Skip to main content
Log in

ORC proteins in the mammalian zygote

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The origin recognition complex (ORC) proteins, ORC1-6, are the first known proteins that bind DNA replication origins to mark the competency for the initiation of DNA synthesis. These proteins have complex mechanisms of assembly into the ORC complex and unexpected localizations in the mitotic chromosomes, cytoplasm, and nuclear structures. The mammalian zygote is a potentially important model that may contribute to our understanding of the mechanisms and features influencing origin establishment and in the identification of other functions of the ORC proteins. Together with expected localizations to the chromatin during G1, we found an unexpected distribution in the cytoplasm that appeared to accumulate ORC proteins suggesting potential roles for ORC subunits in mitosis and chromatin segregation. ORC1, 2, 3, and 5 all localize to the area between the separating maternal chromosomes shortly after fertilization. ORC4 forms a cage around the set of chromosomes that will be extruded during polar body formation before it binds to the chromatin shortly before zygotic DNA replication. These data suggest that the ORC proteins may also play roles in preparing the cell for DNA replication in addition to their direct role in establishing functional replication origins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aoki E, Schultz RM (1999) DNA replication in the 1-cell mouse embryo: stimulatory effect of histone acetylation. Zygote 7:165–172

    Article  PubMed  CAS  Google Scholar 

  • Balhorn R, Weston S, Thomas C, Wyrobek AJ (1984) DNA packaging in mouse spermatids. Synthesis of protamine variants and four transition proteins. Exp Cell Res 150:298–308

    Article  PubMed  CAS  Google Scholar 

  • Blow JJ, Laskey RA (1986) Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 47:577–587

    Article  PubMed  CAS  Google Scholar 

  • Cadoret JC, Meisch F, Hassan-Zadeh V, Luyten I, Guillet C, Duret L, Quesneville H, Prioleau MN (2008) Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Natl Acad Sci U S A 105:15837–15842

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpenter PB, Mueller PR, Dunphy WG (1996) Role for a Xenopus Orc2-related protein in controlling DNA replication. Nature 379:357–360

    Article  PubMed  CAS  Google Scholar 

  • Chesnokov IN, Chesnokova ON, Botchan M (2003) A cytokinetic function of Drosophila ORC6 protein resides in a domain distinct from its replication activity. Proc Natl Acad Sci U S A 100:9150–9155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cleary JD, Tome S, Lopez Castel A, Panigrahi GB, Foiry L, Hagerman KA, Sroka H, Chitayat D, Gourdon G, Pearson CE (2010) Tissue- and age-specific DNA replication patterns at the CTG/CAG-expanded human myotonic dystrophy type 1 locus. Nat Struct Mol Biol 17:1079–1087

    Article  PubMed  CAS  Google Scholar 

  • Coster G, Frigola J, Beuron F, Morris EP, Diffley JF (2014) Origin licensing requires ATP binding and hydrolysis by the MCM replicative helicase. Mol Cell 55:666–677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DePamphilis ML, Blow JJ, Ghosh S, Saha T, Noguchi K, Vassilev A (2006) Regulating the licensing of DNA replication origins in metazoa. Curr Opin Cell Biol 18:231–239

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Vassilev AP, Zhang J, Zhao Y, DePamphilis ML (2011) Assembly of the human origin recognition complex occurs through independent nuclear localization of its components. J Biol Chem 286:23831–23841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gibson DG, Bell SP, Aparicio OM (2006) Cell cycle execution point analysis of ORC function and characterization of the checkpoint response to ORC inactivation in Saccharomyces cerevisiae. Genes Cells 11:557–573

    Article  PubMed  CAS  Google Scholar 

  • Goto M, O'Brien DA, Eddy EM (2010) Speriolin is a novel human and mouse sperm centrosome protein. Hum Reprod 25:1884–1894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hemerly AS, Prasanth SG, Siddiqui K, Stillman B (2009) Orc1 controls centriole and centrosome copy number in human cells. Science 323:789–793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howlett SK, Bolton VN (1985) Sequence and regulation of morphological and molecular events during the first cell cycle of mouse embryogenesis. J Embryol Exp Morphol 87:175–206

