Skip to main content
Log in

The increase in the number of spines on the gonadotropin-releasing hormone neuron across pubertal development in rats

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The onset of puberty is initiated by an increase in the release of the gonadotropin-releasing hormone (GnRH) from GnRH neurons in the hypothalamus. However, the precise mechanism that leads to the activation of GnRH neurons at puberty remains controversial. Spines are small protrusions on the surface of dendrites that normally receive excitatory inputs. In this study, we analyzed the number and morphology of spines on GnRH neurons to investigate changes in synaptic inputs across puberty in rats. For morphological estimation, we measured the diameter of the head (DH) of each spine and classified them into small-type (DH < 0.65 μm), large-type (DH > 0.65 μm) and giant-type (DH > 0.9 μm). The greatest number of spines was observed at the proximal dendrite within 50 μm of the soma. At the soma and proximal dendrite, the number of spines was greater in adults than in juveniles in both male and female individuals. Classification of spines revealed that the increase in spine number was due to increases in large- and giant-type spines. To further explore the relationship between spines on GnRH neurons and pubertal development, we next analyzed adult rats neonatally exposed to estradiol benzoate, in which puberty onset and reproductive functions are disrupted. We found a decrease in the number of all types of spines. These results suggest that GnRH neurons become to receive more and greater excitatory inputs on the soma and proximal dendrites as a result of the changes that occur at puberty and that alteration to spines plays a pivotal role in normal pubertal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aceitero J, Llanero M, Parrado R, Peña E, Lopez-Beltran A (1998) Neonatal exposure of male rats to estradiol benzoate causes rete testis dilation and backflow impairment of spermatogenesis. Anat Rec 252:17–33

    Article  CAS  PubMed  Google Scholar 

  • Arellano JI, Benavides-Piccione R, Defelipe J, Yuste R (2007) Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci 1:131–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Aubert ML, Begeot M, Winiger BP, Morel G, Sizonenko PC, Dubois PM (1985) Ontogeny of hypothalamic luteinizing hormone-releasing hormone (GnRH) and pituitary GnRH receptors in fetal and neonatal rats. Endocrinology 116:1565–1576

    Article  CAS  PubMed  Google Scholar 

  • Bellido C, Gaytán F, Aguilar R, Pinilla L, Aguilar E (1985) Prepuberal reproductive defects in neonatal estrogenized male rats. Biol Reprod 33:381–387

    Article  CAS  PubMed  Google Scholar 

  • Bennett-Clarke C, Joseph SA (1982) Immunocytochemical distribution of LHRH neurons and processes in the rat: hypothalamic and extrahypothalamic locations. Cell Tissue Res 221:493–504

    Article  CAS  PubMed  Google Scholar 

  • Bourguignon JP, Gérard A, Franchimont P (1989) Direct activation of gonadotropin-releasing hormone secretion through different receptors to neuroexcitatory amino acids. Neuroendocrinology 49:402–408

    Article  CAS  PubMed  Google Scholar 

  • Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brann DW (1995) Glutamate: a major excitatory transmitter in neuroendocrine regulation. Neuroendocrinology 61:213–225

    Article  CAS  PubMed  Google Scholar 

  • Campbell RE, Han SK, Herbison AE (2005) Biocytin filling of adult gonadotropin-releasing hormone neurons in situ reveals extensive, spiny, dendritic processes. Endocrinology 146:1163–1169

    Article  CAS  PubMed  Google Scholar 

  • Chan H, Prescott M, Ong Z, Herde MK, Herbison AE, Campbell RE (2011) Dendritic spine plasticity in gonadatropin-releasing hormone (GnRH) neurons activated at the time of the preovulatory surge. Endocrinology 152:4906–4914

    Article  CAS  PubMed  Google Scholar 

  • Cottrell EC, Campbell RE, Han SK, Herbison AE (2006) Postnatal remodeling of dendritic structure and spine density in gonadotropin-releasing hormone neurons. Endocrinology 147:3652–3661

    Article  CAS  PubMed  Google Scholar 

  • DeFazio RA, Heger S, Ojeda SR, Moenter SM (2002) Activation of A-type gamma-aminobutyric acid receptors excites gonadotropin-releasing hormone neurons. Mol Endocrinol 16:2872–2891

