9. Thus, AQP3 and AQP9 act in a mutually dependent way, maintaining the cell homeostasis that is essential for the ovary cryopreservation process. Furthermore, the changes in the expression profiles of mRNA and protein after culture are a strong indicator that in vitro conditions have to be strictly controlled to ensure follicle viability and functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amorim CA, Dolmans MM, David A, Jaeger J, Vanacker J, Camboni A, Donnez J, Van Langendonckt A (2012) Vitrification and xenografting of human ovarian tissue. Fertil Steril 98:1291–1298

    Article  PubMed  Google Scholar 

  • Aye M, Di Giorgio C, De Mo M, Botta A, Perrin J, Courbiere B (2010) Assessment of the genotoxicity of three cryoprotectants used for human oocyte vitrification: dimethyl sulfoxide, ethylene glycol and propylene glycol. Food Chem Toxicol 48:1905–1912

    Article  CAS  PubMed  Google Scholar 

  • Bandeira FT, Carvalho AA, Castro SV, Lima LF, Viana DA, Evangelista JSAM, Pereira MJS, Campello CC, Figueiredo JR, Rodrigues APR (2015) Two methods of vitrification followed by in vitro culture of the ovine ovary: evaluation of the follicular development and ovarian extracellular matrix. Reprod Domest Anim 50:177–185

    Article  CAS  PubMed  Google Scholar 

  • Barcroft LC, Offenberg H, Thomsen P, Watsona AJ (2003) Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation. Dev Biol 256:342–354

    Article  CAS  PubMed  Google Scholar 

  • Bell CE, Lariviere NM, Watson PH, Watson AJ (2009) Mitogen-activated protein kinase (MAPK) pathways mediate embryonic responses to culture medium osmolarity by regulating aquaporin 3 and 9 expression and localization, as well as embryonic apoptosis. Hum Reprod 24:1373–1386

    Article  CAS  PubMed  Google Scholar 

  • Bordes A, Lornage J, Demirci B, Franck M, Courbiere B, Guerin JF, Salle B (2005) Normal gestations and live births after orthotopic autograft of vitrified-warmed hemi-ovaries into ewes. Hum Reprod 20:2745–2748

    Article  PubMed  Google Scholar 

  • Carvalho AA, FaustinoLR, SilvaCMG, CastroSV, LopesCAP, SantosRR, BáoSN, FigueiredoJR, Rodrigues APR (2013)Novel wide-capacity method for vitrification of caprine ovaries: ovarian tissue cryosystem (OTC).Anim Reprod Sci 138:220–227

  • Chian RC, Kuwayama M, Tan L, Tan J, Kato O, Nagai T (2004) High survival rate of bovine oocytes matured in vitro following vitrification. J Reprod Dev 50:685–696

    Article  CAS  PubMed  Google Scholar 

  • Demant M, Trapphoff T, Frohlich T, Arnold GJ, Ritter UE (2012) Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected. Hum Reprod 27:1096–1111

    Article  CAS  PubMed  Google Scholar 

  • El-Danasouri I (2005) Vitrification versus conventional cryopreservation technique. Middle East Fertil Soc J 10:3

    Google Scholar 

  • Fahy GM (2010) Cryoprotectant toxicity neutralization. Cryobiology 60:S45–S53

    Article  CAS  PubMed  Google Scholar 

  • Fahy GM, Lilley TH, Linsdell H, Douglas MS, Meryman HT (1990) Cryoprotectant toxicity and cryoprotectant toxicity reduction: in search of molecular mechanisms. Cryobiology 27:247–268

    Article  CAS  PubMed  Google Scholar 

  • Ford P, Merot J, Jawerbaum A, Gimeno MA, Capurro C, Parisi M (2000) Water permeability in rat oocytes at different maturity stages: aquaporin-9 expression. J Membr Biol 176:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gomes D, Agasse A, Thiébaud P, Delrot S, Gerós H, Chaumont F (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta 1788:1213-1228

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto S, Suzuki N, Yamanaka M, Hosoi Y, Ishizuka B, Morimoto Y (2010) Effects of vitrification solutions and equilibration times on the morphology of cynomolgus ovarian tissues. Reprod Biomed Online 21:501–509

    Article  PubMed  Google Scholar 

  • Huang LL, Mo YQ, Wang WJ, Li Y, Zhang QX, Yang DZ (2008) Cryopreservation of human ovarian tissue by solid-surface vitrification. Eur J Obstet Gynecol Reprod Biol 139:193–198

    Article  CAS  PubMed  Google Scholar 

  • Isachenko V, Selman H, Isachenko E, Montag M, El-Danasouri I, Nawroth F (2003) Modified vitrification of human pronuclear oocytes: efficacy and effect on ultrastructure. Reprod Biomed Online 7:211–216

    Article  PubMed  Google Scholar 

  • Jablonski EM, Webb AN, McConnell NA, Riley MC, Hughes FM Jr (2004) Plasma membrane aquaporin activity can affect the rate of apoptosis but is inhibited after apoptotic volume decrease. Am J Physiol Cell Physiol 286:C975–C985