    PubMed  CAS  Google Scholar 

  • Huang Z, Zang K, Reichardt LF (2005) The origin recognition core complex regulates dendrite and spine development in postmitotic neurons. J Cell Biol 170:527–535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huijbregts RP, Svitin A, Stinnett MW, Renfrow MB, Chesnokov I (2009) Drosophila Orc6 facilitates GTPase activity and filament formation of the septin complex. Mol Biol Cell 20:270–281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kara N, Hossain M, Prasanth SG, Stillman B (2015) Orc1 binding to mitotic chromosomes precedes spatial patterning during G1 phase and assembly of the origin recognition complex in human cells. J Biol Chem 290:12355–12369

    Article  PubMed  CAS  Google Scholar 

  • Kishigami S, Wakayama S, Nguyen VT, Wakayama T (2004) Similar time restriction for intracytoplasmic sperm injection and round spermatid injection into activated oocytes for efficient offspring production. Biol Reprod 70:1863–1869

    Article  PubMed  CAS  Google Scholar 

  • Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, Diamond MP (2011) A survey of small RNAs in human sperm. Hum Reprod 26:3401–3412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee KY, Bang SW, Yoon SW, Lee SH, Yoon JB, Hwang DS (2012) Phosphorylation of ORC2 protein dissociates origin recognition complex from chromatin and replication origins. J Biol Chem 287:11891–11898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee KY, Bae JS, Yoon S, Hwang DS (2014) Dephosphorylation of Orc2 by protein phosphatase 1 promotes the binding of the origin recognition complex to chromatin. Biochem Biophys Res Commun 448:385–389

    Article  PubMed  CAS  Google Scholar 

  • Li CJ, DePamphilis ML (2002) Mammalian Orc1 protein is selectively released from chromatin and ubiquitinated during the S-to-M transition in the cell division cycle. Mol Cell Biol 22:105–116

    Article  PubMed  PubMed Central  Google Scholar 

  • Machida YJ, Teer JK, Dutta A (2005) Acute reduction of an origin recognition complex (ORC) subunit in human cells reveals a requirement of ORC for Cdk2 activation. J Biol Chem 280:27624–27630

    Article  PubMed  CAS  Google Scholar 

  • Marushige Y, Marushige K (1975) Enzymatic unpacking of bull sperm chromatin. Biochim Biophys Acta 403:180–191

    Article  PubMed  CAS  Google Scholar 

  • Mavrakis M, Azou-Gros Y, Tsai FC, Alvarado J, Bertin A, Iv F, Kress A, Brasselet S, Koenderink GH, Lecuit T (2014) Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles. Nat Cell Biol 16:322–334

    Article  PubMed  CAS  Google Scholar 

  • McLay DW, Clarke HJ (2003) Remodelling the paternal chromatin at fertilization in mammals. Reproduction 125:625–633

    Article  PubMed  CAS  Google Scholar 

  • Meng XQ, Fan HY, Zhong ZS, Zhang G, Li YL, Chen DY, Sun QY (2004) Localization of gamma-tubulin in mouse eggs during meiotic maturation, fertilization, and early embryonic development. J Reprod Dev 50:97–105

    Article  PubMed  CAS  Google Scholar 

  • Mohar I, Szczygiel MA, Yanagimachi R, Ward WS (2002) Sperm nuclear halos can transform into normal chromosomes after injection into oocytes. Mol Reprod Dev 62:416–420

    Article  PubMed  CAS  Google Scholar 

  • Nguyen H, Ortega MA, Ko M, Marh J, Ward WS (2015) ORC4 surrounds extruded chromatin in female meiosis. J Cell Biochem 116:778–786

