Skip to main content

Advertisement

Log in

Expression and localization of GPR91 and GPR99 in murine organs

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Energy substrates and metabolic intermediates are proven ligands of a growing number of G-protein coupled receptors. In 2004, GPR91 and GPR99 were identified as receptors for the citric acid cycle intermediates, succinate and α-ketoglutarate, respectively. GPR91 seems to act as a first responder to local stress and GPR99 participates in the regulation of the acid–base balance through an intrarenal paracrine mechanism. However, a systematic analysis of the distribution of both receptors in mouse organs is still missing. The aim of this study was to examine the expression of GPR91 and GPR99 in a large number of different murine organs both at mRNA and protein level. Whereas GPR91 mRNA was detectable in almost all organs, GPR99 mRNA was mainly expressed in neuronal tissues. Widespread expression of GPR91 was also detected at the protein level by western blotting and immunohistochemistry. In addition to neuronal cells, GPR99 protein was found in renal intercalated cells and epididymal narrow cells. Double-labeling immunohistochemistry demonstrated the colocalization of GPR99 with the B1 subunit isoform of vacuolar H+-ATPases which is expressed only by a very limited number of cell types. In summary, our detailed expression analysis of GPR91 and GPR99 in murine tissues will allow a more directed search for additional functions of both receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmed SSSJ (2014) Systems biology in unruptured intracranial aneurysm: a metabolomics study in serum for the detection of biomarkers. Metabolomics 10(1):52–62

    Article  CAS  Google Scholar 

  • Arrotéia KF, Garcia PV, Barbieri MF, Justino ML, Pereira LAV (2012) The epididymis: Embryology, structure, function and its role in fertilization and infertility, embryology - updates and highlights on classic topics. In: Prof. Luis Violin Pereira (ed) ISBN: 978-953-51-0465-0, InTech, Available from: http://www.intechopen.com/books/embryology-updates-and-highlightson-classic-topics/the-epididymis-embryology-structure-function-and-its-role-in-fertilization-and-infertility

  • Barka T (1980) Biologically active polypeptides in submandibular glands. J Histochem Cytochem 28(8):836–859

    Article  CAS  PubMed  Google Scholar 

  • Blomqvist SR, Vidarsson H, Söder O, Enerbäck S (2006) Epididymal expression of the forkhead transcription factor Foxi1 is required for male fertility. EMBO J 25(17):4131–4141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown D, Marshansky V (2004) Renal V-ATPase: Physiology and pathophysiology. In: Futai M, Wada Y, Kaplan JH (eds) Handbook of ATPases. Biochemistry, cell biology, pathophysiology. Wiley-VCH, Weinheim, pp 413–442

    Google Scholar 

  • Civelli O (2005) GPCR deorphanizations: the novel, the known and the unexpected transmitters. Trends Pharmacol Sci 26(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Correa PR, Kruglov EA, Thompson M, Leite MF, Dranoff JA, Nathanson MH (2007) Succinate is a paracrine signal for liver damage. J Hepatol 47(2):262–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis JR (1969) Metabolic aspects of spermatogenesis. Biol Reprod 1(Suppl 1):93–118

    Article  PubMed  Google Scholar 

  • Dunn WB, Broadhurst DI, Deepak SM, Buch MH, McDowell G, Spasic I, Ellis DI, Brooks N, Kell DB, Neysesc L (2007) Serum metabolomics reveals many novel metabolic markers of heart failure, including pseudouridine and 2-oxoglutarate. Metabolomics 3(4):413–426

    Article  CAS  Google Scholar 

  • Forni LG, McKinnon W, Lord GA, Treacher DF, Peron JM, Hilton PJ (2005) Circulating anions usually associated with the Krebs cycle in patients with metabolic acidosis. Crit Care 9(5):R591–R595

    Article  PubMed  PubMed Central  Google Scholar 

  • He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J, Chen JL, Tian H, Ling L (2004) Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429(6988):188–193

    Article  CAS  PubMed  Google Scholar 

  • Jacob M, Yusuf F, Jacob HJ (2012) Development, differentiation and derivatives of the wolffian and müllerian ducts, the human embryo. In: Dr. Yamada S (ed). p 143–166. Available from: http://www.intechopen.com/books/the-human-embryo/development-differentiation-and-derivatives-of-the-wolffian-and-m-llerian-ducts