    Article  CAS  PubMed  Google Scholar 

  • Forlano PM, Woolley CS (2010) Quantitative analysis of pre- and postsynaptic sex differences in the nucleus accumbens. J Comp Neurol 518:1330–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gay VL, Plant TM (1987) N-methyl-D, L-aspartate elicits hypothalamic gonadotropin-releasing hormone release in prepubertal male rhesus monkeys (Macaca mulatta). Endocrinology 120:2289–2296

    Article  CAS  PubMed  Google Scholar 

  • Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han SK, Abraham IM, Herbison AE (2002) Effect of GABA on GnRH neurons switches from depolarization to hyperpolarization at puberty in the female mouse. Endocrinology 143:1459–1466

    Article  CAS  PubMed  Google Scholar 

  • Han SK, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, Clifton DK, Steiner RA, Herbison AE (2005) Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 25:11349–11356

    Article  CAS  PubMed  Google Scholar 

  • Harris KM, Stevens JK (1989) Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 9:2982–2997

    CAS  PubMed  Google Scholar 

  • Herde MK, Iremonger KJ, Constantin S, Herbison AE (2013) GnRH neurons elaborate a long-range projection with shared axonal and dendritic functions. J Neurosci 33:12689–12697

    Article  CAS  PubMed  Google Scholar 

  • Ifft JD, McCarthy L (1974) Somatic spines in the supraoptic nucleus of the rat hypothalamus. Cell Tissue Res 148:203–211

    Article  CAS  PubMed  Google Scholar 

  • Jennes L (1989) Prenatal development of the gonadotropin-releasing hormone-containing systems in rat brain. Brain Res 482:97–108

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Ui-Tei K, Watanabe M, Sakuma Y (2003) Characterization of voltage-gated calcium currents in gonadotropin-releasing hormone neurons tagged with green fluorescent protein in rats. Endocrinology 144:5118–5125

    Article  CAS  PubMed  Google Scholar 

  • Kincl FA, Pi AF, Maqueo M, Lasso LH, Dorfman RI, Oriol A (1965) Inhibition of sexual development in male and female rats treated with various steroids at the age of five days. Acta Endocrinol (Copenh) 49:193–206

    CAS  Google Scholar 

  • Kinoshita M, Tsukamura H, Adachi S, Matsui H, Uenoyama Y, Iwata K, Yamada S, Inoue K, Ohtaki T, Matsumoto H, Maeda K (2005) Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology 146:4431–4436

    Article  CAS  PubMed  Google Scholar 

  • Lim WL, Soga T, Parhar IS (2014) Maternal dexamethasone exposure during pregnancy in rats disrupts gonadotropin-releasing hormone neuronal development in the offspring. Cell Tissue Res 355:409–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore AM, Prescott M, Campbell RE (2013) Estradiol negative and positive feedback in a prenatal androgen-induced mouse model of polycystic ovarian syndrome. Endocrinology 154:796–806

    Article  CAS  PubMed  Google Scholar 

  • Moore AM, Prescott M, Marshall CJ, Yip SH, Campbell RE (2015) Enhancement of a robust arcuate GABAergic input to gonadotropin-releasing hormone neurons in a model of polycystic ovarian syndrome. Proc Natl Acad Sci U S A 112:596–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nass TE, Terasawa E, Dierschke DJ, Goy RW (1984) Developmental changes in luteinizing hormone secretion in the female guinea pig. II. Positive feedback effects of ovarian steroids. Endocrinology 115:227–232

    Article  CAS  PubMed  Google Scholar 

  • Navarro VM, Sánchez-Garrido MA, Castellano JM, Roa J, García-Galiano D, Pineda R, Aguilar E, Pinilla L, Tena-Sempere M (2009) Persistent impairment of hypothalamic KiSS-1 system after exposures to estrogenic compounds at critical periods of brain sex differentiation. Endocrinology 150:2359–2367

    Article  CAS  PubMed  Google Scholar 

  • Ping L, Mahesh VB, Bhat GK, Brann DW (1997) Regulation of gonadotropin-releasing hormone and luteinizing hormone secretion by AMPA receptors. Evidence for a physiological role of AMPA receptors in the steroid-induced luteinizing hormone surge. Neuroendocrinology 66:246–253