    Article  PubMed  CAS  Google Scholar 

  • Ortega MA, Marh J, Alarcon VB, Ward WS (2012) Unique pattern of ORC2 and MCM7 localization during DNA replication licensing in the mouse zygote. Biol Reprod 87:61–69

    Article  CAS  Google Scholar 

  • Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, Vera DL, Wang Y, Hansen RS, Canfield TK, Thurman RE, Cheng Y, Gulsoy G, Dennis JH, Snyder MP, Stamatoyannopoulos JA, Taylor J, Hardison RC, Kahveci T, Ren B, Gilbert DM (2014) Topologically associating domains are stable units of replication-timing regulation. Nature 515:402–405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prasanth SG, Prasanth KV, Stillman B (2002) Orc6 involved in DNA replication, chromosome segregation, and cytokinesis. Science 297:1026–1031

    Article  PubMed  CAS  Google Scholar 

  • Prasanth SG, Prasanth KV, Siddiqui K, Spector DL, Stillman B (2004) Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance. EMBO J 23:2651–2663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rivera C, Gurard-Levin ZA, Almouzni G, Loyola A (2014) Histone lysine methylation and chromatin replication. Biochim Biophys Acta 1839:1433–1439

    Article  PubMed  CAS  Google Scholar 

  • Rowles A, Chong JP, Brown L, Howell M, Evan GI, Blow JJ (1996) Interaction between the origin recognition complex and the replication licensing system in Xenopus. Cell 87:287–296

    Article  PubMed  CAS  Google Scholar 

  • Scholefield G, Veening JW, Murray H (2011) DnaA and ORC: more than DNA replication initiators. Trends Cell Biol 21:188–194

    Article  PubMed  CAS  Google Scholar 

  • Schuh M, Ellenberg J (2007) Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130:484–498

    Article  PubMed  CAS  Google Scholar 

  • Shaman JA, Yamauchi Y, Ward WS (2007) The sperm nuclear matrix is required for paternal DNA replication. J Cell Biochem 102:680–688

    Article  PubMed  CAS  Google Scholar 

  • Sirlin JL, Edwards RG (1959) Timing of DNA synthesis in ovarian oocyte nuclei and pronuclei of the mouse. Exp Cell Res 18:190–194

    Article  PubMed  CAS  Google Scholar 

  • Sonneville R, Querenet M, Craig A, Gartner A, Blow JJ (2012) The dynamics of replication licensing in live Caenorhabditis elegans embryos. J Cell Biol 196:233–246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takeda DY, Dutta A (2005) DNA replication and progression through S phase. Oncogene 24:2827–2843

    Article  PubMed  CAS  Google Scholar 

  • Takeda DY, Shibata Y, Parvin JD, Dutta A (2005) Recruitment of ORC or CDC6 to DNA is sufficient to create an artificial origin of replication in mammalian cells. Genes Dev 19:2827–2836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tatsumi Y, Ohta S, Kimura H, Tsurimoto T, Obuse C (2003) The ORC1 cycle in human cells. I. Cell cycle-regulated oscillation of human ORC1. J Biol Chem 278:41528–41534

    Article  PubMed  CAS  Google Scholar 

  • Ticau S, Friedman LJ, Ivica NA, Gelles J, Bell SP (2015) Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell 161:513–525

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi Y, Ward MA, Ward WS (2009) Asynchronous DNA replication and origin licensing in the mouse one cell embryo. J Cell Biochem 107:214–223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yanagimachi R (1994) Fertility of mammalian spermatozoa: its development and relativity. Zygote 2:371–372

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Steven Ward.

Additional information

This work was supported by NIH Grant HD060722 to W.S.W.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega, M.A., Nguyen, H. & Ward, W.S. ORC proteins in the mammalian zygote. Cell Tissue Res 363, 195–200 (2016). https://doi.org/10.1007/s00441-015-2296-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2296-3

Keywords

Navigation