  • Jayasinghe NR, Cope GH, Jacob S (1990) Morphometric studies on the development and sexual dimorphism of the submandibular gland of the mouse. J Anat 172:115–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanaoka Y, Maekawa A, Austen KF (2013) Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. J Biol Chem 288(16):10967–10972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerschner JE, Hong W, Taylor SR, Kerschner JA, Khampang P, Wrege KC, North PE (2013) A novel model of spontaneous otitis media with effusion (OME) in the Oxgr1 knock-out mouse. Int J Pediatr Otorhinolaryngol 77(1):79–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J, Kim YH, Cha JH, Tisher CC, Madsen KM (1999) Intercalated cell subtypes in connecting tubule and cortical collecting duct of rat and mouse. J Am Soc Nephrol 10(1):1–12

    CAS  PubMed  Google Scholar 

  • Kim K, Taylor SL, Ganti S, Guo L, Osier MV, Weiss RH (2011) Urine metabolomic analysis identifies potential biomarkers and pathogenic pathways in kidney cancer. OMICS 15(5):293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushnir MM, Komaromy-Hiller G, Shushan B, Urry FM, Roberts WL (2001) Analysis of dicarboxylic acids by tandem mass spectrometry. High-throughput quantitative measurement of methylmalonic acid in serum, plasma, and urine. Clin Chem 47(11):1993–2002

    CAS  PubMed  Google Scholar 

  • Lee WK, Jung SM, Kwak JO, Cha SH (2006) Introduction of organic anion transporters (SLC22A) and a regulatory mechanism by Caveolins. Electrolyte Blood Press 4(1):8–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mestrovic N, Catanzaro DF, Morris BJ (1983) Detection of renin mRNA in mouse kidney and submandibular gland by hybridization with renin cDNA. Endocrinology 113(3):1179–1181

    Article  Google Scholar 

  • Millar RP, Newton CL (2010) The year in G protein-coupled receptor research. Mol Endocrinol 24(1):261–274

    Article  CAS  PubMed  Google Scholar 

  • Miller RL, Zhang P, Smith M, Beaulieu V, Paunescu TG, Brown D, Breton S, Nelson RD (2005) V-ATPase B1-subunit promoter drives expression of EGFP in intercalated cells of kidney, clear cells of epididymis and airway cells of lung in transgenic mice. Am J Physiol Cell Physiol 288:C1134–C1144

    Article  CAS  PubMed  Google Scholar 

  • Mühling J, Paddenberg R, Hempelmann G, Kummer W (2006) Hypobaric hypoxia affects endogenous levels of alpha-keto acids in murine heart ventricles. Biochem Biophys Res Commun 342(3):935–939

    Article  PubMed  Google Scholar 

  • Mundel P, Bachmann S, Bader M, Fischer A, Kummer W, Mayer B, Kriz W (1992) Expression of nitric oxide synthase in kidney macula densa cells. Kidney Int 42(4):1017–1019

    Article  CAS  PubMed  Google Scholar 

  • Paddenberg R, Faulhammer P, Goldenberg A, Kummer W (2006) Hypoxia-induced increase of endostatin in murine aorta and lung. Histochem Cell Biol 125(5):497–508

    Article  CAS  PubMed  Google Scholar 

  • Paddenberg R, Tiefenbach M, Faulhammer P, Goldenberg A, Gries B, Pfeil U, Lips KS, Piruat JI, López-Barneo J, Schermuly RT, Weissmann N, Kummer W (2012) Mitochondrial complex II is essential for hypoxia-induced pulmonary vasoconstriction of intra- but not of pre-acinar arteries. Cardiovasc Res 93(4):702–710

    Article  CAS  PubMed  Google Scholar 

  • Regard JB, Sato IT, Coughlin SR (2008) Anatomical profiling of G protein-coupled receptor expression. Cell 35(3):561–571

    Article  Google Scholar 

  • Robaire B, Hinton BT, Orgebin-Crist M-C (2006) Chapter 22 – the epididymis. In: Neill JD (ed) Knobil and Neill’s physiology of reproduction, vol 1, 3rd edn. Elsevier, New York, pp 1072–1148

    Google Scholar 

  • Robben JH, Fenton RA, Vargas SL, Schweer H, Peti-Peterdi J, Deen PM, Milligan G (2009) Localization of the succinate receptor in the distal nephron and its signaling in polarized MDCK cells. Kidney Int 76(12):1258–1267