    Article  CAS  PubMed  Google Scholar 

  • Plant TM, Gay VL, Marshall GR, Arslan M (1989) Puberty in monkeys is triggered by chemical stimulation of the hypothalamus. Proc Natl Acad Sci U S A 86:2506–2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simerly RB (2002) Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu Rev Neurosci 25:507–536

    Article  CAS  PubMed  Google Scholar 

  • Sisk CL, Richardson HN, Chappell PE, Levine JE (2001) In vivo gonadotropin-releasing hormone secretion in female rats during peripubertal development and on proestrus. Endocrinology 142:2929–2936

    CAS  PubMed  Google Scholar 

  • Smyth C, Wilkinson M (1994) A critical period for glutamate receptor-mediated induction of precocious puberty in female rats. J Neuroendocrinol 6:275–284

    Article  CAS  PubMed  Google Scholar 

  • Takumi Y, Ramírez-León V, Laake P, Rinvik E, Ottersen OP (1999) Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci 2:618–624

    Article  CAS  PubMed  Google Scholar 

  • Tena-Sempere M, Navarro J, Pinilla L, González LC, Huhtaniemi I, Aguilar E (2000) Neonatal exposure to estrogen differentially alters estrogen receptor alpha and beta mRNA expression in rat testis during postnatal development. J Endocrinol 165:345–357

    Article  CAS  PubMed  Google Scholar 

  • Urbanski HF, Ojeda SR (1987) Activation of luteinizing hormone-releasing hormone release advances the onset of female puberty. Neuroendocrinology 46:273–276

    Article  CAS  PubMed  Google Scholar 

  • Urbanski HF, Ojeda SR (1990) A role for N-methyl-D-aspartate (NMDA) receptors in the control of LH secretion and initiation of female puberty. Endocrinology 126:1774–1776

    Article  CAS  PubMed  Google Scholar 

  • Veneroni O, Cocilovo L, Müller EE, Cocchi D (1990) Delay of puberty and impairment of growth in female rats given a non competitive antagonist of NMDA receptors. Life Sci 47:1253–1260

    Article  CAS  PubMed  Google Scholar 

  • Vigh-Teichmann I, Vigh B, Aros B (1976) Ciliated neurons and different types of synapses in anterior hypothalamic nuclei of reptiles. Cell Tissue Res 174:139–160

    Article  CAS  PubMed  Google Scholar 

  • Wray S, Hoffman G (1986a) A developmental study of the quantitative distribution of LHRH neurons within the central nervous system of postnatal male and female rats. J Comp Neurol 252:522–531

    Article  CAS  PubMed  Google Scholar 

  • Wray S, Hoffman G (1986b) Postnatal morphological changes in rat LHRH neurons correlated with sexual maturation. Neuroendocrinology 43:93–97

    Article  CAS  PubMed  Google Scholar 

  • Wu FC, Howe DC, Naylor AM (1990) N-methyl-DL-aspartate receptor antagonism by D-2-amino-5-phosphonovaleric acid delays onset of puberty in the female rat. J Neuroendocrinol 2:627–631

    Article  CAS  PubMed  Google Scholar 

  • Yin C, Ishii H, Tanaka N, Sakuma Y, Kato M (2008) Activation of A-type gamma-amino butyric acid receptors excites gonadotrophin-releasing hormone neurones isolated from adult rats. J Neuroendocrinol 20:566–575

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Toshio Akimoto (Division of Laboratory Animal Science, Nippon Medical School) for help in preparing and maintaining transgenic animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Ozawa.

Additional information

This work was supported by Grants-in-Aid from Japan Society for the Promotion of Science (JSPS)-KAKENHI Grant no. 22590230, 26460323 to H.O. and 26670115 to N.I. and the supported program for Strategic Research Foundation at Private Universities by the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Takumi, K., Iijima, N. et al. The increase in the number of spines on the gonadotropin-releasing hormone neuron across pubertal development in rats. Cell Tissue Res 364, 405–414 (2016). https://doi.org/10.1007/s00441-015-2335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2335-0

Keywords

Navigation