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, No JG, Park JJ, Park JK, Yoo JG (2012) Successful in vitro development of preantral follicles isolated from vitrified mouse whole ovaries. Reprod Dev Biol 36:255–260

    Article  Google Scholar 

  • Klocke S, Bundgen N, Koster F, Eichenlaub-Ritter U, Griesinger G (2015) Slow-freezing versus vitrification for human ovarian tissue cryopreservation. Arch Gynecol Obstet 291:419–426

    Article  CAS  PubMed  Google Scholar 

  • McConnel NA, Yunus RS, Gross SA, Bost KL, Clemens MG, Hughes FM Jr (2002) Water permeability of an ovarian antral follicle is predominantly transcellular and mediated by aquaporins. Endocrinology 143:2905–2912

    Article  Google Scholar 

  • Nottola SA, Coticchio G, Sciajno R, Gambardella A, Maione M, Scaravelli G, Bianchi S, Macchiarelli G, Borini A (2009) Ultrastructural markers of quality in human mature oocytes vitrified using cryoleaf and cryoloop. Reprod Biomed Online 19:17–27

    Article  PubMed  Google Scholar 

  • Offenberg H, Barcroft LC, Caveney A, Viuff D, Thomsen PD, Watson AJ (2000) mRNAs encoding Aquaporins 1–9 are present during murine preimplantation development. Mol Reprod Dev 57:1–8

    Article  Google Scholar 

  • Rodgers RJ, Irving-Rodgers HF (2010) Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod 82:1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Rubinsky B (2003) Principles of low temperature cell preservation. Heart Fail Rev 8:277–284

    Article  CAS  PubMed  Google Scholar 

  • Sales AD, Brito IR, Lima LF, Lobo CH, Duarte ABG, Souza CEA, Moura AA, Figueiredo JR de, Rodrigues AP (2014) Expression and localization of Aquaporin 3 (AQP3) in folliculogenesis of ewes. Acta Histochem 116:831–837

  • Sales AD, Duarte ABG, Rodrigues GQ, Lima LF, Silva GM, Carvalho AA, Brito IR, Maranguape RMS, Lobo CH, Aragão JAS, Moura AA, Figueiredo JR, Rodrigues APR (2015) Steady-state level of mRNA and immunolocalization of AQPs 3, 7 and 9 during in vitro growth of ovine preantral follicles. Theriogenology 84:1–10

    Article  CAS  PubMed  Google Scholar 

  • Seki S, Kouya T, Hara T, Valdez DM Jr, Jin B, Magosaburo K, Edashige K (2007) Exogenous expression of rat Aquaporin 3 enhances permeability to water an cryoprotectants of immature oocytes in the zebrafish (Danio rerio). J Reprod Dev 53:597–604

    Article  CAS  PubMed  Google Scholar 

  • Smitz J, Dolmans MM, Donnez J, Fortune JE, Hovatta O, Jewgenow K, Picton HM, Plancha C, Shea LD, Stouffer RL, Telfer EE, Woodruff TK, Zelinski MB (2010) Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum Reprod Update 16:395–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steeves CL, Baltz JM (2005) Regulation of intracellular glycine as an organic osmolyte in early preimplantation mouse embryos. J Cell Physiol 204:273–279

    Article  CAS  PubMed  Google Scholar 

  • Tan YJ, Xiong Y, Ding GL, Zhang D, Meng Y, Huang HF, Sheng JZ (2013) Cryoprotectants up-regulate expression of mouse oocyte AQP7, which facilitates water diffusion during cryopreservation. Fertil Steril 99:1428–1435

    Article  CAS  PubMed  Google Scholar 

  • Tsukaguchi H, Shayakul C, Berger UV, Mackenzie B, Devidas S, Guggino WG, Hoek AN van, Hediger MA (1998) Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem 237:24737–24743

  • Turathum B, Saikhun K, Sangsuwan P, Kitiyanant Y (2010) Effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes. Reprod Biol Endocrinol 8:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasiliou V, Vasiliou K, Nebert DW (2009) Human ATP-binding cassette (ABC) transporter family. Hum Genom 3:281–290

    Article  CAS  Google Scholar 

  • Vogel C, Marcotte EM (2013) Insights into the regulation of protein abun-dance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232

    Article  Google Scholar 

  • Zhou XH, Wu YJ, Shi J, Xia YX, Zheng SS (2010) Cryopreservation of human ovarian tissue: comparison of novel direct cover vitrification and conventional vitrification. Cryobiology 60:101–105

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Sales.

Additional information

This work was supported by CNPq (UNIVERSAL: grant number 475628/2011-0). A.D. Sales is a recipient of a grant from FUNCAP Brazil. A.P.R. Rodrigues is a recipient of a grant from CNPq Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sales, A.D., Duarte, A.B.G., Santos, R.R. et al. Modulation of aquaporins 3 and 9 after exposure of ovine ovarian tissue to cryoprotectants followed by in vitro culture. Cell Tissue Res 365, 415–424 (2016). https://doi.org/10.1007/s00441-016-2384-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2384-z

Keywords

Navigation