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Gallego E, Guirro M, Riera-Borrull M, Hernández-Aguilera A, Mariné-Casadó R, Fernández-Arroyo S, Beltrán-Debón R, Sabench F, Hernández M, del Castillo D, Menendez JA, Camps J, Ras R, Arola L, Joven J (2015) Mapping of the circulating metabolome reveals α-ketoglutarate as a predictor of morbid obesity-associated non-alcoholic fatty liver disease. Int J Obes 39(2):279–287

    Article  Google Scholar 

  • Rougeot C, Rosinski-Chupin I, Rougeon F (1998) Novel genes and hormones in salivary glands: from the gene for the submandibular rat 1 protein (smr1) precursor to receptor sites for smr1 mature peptides. Biomed Rev 9:17–32

    Article  CAS  Google Scholar 

  • Sadagopan N, Li W, Roberds SL, Major T, Preston GM, Yu Y, Tones MA (2007) Circulating succinate is elevated in rodent models of hypertension and metabolic disease. Am J Hypertens 20(11):1209–1215

    CAS  PubMed  Google Scholar 

  • Sapieha P, Sirinyan M, Hamel D, Zaniolo K, Joyal JS, Cho JH, Honoré JC, Kermorvant-Duchemin E, Varma DR, Tremblay S, Leduc M, Rihakova L, Hardy P, Klein WH, Mu X, Mamer O, Lachapelle P, Di Polo A, Beauséjour C, Andelfinger G, Mitchell G, Sennlaub F, Chemtob S (2008) The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat Med 14(10):1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Sauter A, Machura K, Neubauer B, Kurtz A, Wagner C (2008) Development of renin expression in the mouse kidney. Kidney Int 73(1):43–51

    Article  CAS  PubMed  Google Scholar 

  • Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342

    Article  PubMed  Google Scholar 

  • Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings MH, Reppert SM (2000) Interacting molecular loops in the mammalian circadian clock. Science 288(5468):1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Shum WW, Da Silva N, Brown D, Breton S (2009) Regulation of luminal acidification in the male reproductive tract via cell-cell crosstalk. J Exp Biol 212(Pt 11):1753–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su L, Mruk DD, Cheng CY (2011) Drug transporters, the blood-testis barrier, and spermatogenesis. J Endocrinol 208(3):207–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda I, Stretch C, Barnaby P, Bhatnager K, Rankin K, Fu H, Weljie A, Jha N, Slupsky C (2009) Understanding the human salivary metabolome. NMR Biomed 22(6):577–584

    Article  CAS  PubMed  Google Scholar 

  • Tokonami N, Morla L, Centeno G, Mordasini D, Ramakrishnan SK, Nikolaeva S, Wagner CA, Bonny O, Houillier P, Doucet A, Firsov D (2013) α-Ketoglutarate regulates acid–base balance through an intrarenal paracrine mechanism. J Clin Invest 123(7):3166–3171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toma I, Kang JJ, Sipos A, Vargas S, Bansal E, Hanner F, Meer E, Peti-Peterdi J (2008) Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J Clin Invest 118:2526–2534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Treuting PM, Dintzis SM (2012) Salivary glands. In: Treuting PM, Dintzis SM (eds) Comparative anatomy and histology – a mouse and human atlas. Elsevier, New York, p 111–120

  • Vargas SL, Toma I, Kang JJ, Meer EJ, Peti-Peterdi J (2009) Activation of the succinate receptor GPR91 in macula densa cells causes renin release. J Am Soc Nephrol 20(5):1002–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, Brown A, Rodriguez SS, Weller JR, Wright AC, Bergmann JE, Gaitanaris GA (2003) The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci U S A 100(8):4903–4908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13(4):227–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Gao H, Lian F, Liu X, Zhao Y, Lin D (2011) 1H-NMR-based metabonomic analysis of metabolic profiling in diabetic nephropathy rats induced by streptozotocin. Am J Physiol Ren Physiol 300(4):F947–F956

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renate Paddenberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 20 kb)

ESM 2

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diehl, J., Gries, B., Pfeil, U. et al. Expression and localization of GPR91 and GPR99 in murine organs. Cell Tissue Res 364, 245–262 (2016). https://doi.org/10.1007/s00441-015-2318-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2318-1

Keywords

Navigation